Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Front Immunol ; 15: 1409333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919608

RESUMO

Introduction: Therapeutic antibodies have become a major strategy to treat oncologic diseases. For chronic lymphocytic leukemia, antibodies against CD20 are used to target and elicit cytotoxic responses against malignant B cells. However, efficacy is often compromised due to a suppressive microenvironment that interferes with cellular immune responses. To overcome this suppression, agonists of pattern recognition receptors have been studied which promote direct cytotoxicity or elicit anti-tumoral immune responses. NOD2 is an intracellular pattern recognition receptor that participates in the detection of peptidoglycan, a key component of bacterial cell walls. This detection then mediates the activation of multiple signaling pathways in myeloid cells. Although several NOD2 agonists are being used worldwide, the potential benefit of these agents in the context of antibody therapy has not been explored. Methods: Primary cells from healthy-donor volunteers (PBMCs, monocytes) or CLL patients (monocytes) were treated with versus without the NOD2 agonist L18-MDP, then antibody-mediated responses were assessed. In vivo, the Eµ-TCL1 mouse model of CLL was used to test the effects of L18-MDP treatment alone and in combination with anti-CD20 antibody. Results: Treatment of peripheral blood mononuclear cells with L18-MDP led to activation of monocytes from both healthy donors and CLL patients. In addition, there was an upregulation of activating FcγR in monocytes and a subsequent increase in antibody-mediated phagocytosis. This effect required the NF-κB and p38 signaling pathways. Treatment with L18-MDP plus anti-CD20 antibody in the Eµ-TCL model of CLL led to a significant reduction of CLL load, as well as to phenotypic changes in splenic monocytes and macrophages. Conclusions: Taken together, these results suggest that NOD2 agonists help overturn the suppression of myeloid cells, and may improve the efficacy of antibody therapy for CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Macrófagos , Proteína Adaptadora de Sinalização NOD2 , Receptores de IgG , Proteína Adaptadora de Sinalização NOD2/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/imunologia , Animais , Humanos , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Feminino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fagocitose , Rituximab/farmacologia , Rituximab/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-38770087

RESUMO

Henipaviruses are enveloped single-stranded, negative-sense RNA viruses of the paramyxovirus family. Two henipaviruses, Nipah virus and Hendra virus, cause a systemic respiratory and/or neurological disease in humans and ten additional species of mammals, with a high fatality rate. Because of their highly pathogenic nature, Nipah virus and Hendra virus are categorized as BSL-4 pathogens, which limits the number and scope of translational research studies on these important human pathogens. To begin to address this limitation, we are developing a BSL-2 model of authentic henipavirus infection in mice, using the non-pathogenic henipavirus, Cedar virus. Notably, wild-type mice are highly resistant to Hendra virus and Nipah virus infection. However, previous work has shown that mice lacking expression of the type I interferon receptor (IFNAR-KO mice) are susceptible to both viruses. Here, we show that luciferase-expressing recombinant Cedar virus (rCedV-luc) is also able to replicate and establish a transient infection in IFNAR-KO mice, but not in wild-type mice. Using longitudinal bioluminescence imaging (BLI) of luciferase expression, we detected rCedV-luc replication as early as 10 h post-infection. Viral replication peaks between days 1 and 3 post-infection, and declines to levels undetectable by BLI by 7 days post-infection. Immunohistochemistry is consistent with viral infection and replication in endothelial cells and other non-immune cell types within tissue parenchyma. Serology analyses demonstrate significant IgG responses to the Cedar virus surface glycoprotein with potent neutralizing activity in IFNAR-KO mice, whereas antibody responses in wild-type animals were non-significant. Overall, these data suggest that rCedV-luc infection of IFNAR-KO mice represents a viable platform for the study of in vivo henipavirus replication, anti-henipavirus host responses and henipavirus-directed therapeutics.

3.
Neurotrauma Rep ; 5(1): 181-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463417

RESUMO

Traumatic brain injury (TBI) survivors often suffer from agitated behaviors and will most likely receive pharmacological treatments. Choosing an optimal and safe treatment that will not interfere with neurological recovery remains controversial. By interfering with dopaminergic circuits, antipsychotics may impede processes important to cognitive recovery. Despite their frequent use, there have been no large randomized controlled studies of antipsychotics for the management of agitated behaviors during the acute TBI recovery period. We conducted a systematic review and meta-analysis of pre-clinical studies evaluating the effects of antipsychotics post-TBI on both cognitive and motor recovery. MEDLINE and Embase databases were searched up to August 2, 2023. Pre-clinical studies evaluating the effects of antipsychotics on cognitive and motor functions post-TBI were considered. Risk of bias was evaluated with the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool. We identified 15 studies including a total of 1188 rodents, mostly conducted in male Sprague-Dawley rats using cortical impact injury. The analysis revealed no consistent effect of haloperidol on motor functions, but risperidone was associated with a significant impairment in motor function on day 5 post-injury (7.05 sec; 95% confidence interval [CI]: 1.47, 12.62; I2 = 92%). Other atypical antipsychotics did not result in impaired motor function. When evaluating cognitive function, haloperidol- (23.00 sec; 95% CI: 17.42-28.59; I2 = 7%) and risperidone-treated rats (24.27 sec; 95% CI: 16.18-32.36; I2 = 0%) were consistently impaired when compared to controls. In studies evaluating atypical antipsychotics, no impairments were observed. Clinicians should avoid the regular use of haloperidol and risperidone, and future human studies should be conducted with atypical antipsychotics.

4.
Biol Res ; 56(1): 63, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041132

RESUMO

In December 2022 the US Food and Drug Administration (FDA) removed the requirement that drugs in development must undergo animal testing before clinical evaluation, a declaration that now demands the establishment and verification of ex vivo preclinical models that closely represent tumor complexity and that can predict therapeutic response. Fortunately, the emergence of patient-derived organoid (PDOs) culture has enabled the ex vivo mimicking of the pathophysiology of human tumors with the reassembly of tissue-specific features. These features include histopathological variability, molecular expression profiles, genetic and cellular heterogeneity of parental tissue, and furthermore growing evidence suggests the ability to predict patient therapeutic response. Concentrating on the highly lethal and heterogeneous gastrointestinal (GI) tumors, herein we present the state-of-the-art and the current methodology of PDOs. We highlight the potential additions, improvements and testing required to allow the ex vivo of study the tumor microenvironment, as well as offering commentary on the predictive value of clinical response to treatments such as chemotherapy and immunotherapy.


Assuntos
Neoplasias Gastrointestinais , Estados Unidos , Animais , Humanos , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/metabolismo , Organoides/metabolismo , Organoides/patologia , Microambiente Tumoral
5.
Microorganisms ; 11(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38004765

RESUMO

Treatment options for multidrug-resistant bacterial infections are limited and often ineffective. Fecal microbiota transplantation (FMT) has emerged as a promising therapy for intestinal multidrug-resistant bacterial decolonization. However, clinical results are discrepant. The aim of our pilot study was to evaluate the screening performance of a simple diagnostic tool to select fecal samples that will be effective in decolonizing the intestine. Fecal samples from 10 healthy subjects were selected. We developed an agar spot test to evaluate their antagonistic activity toward the growth of VanA Enterococcus faecium and OXA-48-producing Klebsiella pneumoniae, two of the most serious and urgent threats of antibiotic resistance. Most fecal samples were able to limit the growth of both bacteria in vitro but with large inter-individual variation. The samples with the highest and lowest antagonistic activity were used for FMT in a mouse model of intestinal colonization. FMT was not successful in reducing intestinal colonization with VanA Enterococcus faecium, whereas FMT performed with the fecal sample showing the highest activity on the agar spot test was able to significantly reduce the intestinal colonization of mice with Klebsiella pneumoniae OXA-48. The agar spot test could thus serve as a reliable screening tool to select stool samples with the best potential to eradicate/reduce multidrug-resistant bacteria carriage after FMT.

6.
Vision Res ; 210: 108270, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321111

RESUMO

The eye is particularly suited to gene therapy due to its accessibility, immunoprivileged state and compartmentalised structure. Indeed, many clinical trials are underway for therapeutic gene strategies for inherited retinal degenerations (IRDs). However, as there are currently 281 genes associated with IRD, there is still a large unmet need for effective therapies for the majority of IRD-causing genes. In humans, RAB28 null and hypomorphic alleles cause autosomal recessive cone-rod dystrophy (arCORD). Previous work demonstrated that restoring wild type zebrafish Rab28 via germline transgenesis, specifically in cone photoreceptors, is sufficient to rescue the defects in outer segment phagocytosis (OSP) observed in zebrafish rab28-/- knockouts (KO). This rescue suggests that gene therapy for RAB28-associated CORD may be successful by RAB28 gene restoration to cones. It also inspired us to critically consider the scenarios in which zebrafish can provide informative preclinical data for development of gene therapies. Thus, this review focuses on RAB28 biology and disease, and delves into both the opportunities and limitations of using zebrafish as a model for both gene therapy development and as a diagnostic tool for patient variants of unknown significance (VUS).


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Humanos , Peixe-Zebra/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Terapia Genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
7.
One Health ; 16: 100565, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37363258

RESUMO

Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.

8.
Cancers (Basel) ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36765593

RESUMO

Organ-on-chip systems are capable of replicating complex tissue structures and physiological phenomena. The fine control of biochemical and biomechanical cues within these microphysiological systems provides opportunities for cancer researchers to build complex models of the tumour microenvironment. Interest in applying organ chips to investigate mechanisms such as metastatsis and to test therapeutics has grown rapidly, and this review draws together the published research using these microfluidic platforms to study cancer. We focus on both in-house systems and commercial platforms being used in the UK for fundamental discovery science and therapeutics testing. We cover the wide variety of cancers being investigated, ranging from common carcinomas to rare sarcomas, as well as secondary cancers. We also cover the broad sweep of different matrix microenvironments, physiological mechanical stimuli and immunological effects being replicated in these models. We examine microfluidic models specifically, rather than organoids or complex tissue or cell co-cultures, which have been reviewed elsewhere. However, there is increasing interest in incorporating organoids, spheroids and other tissue cultures into microfluidic organ chips and this overlap is included. Our review includes a commentary on cancer organ-chip models being developed and used in the UK, including work conducted by members of the UK Organ-on-a-Chip Technologies Network. We conclude with a reflection on the likely future of this rapidly expanding field of oncological research.

9.
J Neurotrauma ; 40(9-10): 965-980, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36200622

RESUMO

Spinal cord injury (SCI) frequently results in motor, sensory, and autonomic dysfunction for which there is currently no cure. Recent pre-clinical and clinical research has led to promising advances in treatment; however, therapeutics indicating promise in rodents have not translated successfully in human trials, likely due, in part, to gross anatomical and physiological differences between the species. Therefore, large animal models of SCI may facilitate the study of secondary injury processes that are influenced by scale, and may assist the translation of potential therapeutic interventions. The aim of this study was to characterize two severities of thoracic contusion SCI in female domestic pigs, measuring motor function and spinal cord lesion characteristics, over 2 weeks post-SCI. A custom-instrumented weight-drop injury device was used to release a 50 g impactor from 10 cm (n = 3) or 20 cm (n = 7) onto the exposed dura, to induce a contusion at the T10 thoracic spinal level. Hind limb motor function was assessed at 8 and 13 days post-SCI using a 10-point scale. Volume and extent of lesion-associated signal hyperintensity in T2-weighted magnetic resonance (MR) images were assessed at 3, 7, and 14 days post-injury. Animals were transcardially perfused at 14 days post-SCI and spinal cord tissue was harvested for histological analysis. Bowel function was retained in all animals and transient urinary retention occurred in one animal after catheter removal. All animals displayed hind limb motor deficits. Animals in the 10-cm group demonstrated some stepping and weight-bearing and scored a median 2-3 points higher on the 10-point motor function scale at 8 and 13 days post-SCI, than did the 20-cm group. Histological lesion volume was 20% greater, and 30% less white matter was spared, in the 20-cm group than in the 10-cm group. The MR signal hyperintensity in the 20-cm injury group had a median cranial-caudal extent approximately 1.5 times greater than the 10-cm injury group at all three time-points, and median volumes 1.8, 2.5, and 4.5 times greater at day 3, 7, and 14 post-injury, respectively. Regional differences in axonal injury were observed between groups, with amyloid precursor protein immunoreactivity greatest in the 20-cm group in spinal cord sections adjacent to the injury epicenter. This study demonstrated graded injuries in a domestic pig strain, with outcome measures comparable to miniature pig models of contusion SCI. The model provides a vehicle for the study of SCI and potential treatments, particularly where miniature pig strains are not available and/or where small animal models are not appropriate for the research question.


Assuntos
Contusões , Traumatismos da Medula Espinal , Feminino , Suínos , Humanos , Animais , Porco Miniatura , Modelos Animais de Doenças , Medula Espinal/patologia
10.
J Exp Clin Cancer Res ; 41(1): 343, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517829

RESUMO

BACKGROUND: Thymic malignancies are a heterogeneous group of rare cancers for which systemic chemotherapy is the standard treatment in the setting of advanced, recurrent or refractory diseases. Both environmental and genetic risk factors have not been fully clarified and few target-specific drugs have been developed for thymic epithelial tumors. A major challenge in studying thymic epithelial tumors is the lack of preclinical models for translational studies. MAIN BODY: Starting from bioptic material of two consecutive recurrences of the same patient, we generated two patient-derived xenografts. The patient-derived xenografts models were characterized for histology by immunohistochemistry and mutations using next-generation sequencing. When compared to the original tumors resected from the patient, the two patient-derived xenografts had preserved morphology after the stain with hematoxylin and eosin, although there was a moderate degree of de-differentiation. From a molecular point of view, the two patient-derived xenografts maintained 74.3 and 61.8% of the mutations present in the human tumor of origin. SHORT CONCLUSION: The newly generated patient-derived xenografts recapitulate both the molecular characteristics and the evolution of the thymoma it derives from well, allowing to address open questions for this rare cancer.


Assuntos
Neoplasias Epiteliais e Glandulares , Timoma , Neoplasias do Timo , Animais , Humanos , Timoma/tratamento farmacológico , Timoma/genética , Recidiva Local de Neoplasia/genética , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/genética , Modelos Animais de Doenças
11.
Respirology ; 27(8): 617-629, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35599245

RESUMO

BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a devastating disease commonly caused by cigarette smoke (CS) exposure that drives tissue injury by persistently recruiting myeloid cells into the lungs. A significant portion of COPD patients also present with overlapping asthma pathology including eosinophilic inflammation. The ßc cytokine family includes granulocyte monocyte-colony-stimulating factor, IL-5 and IL-3 that signal through their common receptor subunit ßc to promote the expansion and survival of multiple myeloid cells including monocytes/macrophages, neutrophils and eosinophils. METHODS: We have used our unique human ßc receptor transgenic (hßc Tg) mouse strain that expresses human ßc instead of mouse ßc and ßIL3 in an acute CS exposure model. Lung tissue injury was assessed by histology and measurement of albumin and lactate dehydrogenase levels in the bronchoalveolar lavage (BAL) fluid. Transgenic mice were treated with an antibody (CSL311) that inhibits human ßc signalling. RESULTS: hßc Tg mice responded to acute CS exposure by expanding blood myeloid cell numbers and recruiting monocyte-derived macrophages (cluster of differentiation 11b+ [CD11b+ ] interstitial and exudative macrophages [IM and ExM]), neutrophils and eosinophils into the lungs. This inflammatory response was associated with lung tissue injury and oedema. Importantly, CSL311 treatment in CS-exposed mice markedly reduced myeloid cell numbers in the blood and BAL compartment. Furthermore, CSL311 significantly reduced lung CD11b+ IM and ExM, neutrophils and eosinophils, and this decline was associated with a significant reduction in matrix metalloproteinase-12 (MMP-12) and IL-17A expression, tissue injury and oedema. CONCLUSION: This study identifies CSL311 as a therapeutic antibody that potently inhibits immunopathology and lung injury caused by acute CS exposure.


Assuntos
Fumar Cigarros , Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Animais , Líquido da Lavagem Broncoalveolar , Fumar Cigarros/efeitos adversos , Eosinófilos , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/metabolismo
12.
EBioMedicine ; 80: 104062, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35594660

RESUMO

BACKGROUND: There is an urgent need of a new generation of vaccine that are able to enhance protection against SARS-CoV-2 and related variants of concern (VOC) and emerging coronaviruses. METHODS: We identified conserved T- and B-cell epitopes from Spike (S) and Nucleocapsid (N) highly homologous to 38 sarbecoviruses, including SARS-CoV-2 VOCs, to design a protein subunit vaccine targeting antigens to Dendritic Cells (DC) via CD40 surface receptor (CD40.CoV2). FINDINGS: CD40.CoV2 immunization elicited high levels of cross-neutralizing antibodies against SARS-CoV-2, VOCs, and SARS-CoV-1 in K18-hACE2 transgenic mice, associated with viral control and survival after SARS-CoV-2 challenge. A direct comparison of CD40.CoV2 with the mRNA BNT162b2 vaccine showed that the two vaccines were equally immunogenic in mice. We demonstrated the potency of CD40.CoV2 to recall in vitro human multi-epitope, functional, and cytotoxic SARS-CoV-2 S- and N-specific T-cell responses that are unaffected by VOC mutations and cross-reactive with SARS-CoV-1 and, to a lesser extent, MERS epitopes. INTERPRETATION: We report the immunogenicity and antiviral efficacy of the CD40.CoV2 vaccine in a preclinical model providing a framework for a pan-sarbecovirus vaccine. FUNDINGS: This work was supported by INSERM and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR and the CARE project funded from the Innovative Medicines Initiative 2 Joint Undertaking (JU).


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
13.
Acta Histochem ; 124(4): 151895, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35486967

RESUMO

Cancer is a disease characterised by abnormal cell growth that can invade or spread to other regions of the body. Organoids are three-dimensional ex vivo tissue cultures made from embryonic stem cells, induced pluripotent stem cells, progenitor cells or tissue that serve as a physiological model for cancer research. These are designed to recapitulate the in vivo properties of tumours. Importantly, effective recapitulation of the structure of tissues and function is believed to predict patient response, allowing for the creation of personalised therapy in a timely manner that may be used in the clinic. This Review discusses the pre-clinical model and different types of human organoids as models for the development of high throughput drug screening and also aims to highlight how organoids are shaping the future of cancer research.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Organoides/metabolismo
14.
Transpl Int ; 35: 10171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401039

RESUMO

Survival of pig cardiac xenografts in a non-human primate (NHP) model has improved significantly over the last 4 years with the introduction of costimulation blockade based immunosuppression (IS) and genetically engineered (GE) pig donors. The longest survival of a cardiac xenograft in the heterotopic (HHTx) position was almost 3 years and only rejected when IS was stopped. Recent reports of cardiac xenograft survival in a life-sustaining orthotopic (OHTx) position for 6 months is a significant step forward. Despite these achievements, there are still several barriers to the clinical success of xenotransplantation (XTx). This includes the possible transmission of porcine pathogens with pig donors and continued xenograft growth after XTx. Both these concerns, and issues with additional incompatibilities, have been addressed recently with the genetic modification of pigs. This review discusses the spectrum of issues related to cardiac xenotransplantation, recent progress in preclinical models, and its feasibility for clinical translation.


Assuntos
Transplante de Coração , Primatas , Animais , Rejeição de Enxerto/genética , Xenoenxertos , Humanos , Suínos , Doadores de Tecidos , Transplante Heterólogo
15.
Int J Mol Med ; 49(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179217

RESUMO

Models considering hepatocellular carcinoma (HCC) complexity cannot be accurately replicated in routine cell lines or animal models. We aimed to evaluate the practicality of tissue slice culture by combining it with a cryopreservation technique. We prepared 0.3­mm­thick tissue slices by a microtome and maintained their cell viability using a cryopreservation technique. Slices were cultured individually in the presence or absence of regorafenib (REG) for 72 h. Alterations in morphology and gene expression were assessed by histological and genetic analysis. Overall viability was also analyzed in tissue slices by CCK­8 quantification assay and fluorescent staining. Tissue morphology and cell viability were evaluated to quantify drug effects. Histological and genetic analyses showed that no significant alterations in morphology and gene expression were induced by the vitrification­based cryopreservation method. The viability of warmed HCC tissues was up to 90% of the fresh tissues. The viability and proliferation could be retained for at least four days in the filter culture system. The positive drug responses in precision­cut slice culture in vitro were evaluated by tissue morphology and cell viability. In summary, the successful application of precision­cut HCC slice culture combined with a cryopreservation technique in a systematic drug screening demonstrates the feasibility and utility of slice culture method for assessing drug response.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sobrevivência Celular , Criopreservação , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética
17.
J Clin Med ; 10(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768368

RESUMO

In this study, the potential of a digital autoradiography system equipped with a super resolution screen has been evaluated to investigate the biodistribution of a 18F-PSMA inhibitor in a prostate cancer mouse model. Twelve double xenograft NOD/SCID mice (LNCAP and PC3 tumours) were divided into three groups according to post-injection time points of an 18F-PSMA inhibitor. Groups of 4 mice were used to evaluate the biodistribution of the radiopharmaceutical after 30-, 60- and 120-min post-injection. Data here reported demonstrated that the digital autoradiography system is suitable to analyse the biodistribution of an 18F-PSMA inhibitor in both whole small-animal bodies and in single organs. The exposure of both whole mouse bodies and organs on the super resolution screen surface allowed the radioactivity of the PSMA inhibitor distributed in the tissues to be detected and quantified. Data obtained by using a digital autoradiography system were in line with the values detected by the activity calibrator. In addition, the image obtained from the super resolution screen allowed a perfect overlap with the tumour images achieved under the optical microscope. In conclusion, biodistribution studies performed by the autoradiography system allow the microscopical modifications induced by therapeutic radiopharmaceuticals to be studied by comparing the molecular imaging and histopathological data at the sub-cellular level.

18.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201218

RESUMO

Ocular graft-versus-host disease (oGVHD) is a fast progressing, autoimmunological disease following hematopoietic stem cell transplantation, leading to severe inflammation of the eye and destruction of the lacrimal functional unit with consecutive sight-threatening consequences. The therapeutic "window of opportunity" is narrow, and current treatment options are limited and often insufficient. To achieve new insights into the pathogenesis and to develop new therapeutic approaches, clinically relevant models of oGVHD are desirable. In this study, the ocular phenotype was described in a murine, chemotherapy-based, minor-mismatch GVHD model mimicking early-onset chronic oGVHD, with corneal epitheliopathy, inflammation of the lacrimal glands, and blepharitis. Additionally, corneal lymphangiogenesis was observed as part of oGVHD pathogenesis for the first time, thus opening up the investigation of lymphangiogenesis as a potential therapeutic and diagnostic tool.


Assuntos
Antineoplásicos/toxicidade , Blefarite/patologia , Córnea/irrigação sanguínea , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Inflamação/patologia , Aparelho Lacrimal/patologia , Animais , Blefarite/etiologia , Blefarite/metabolismo , Modelos Animais de Doenças , Feminino , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Aparelho Lacrimal/metabolismo , Linfangiogênese , Camundongos , Camundongos Endogâmicos C57BL
19.
Front Bioeng Biotechnol ; 9: 658873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681177

RESUMO

[This corrects the article DOI: 10.3389/fbioe.2020.602646.].

20.
J Pharm Sci ; 110(6): 2386-2394, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722546

RESUMO

Changes in the environment from the drug product to the human physiology might lead to physical and/or chemical modifications of the protein drug, such as in vivo aggregation and fragmentation. Although subcutaneous (SC) injection is a common route of administration for therapeutic proteins, knowledge on in vivo stability in the SC tissue is limited. In this study, we developed a physiologic in vitro model simulating the SC environment in patients. We assessed the stability of two monoclonal antibodies (mAbs) in four different protein-free fluids under physiologic conditions. We monitored protein stability over two weeks using a range of analytical methods, in analogy to testing purposes of a drug product. Both mAbs showed an increase of protein aggregates, fragments, and acidic species. mAb1 was consistently more stable in this in vitro model than mAb2, highlighting the importance of comparing the stability of different mAbs under physiologic conditions. Throughout the study, both mAbs were substantially less stable in bicarbonate buffers as compared to phosphate-buffered saline. In summary, our developed model was able to differentiate stability between molecules. Bicarbonate buffers were more suitable compared to phosphate-buffered saline in regards to simulating the in vivo conditions and evaluating protein liabilities.


Assuntos
Antineoplásicos Imunológicos , Preparações Farmacêuticas , Anticorpos Monoclonais , Humanos , Injeções Subcutâneas , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA