Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Radiother Oncol ; 193: 110113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301958

RESUMO

BACKGROUND AND PURPOSE: Radiation induced cardiotoxicity (RICT) is as an important sequela of radiotherapy to the thorax for patients. In this study, we aim to investigate the dose and fractionation response of RICT. We propose global longitudinal strain (GLS) as an early indicator of RICT and investigate myocardial deformation following irradiation. METHODS: RICT was investigated in female C57BL/6J mice in which the base of the heart was irradiated under image-guidance using a small animal radiation research platform (SARRP). Mice were randomly assigned to a treatment group: single-fraction dose of 16 Gy or 20 Gy, 3 consecutive fractions of 8.66 Gy, or sham irradiation; biological effective doses (BED) used were 101.3 Gy, 153.3 Gy and 101.3 Gy respectively. Longitudinal transthoracic echocardiography (TTE) was performed from baseline up to 50 weeks post-irradiation to detect structural and functional effects. RESULTS: Irradiation of the heart base leads to BED-dependent changes in systolic and diastolic function 50 weeks post-irradiation. GLS showed significant decreases in a BED-dependent manner for all irradiated animals, as early as 10 weeks after irradiation. Early changes in GLS indicate late changes in cardiac function. BED-independent increases were observed in the left ventricle (LV) mass and volume and myocardial fibrosis. CONCLUSIONS: Functional features of RICT displayed a BED dependence in this study. GLS showed an early change at 10 weeks post-irradiation. Cardiac remodelling was observed as increases in mass and volume of the LV, further supporting our hypothesis that dose to the base of the heart drives the global heart toxicity.


Assuntos
Coração , Miocárdio , Humanos , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Coração/efeitos da radiação , Ecocardiografia , Cardiotoxicidade/etiologia
2.
Tomography ; 9(2): 567-578, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961005

RESUMO

We have integrated a compact and lightweight PET with an existing CT image-guided small animal irradiator to enable practical onboard PET/CT image-guided preclinical radiation therapy (RT) research. The PET with a stationary and full-ring detectors has ~1.1 mm uniform spatial resolution over its imaging field-of-view of 8.0 cm diameter and 3.5 cm axial length and was mechanically installed inside the irradiator in a tandem configuration with CT and radiation unit. A common animal bed was used for acquiring sequential dual functional and anatomical images with independent PET and CT control and acquisition systems. The reconstructed dual images were co-registered based on standard multi-modality image calibration and registration processes. Phantom studies were conducted to evaluate the integrated system and dual imaging performance. The measured mean PET/CT image registration error was ~0.3 mm. With one-bed and three-bed acquisitions, initial tumor focused and whole-body [18F]FDG animal images were acquired to test the capability of onboard PET/CT image guidance for preclinical RT research. Overall, the results have shown that integrated PET/CT/RT can provide advantageous and practical onboard PET/CT image to significantly enhance the accuracy of tumor delineation and radiation targeting that should enhance the existing and enable new and potentially breakthrough preclinical RT research and applications.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioterapia (Especialidade) , Animais , Fluordesoxiglucose F18 , Imagens de Fantasmas
3.
Cancers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36765943

RESUMO

The purpose of the study was to characterize a detection system based on inorganic scintillators and determine its suitability for dosimetry in preclinical radiation research. Dose rate, linearity, and repeatability of the response (among others) were assessed for medium-energy X-ray beam qualities. The response's variation with temperature and beam angle incidence was also evaluated. Absorbed dose quality-dependent calibration coefficients, based on a cross-calibration against air kerma secondary standard ionization chambers, were determined. Relative output factors (ROF) for small, collimated fields (≤10 mm × 10 mm) were measured and compared with Gafchromic film and to a CMOS imaging sensor. Independently of the beam quality, the scintillator signal repeatability was adequate and linear with dose. Compared with EBT3 films and CMOS, ROF was within 5% (except for smaller circular fields). We demonstrated that when the detector is cross-calibrated in the user's beam, it is a useful tool for dosimetry in medium-energy X-rays with small fields delivered by Image-Guided Small Animal Radiotherapy Platforms. It supports the development of procedures for independent "live" dose verification of complex preclinical radiotherapy plans with the possibility to insert the detectors in phantoms.

4.
F1000Res ; 12: 526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38799243

RESUMO

BACKGROUND: Preclinical models of radiotherapy (RT) response are vital for the continued success and evolution of RT in the treatment of cancer. The irradiation of tissues in mouse models necessitates high levels of precision and accuracy to recapitulate clinical exposures and limit adverse effects on animal welfare. This requirement has been met by technological advances in preclinical RT platforms established over the past decade. Small animal RT systems use onboard computed tomography (CT) imaging to delineate target volumes and have significantly refined radiobiology experiments with major 3Rs impacts. However, the CT imaging is limited by the differential attenuation of tissues resulting in poor contrast in soft tissues. Clinically, radio-opaque fiducial markers (FMs) are used to establish anatomical reference points during treatment planning to ensure accuracy beam targeting, this approach is yet to translate back preclinical models. METHODS: We report on the use of a novel liquid FM BioXmark ® developed by Nanovi A/S (Kongens Lyngby, Denmark) that can be used to improve the visualisation of soft tissue targets during beam targeting and minimise dose to surrounding organs at risk. We present descriptive protocols and methods for the use of BioXmark ® in experimental male and female C57BL/6J mouse models. RESULTS: These guidelines outline the optimum needle size for uptake (18-gauge) and injection (25- or 26-gauge) of BioXmark ® for use in mouse models along with recommended injection volumes (10-20 µl) for visualisation on preclinical cone beam CT (CBCT) scans. Injection techniques include subcutaneous, intraperitoneal, intra-tumoral and prostate injections. CONCLUSIONS: The use of BioXmark ® can help to standardise targeting methods, improve alignment in preclinical image-guided RT and significantly improve the welfare of experimental animals with the reduction of normal tissue exposure to RT.


Assuntos
Marcadores Fiduciais , Animais , Camundongos , Masculino , Estudos de Viabilidade , Tomografia Computadorizada por Raios X , Modelos Animais de Doenças , Injeções/métodos , Radioterapia Guiada por Imagem/métodos , Feminino , Planejamento da Radioterapia Assistida por Computador/métodos
5.
Phys Med Biol ; 67(16)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35938467

RESUMO

Objective.In preclinical radiotherapy with kilovolt (kV) x-ray beams, accurate treatment planning is needed to improve the translation potential to clinical trials. Monte Carlo based radiation transport simulations are the gold standard to calculate the absorbed dose distribution in external beam radiotherapy. However, these simulations are notorious for their long computation time, causing a bottleneck in the workflow. Previous studies have used deep learning models to speed up these simulations for clinical megavolt (MV) beams. For kV beams, dose distributions are more affected by tissue type than for MV beams, leading to steep dose gradients. This study aims to speed up preclinical kV dose simulations by proposing a novel deep learning pipeline.Approach.A deep learning model is proposed that denoises low precision (∼106simulated particles) dose distributions to produce high precision (109simulated particles) dose distributions. To effectively denoise the steep dose gradients in preclinical kV dose distributions, the model uses the novel approach to use the low precision Monte Carlo dose calculation as well as the Monte Carlo uncertainty (MCU) map and the mass density map as additional input channels. The model was trained on a large synthetic dataset and tested on a real dataset with a different data distribution. To keep model inference time to a minimum, a novel method for inference optimization was developed as well.Main results.The proposed model provides dose distributions which achieve a median gamma pass rate (3%/0.3 mm) of 98% with a lower bound of 95% when compared to the high precision Monte Carlo dose distributions from the test set, which represents a different dataset distribution than the training set. Using the proposed model together with the novel inference optimization method, the total computation time was reduced from approximately 45 min to less than six seconds on average.Significance.This study presents the first model that can denoise preclinical kV instead of clinical MV Monte Carlo dose distributions. This was achieved by using the MCU and mass density maps as additional model inputs. Additionally, this study shows that training such a model on a synthetic dataset is not only a viable option, but even increases the generalization of the model compared to training on real data due to the sheer size and variety of the synthetic dataset. The application of this model will enable speeding up treatment plan optimization in the preclinical workflow.


Assuntos
Aprendizado Profundo , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Incerteza
6.
Clin Transl Radiat Oncol ; 34: 112-119, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35496817

RESUMO

Background and purpose: To provide a scoping review of published studies using small animal irradiators and highlight the progress in preclinical radiotherapy (RT) studies enabled by these platforms since their development and commercialization in 2007. Materials and methods: PubMed searches and manufacturer records were used to identify 907 studies that were screened with 359 small animal RT studies included in the analyses. These articles were classified as biology or physics contributions and into subgroups based on research aims, experimental models and other parameters to identify trends in the preclinical RT research landscape. Results: From 2007 to 2021, most published articles were biology contributions (62%) whilst physics contributions accounted for 38% of the publications. The main research areas of physics articles were in dosimetry and calibration (24%), treatment planning and simulation (22%), and imaging (22%) and the studies predominantly used phantoms (41%) or in vivo models (34%). The majority of biology contributions were tumor studies (69%) with brain being the most commonly investigated site. The most frequently investigated areas of tumor biology were evaluating radiosensitizers (33%), model development (30%) and imaging (21%) with cell-line derived xenografts the most common model (82%). 31% of studies focused on normal tissue radiobiology and the lung was the most investigated site. Conclusions: This study captures the trends in preclinical RT research using small animal irradiators from 2007 to 2021. Our data show the increased uptake and outputs from preclinical RT studies in important areas of biology and physics research that could inform translation to clinical trials.

7.
Z Med Phys ; 32(3): 261-272, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35370028

RESUMO

In the field of preclinical radiotherapy, many new developments were driven by technical innovations. To make research of different groups comparable in that context and reliable, high quality has to be maintained. Therefore, standardized protocols and programs should be used. Here we present a guideline for a comprehensive and efficient quality assurance program for an image-guided small animal irradiation system, which is meant to test all the involved subsystems (imaging, treatment planning, and the irradiation system in terms of geometric accuracy and dosimetric aspects) as well as the complete procedure (end-to-end test) in a time efficient way. The suggestions are developed on a Small Animal Radiation Research Platform (SARRP) from Xstrahl (Xstrahl Ltd., Camberley, UK) and are presented together with proposed frequencies (from monthly to yearly) and experiences on the duration of each test. All output and energy related measurements showed stable results within small variation. Also, the motorized parts (couch, gantry) and other geometrical alignments were very stable. For the checks of the imaging system, the results are highly dependent on the chosen protocol and differ according to the settings. We received nevertheless stable and comparably good results for our mainly used protocol. All investigated aspects of treatment planning were exactly fulfilled and also the end-to-end test showed satisfying values. The mean overall time we needed for our checks to have a well monitored machine is less than two hours per month.


Assuntos
Radiometria , Radioterapia Guiada por Imagem , Animais , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos
8.
Phys Med Biol ; 66(21)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34592731

RESUMO

OBJECTIVE: In contrast to clinical radiation therapy (RT) that ubiquitously uses PET/CT image to accurately guide RT, all current commercial animal irradiators can only provide CT image-guided preclinical RT that severely limits their capability for preclinical and compatibility for translational radiation oncology research. To address this problem, we have developed a compact and lightweight PET with uniform, high spatial resolution that is suited to be installed inside an existing animal irradiator for potential onboard PET/CT image-guided preclinical RT research. APPROACH: The design focused on the balance of achieving sufficient imaging performance for practical preclinical RT guidance with constrained size and weight. The detector head consists of a ring of 12 detector panels in a dodecagon configuration and 12 front-end electronics boards that are closely attached to the detector panels. The overall size and weight of the detector head are 33.0 cm diameter, 11.0 cm axial length and ∼6.5 kg weight that can be installed inside an existing irradiator. Each detector panel has a 30 × 30 array of 1 × 1 × 20 mm3LYSO scintillators with depth-of-interaction (DOI) measurement. The front-end electronics boards process and convert detected signals to digital signals and transfer them to system electronics and data acquisition located outside the irradiator through low-voltage-differential-signaling cables. MAIN RESULTS: The typical energy, DOI and coincidence timing resolutions are around 22.1%, 3.1 mm, and 1.92 ns. The imaging field-of-view (FOV) is 8.0 cm diameter and 3.5 cm axial length. The performance evaluations show a 1.8% sensitivity at the center FOV, uniform ∼1.1 mm resolution within 6 cm diameter FOV, and all rods of 1.0 mm diameter can be clearly resolved from the image of an ultra-micro hot-rods phantom. SIGNIFICANCE: Overall, this compact and lightweight PET has demonstrated its designed capability and performance sufficient for providing onboard functional/biological/molecular image to guide the preclinical RT research.


Assuntos
Radioterapia (Especialidade) , Radioterapia Guiada por Imagem , Animais , Desenho de Equipamento , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Radioterapia Guiada por Imagem/veterinária
9.
Radiother Oncol ; 152: 216-221, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32663535

RESUMO

BACKGROUND AND PURPOSE: Radiation-induced cardiac toxicity (RICT) remains one of the most critical dose limiting constraints in radiotherapy. Recent studies have shown higher doses to the base of the heart are associated with worse overall survival in lung cancer patients receiving radiotherapy. This work aimed to investigate the impact of sub-volume heart irradiation in a mouse model using small animal image-guided radiotherapy. MATERIALS AND METHODS: C57BL/6 mice were irradiated with a single fraction of 16 Gy to the base, middle or apex of the heart using a small animal radiotherapy research platform. Cone beam CT and echocardiography were performed at baseline and at 10 week intervals until 50 weeks post-treatment. Structural and functional parameters were correlated with mean heart dose (MHD) and volume of heart receiving 5 Gy (V5). RESULTS: All irradiated mice showed a time dependent increase in left ventricle wall thickness in diastole of ~0.2 mm detected at 10 weeks post-treatment, with the most significant and persistent changes occurring in the heart base-irradiated animals. Similarly, statistically different functional effects (p < 0.01) were observed in base-irradiated animals which showed the most significant decreases compared to controls. The observed functional changes did not correlate with MHD and V5 (R2 < 0.1), indicating that whole heart dosimetry parameters do not predict physiological changes resulting from cardiac sub-volume irradiation. CONCLUSIONS: This is the first report demonstrating the structural and functional consequences of sub-volume targeting in the mouse heart and reverse translates clinical observations indicating the heart base as a critical radiosensitive region.


Assuntos
Lesões por Radiação , Radiometria , Animais , Coração/diagnóstico por imagem , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tolerância a Radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
10.
Radiat Oncol ; 15(1): 19, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969174

RESUMO

BACKGROUND: Despite aggressive treatment regimens comprising surgery and radiochemotherapy, glioblastoma (GBM) remains a cancer entity with very poor prognosis. The development of novel, combined modality approaches necessitates adequate preclinical model systems and therapy regimens that closely reflect the clinical situation. So far, image-guided, fractionated radiotherapy of orthotopic GBM models represents a major limitation in this regard. METHODS: GL261 mouse GBM cells were inoculated into the right hemispheres of C57BL/6 mice. Tumor growth was monitored by contrast-enhanced conebeam CT (CBCT) scans. When reaching an average volume of approximately 7 mm3, GBM tumors were irradiated with daily fractions of 2 Gy up to a cumulative dose of 20 Gy in different beam collimation settings. For treatment planning and tumor volume follow-up, contrast-enhanced CBCT scans were performed twice per week. Daily repositioning of animals was achieved by alignment of bony structures in native CBCT scans. When showing neurological symptoms, mice were sacrificed by cardiac perfusion. Brains, livers, and kidneys were processed into histologic sections. Potential toxic effects of contrast agent administration were assessed by measurement of liver enzyme and creatinine serum levels and by histologic examination. RESULTS: Tumors were successfully visualized by contrast-enhanced CBCT scans with a detection limit of approximately 2 mm3, and treatment planning could be performed. For daily repositioning of the animals, alignment of bony structures in native CT scans was well feasible. Fractionated irradiation caused a significant delay in tumor growth translating into significantly prolonged survival in clear dependence of the beam collimation setting and margin size. Brain sections revealed tumors of similar appearance and volume on the day of euthanasia. Importantly, the repeated contrast agent injections were well tolerated, as liver enzyme and creatinine serum levels were only subclinically elevated, and liver and kidney sections displayed normal histomorphology. CONCLUSIONS: Contrast-enhanced, CT-based, fractionated radiation of orthotopic mouse GBM represents a versatile preclinical technique for the development and evaluation of multimodal radiotherapeutic approaches in combination with novel therapeutic agents in order to accelerate translation into clinical testing.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Modelos Animais de Doenças , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/efeitos da radiação , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Tomografia Computadorizada de Feixe Cônico , Meios de Contraste/administração & dosagem , Meios de Contraste/efeitos adversos , Fracionamento da Dose de Radiação , Feminino , Seguimentos , Glioblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/efeitos adversos , Resultado do Tratamento , Carga Tumoral/efeitos da radiação
11.
Med Phys ; 47(1): 234-241, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31688950

RESUMO

PURPOSE: New preclinical image-guided irradiators and treatment planning systems represent a huge progress in radiobiology. Nevertheless, quality control of preclinical treatments is not as advanced as in clinical radiotherapy and in vivo dosimetry is less developed. In this study, we evaluate the use of a scintillating fiber dosimeter called DosiRat to verify the agreement between the doses planned with SmART-Plan and the measured doses during small animal irradiations. METHODS: In vivo dosimetry was first evaluated with DosiRat through dose measurements performed at the surface of a 3 × 9 × 3 cm3 phantom. Measured and planned doses were compared for different irradiation conditions (prescription point, anterior, and posterior beams, 5 mm and 10 mm irradiation fields). In a second phase, measured and planned doses were compared for rat brain irradiations performed with anterior beams, with DosiRat positioned at the beam entrance. Comparisons were performed for different tube currents (1.3 and 13 mA), collimations (5, 10 and 25 mm diameter), and planned doses (0.1, 0.5, 2, and 10 Gy). RESULTS: In the case of the phantom irradiations, planned and measured doses showed discrepancies smaller than the 5% accuracy of the TPS, except in cases in which the dosimeter was not centered in the irradiation field. The differences were larger for animal irradiations (from -3.3% to 8.8%) because of variations of the beam energy spectrum and the nonequivalence between materials at medium and low energy. CONCLUSIONS: This study highlighted the complexity to implement one-dimension in vivo dosimetry in orthovoltage millimetric beams. Nevertheless, DosiRat is well adapted to in vivo dosimetry because of its small volume and its direct reading and allowed in vivo control of planned doses for anterior beams down to 5 mm diameter.


Assuntos
Radiometria/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Contagem de Cintilação/instrumentação , Animais , Encéfalo/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Ratos
12.
Cancers (Basel) ; 11(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717307

RESUMO

Translational research aims to provide direct support for advancing novel treatment approaches in oncology towards improving patient outcomes. Preclinical studies have a central role in this process and the ability to accurately model biological and physical aspects of the clinical scenario in radiation oncology is critical to translational success. The use of small animal irradiators with disease relevant mouse models and advanced in vivo imaging approaches offers unique possibilities to interrogate the radiotherapy response of tumors and normal tissues with high potential to translate to improvements in clinical outcomes. The present review highlights the current technology and applications of small animal irradiators, and explores how these can be combined with molecular and functional imaging in advanced preclinical radiotherapy research.

13.
Radiat Oncol ; 12(1): 204, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29282134

RESUMO

BACKGROUND: Preclinical radiation biology has become increasingly sophisticated due to the implementation of advanced small animal image guided radiation platforms into laboratory investigation. These small animal radiotherapy devices enable state-of-the-art image guided therapy (IGRT) research to be performed by combining high-resolution cone beam computed tomography (CBCT) imaging with an isocentric irradiation system. Such platforms are capable of replicating modern clinical systems similar to those that integrate a linear accelerator with on-board CBCT image guidance. METHODS: In this study, we present a dosimetric evaluation of the small animal radiotherapy research platform (SARRP, Xstrahl Inc.) focusing on small field dosimetry. Physical dosimetry was assessed using ion chamber for calibration and radiochromic film, investigating the impact of beam focus size on the dose rate output as well as beam characteristics (beam shape and penumbra). Two film analysis tools) have been used to assess the dose output using the 0.5 mm diameter aperture. RESULTS: Good agreement (between 1.7-3%) was found between the measured physical doses and the data provided by Xstrahl for all apertures used. Furthermore, all small field dosimetry data are in good agreement for both film reading methods and with our Monte Carlo simulations for both focal spot sizes. Furthermore, the small focal spot has been shown to produce a more homogenous beam with more stable penumbra over time. CONCLUSIONS: FilmQA Pro is a suitable tool for small field dosimetry, with a sufficiently small sampling area (0.1 mm) to ensure an accurate measurement. The electron beam focus should be chosen with care as this can potentially impact on beam stability and reproducibility.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Imagens de Fantasmas , Radiobiologia , Planejamento da Radioterapia Assistida por Computador/instrumentação , Animais , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA