Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Ann Intensive Care ; 14(1): 153, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39368033

RESUMO

BACKGROUND: Sigh breaths may impact outcomes in acute hypoxemic respiratory failure (AHRF) during assisted mechanical ventilation. We investigated whether sigh breaths may impact mortality in predefined subgroups of patients enrolled in the PROTECTION multicenter clinical trial according to: 1.the physiological response in oxygenation to Sigh (responders versus non-responders) and 2.the set levels of positive end-expiratory pressure (PEEP) (High vs. Low-PEEP). If mortality differed between Sigh and No Sigh, we explored physiological daily differences at 7-days. RESULTS: Patients were randomized to pressure support ventilation (PSV) with Sigh (Sigh group) versus PSV with no sigh (No Sigh group). (1) Sighs were not associated with differences in 28-day mortality in responders to baseline sigh-test. Contrarily-in non-responders-56 patients were randomized to Sigh (55%) and 28-day mortality was lower with sighs (17%vs.36%, log-rank p = 0.031). (2) In patients with PEEP > 8cmH2O no difference in mortality was observed with sighs. With Low-PEEP, 54 patients were randomized to Sigh (48%). Mortality at 28-day was reduced in patients randomised to sighs (13%vs.31%, log-rank p = 0.021). These findings were robust to multivariable adjustments. Tidal volume, respiratory rate and ventilatory ratio decreased with Sigh as compared with No Sigh at 7-days. Ventilatory ratio was associated with mortality and successful extubation in both non-responders and Low-PEEP. CONCLUSIONS: Addition of Sigh to PSV could reduce mortality in AHRF non-responder to Sigh and exposed to Low-PEEP. Results in non-responders were not expected. Findings in the low PEEP group may indicate that insufficient PEEP was used or that Low PEEP may be used with Sigh. Sigh may reduce mortality by decreasing physiologic dead space and ventilation intensity and/or optimizing ventilation/perfusion mismatch. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; Identifier: NCT03201263.

2.
J Vet Intern Med ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375942

RESUMO

BACKGROUND: Noninvasive ventilation (NIV) provides effective respiratory support in foals, but face masks are poorly tolerated and associated with hypercapnia. Bi-nasal prongs might be a more effective device interface in foals. OBJECTIVES: To compare bi-nasal prongs and masks for NIV in foals with pharmacologically induced respiratory insufficiency. ANIMALS: Six healthy foals. METHODS: In a randomized cross-over study, sedated foals received NIV delivered by mask or bi-nasal prongs, with the treatment repeated using the alternative device interface after a 3-day rest period. After periods of spontaneous ventilation through the allocated interface, with and without supplementary O2 (T2-T3), foals were subject to 10-minute treatment periods of NIV at different pressure support (5 or 10 cmH2O) and end-expiratory pressure settings (5 or 10 cmH2O), with and without supplementary O2 (T4-T7). Vital signs, arterial blood gases, spirometry, and gas exchange data were measured in the final 2 minutes of each treatment window. RESULTS: Bi-nasal prongs were well tolerated and required less manual positioning or monitoring compared to the mask. Partial pressure of carbon dioxide did not increase during NIV with bi-nasal prongs and was lower than observed with masks (mean difference, 8.2 mmHg [95% confidence interval, 4.1-12.2 mmHg] at T6). Oxygenation and respiratory mechanics were improved in all foals and not different between device interfaces. CONCLUSIONS AND CLINICAL IMPORTANCE: Nasal prongs were well tolerated, had similar effects on respiratory function, and appeared to ameliorate hypercapnia observed previously during NIV in foals.

3.
J Anesth Analg Crit Care ; 4(1): 35, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858795

RESUMO

BACKGROUND: Noninvasive ventilation (NIV) is commonly used in clinical practice to reduce intubation times and enhance patient comfort. However, patient-ventilator interaction (PVI) during NIV, particularly with helmet interfaces, can be challenging due to factors such as dead space and compliance. Neurally adjusted ventilatory assist (NAVA) has shown promise in improving PVI during helmet NIV, but limitations remain. A new mode, neural pressure support (NPS), aims to address these limitations by providing synchronized and steep pressurization. This study aims to assess whether NPS per se improves PVI during helmet NIV compared to standard pressure support ventilation (PSV). METHODS: The study included adult patients requiring NIV with a helmet. Patients were randomized into two arms: one starting with NPS and the other with PSV; the initial ventilatory parameters were always set as established by the clinician on duty. Physiological parameters and arterial blood gas analysis were collected during ventilation trials. Expert adjustments to initial ventilator settings were recorded to investigate the impact of the expertise of the clinician as confounding variable. Primary aim was the synchrony time (Timesync), i.e., the time during which both the ventilator and the patient (based on the neural signal) are on the inspiratory phase. As secondary aim neural-ventilatory time index (NVTI) was also calculated as Timesync divided to the total neural inspiratory time, i.e., the ratio of the neural inspiratory time occupied by Timesync. RESULTS: Twenty-four patients were enrolled, with no study interruptions due to safety concerns. NPS demonstrated significantly longer Timesync (0.64 ± 0.03 s vs. 0.37 ± 0.03 s, p < 0.001) and shorter inspiratory delay (0.15 ± 0.01 s vs. 0.35 ± 0.01 s, p < 0.001) compared to PSV. NPS also showed better NVTI (78 ± 2% vs. 45 ± 2%, p < 0.001). Ventilator parameters were not significantly different between NPS and PSV, except for minor adjustments by the expert clinician. CONCLUSIONS: NPS improves PVI during helmet NIV, as evidenced by longer Timesync and better coupling compared to PSV. Expert adjustments to ventilator settings had minimal impact on PVI. These findings support the use of NPS in enhancing patient-ventilator synchronization and warrant further investigation into its clinical outcomes and applicability across different patient populations and interfaces. TRIAL REGISTRATION: This study was registered on www. CLINICALTRIALS: gov NCT06004206 Registry URL: https://clinicaltrials.gov/study/NCT06004206 on September 08, 2023.

4.
BMC Pulm Med ; 24(1): 212, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693506

RESUMO

BACKGROUND: Patient-ventilator asynchrony commonly occurs during pressure support ventilation (PSV). IntelliSync + software (Hamilton Medical AG, Bonaduz, Switzerland) is a new ventilation technology that continuously analyzes ventilator waveforms to detect the beginning and end of patient inspiration in real time. This study aimed to evaluate the physiological effect of IntelliSync + software on inspiratory trigger delay time, delta airway (Paw) and esophageal (Pes) pressure drop during the trigger phase, airway occlusion pressure at 0.1 s (P0.1), and hemodynamic variables. METHODS: A randomized crossover physiologic study was conducted in 14 mechanically ventilated patients under PSV. Patients were randomly assigned to receive conventional flow trigger and cycling, inspiratory trigger synchronization (I-sync), cycle synchronization (C-sync), and inspiratory trigger and cycle synchronization (I/C-sync) for 15 min at each step. Other ventilator settings were kept constant. Paw, Pes, airflow, P0.1, respiratory rate, SpO2, and hemodynamic variables were recorded. The primary outcome was inspiratory trigger and cycle delay time between each intervention. Secondary outcomes were delta Paw and Pes drop during the trigger phase, P0.1, SpO2, and hemodynamic variables. RESULTS: The time to initiate the trigger was significantly shorter with I-sync compared to baseline (208.9±91.7 vs. 301.4±131.7 msec; P = 0.002) and I/C-sync compared to baseline (222.8±94.0 vs. 301.4±131.7 msec; P = 0.005). The I/C-sync group had significantly lower delta Paw and Pes drop during the trigger phase compared to C-sync group (-0.7±0.4 vs. -1.2±0.8 cmH2O; P = 0.028 and - 1.8±2.2 vs. -2.8±3.2 cmH2O; P = 0.011, respectively). No statistically significant differences were found in cycle delay time, P0.1 and other physiological variables between the groups. CONCLUSIONS: IntelliSync + software reduced inspiratory trigger delay time compared to the conventional flow trigger system during PSV mode. However, no significant improvements in cycle delay time and other physiological variables were observed with IntelliSync + software. TRIAL REGISTRATION: This study was registered in the Thai Clinical Trial Registry (TCTR20200528003; date of registration 28/05/2020).


Assuntos
Estudos Cross-Over , Software , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Respiração com Pressão Positiva/métodos , Hemodinâmica , Respiração Artificial/métodos , Taxa Respiratória
5.
Front Med (Lausanne) ; 11: 1390878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737762

RESUMO

Background: The successful implementation of assisted ventilation depends on matching the patient's effort with the ventilator support. Pressure muscle index (PMI), an airway pressure based measurement, has been used as noninvasive monitoring to assess the patient's inspiratory effort. The authors aimed to evaluate the feasibility of pressure support adjustment according to the PMI target and the diagnostic performance of PMI to predict the contribution of the patient's effort during ventilator support. Methods: In this prospective physiological study, 22 adult patients undergoing pressure support ventilation were enrolled. After an end-inspiratory airway occlusion, airway pressure reached a plateau, and the magnitude of change in plateau from peak airway pressure was defined as PMI. Pressure support was adjusted to obtain the PMI which was closest to -1, 0, +1, +2, and + 3 cm H2O. Each pressure support level was maintained for 20 min. Esophageal pressure was monitored. Pressure-time products of respiratory muscle and ventilator insufflation were measured, and the fraction of pressure generated by the patient was calculated to represent the contribution of the patient's inspiratory effort. Results: A total of 105 datasets were collected at different PMI-targeted pressure support levels. The differences in PMI between the target and the obtained value were all within ±1 cm H2O. As targeted PMI increased, pressure support settings decreased significantly from a median (interquartile range) of 11 (10-12) to 5 (4-6) cm H2O (p < 0.001), which resulted in a significant increase in pressure-time products of respiratory muscle [from 2.9 (2.1-5.0) to 6.8 (5.3-8.1) cm H2O•s] and the fraction of pressure generated by the patient [from 25% (19-31%) to 72% (62-87%)] (p < 0.001). The area under receiver operating characteristic curves for PMI to predict 30 and 70% contribution of patient's effort were 0.93 and 0.95, respectively. High sensitivity (all 1.00), specificity (0.86 and 0.78), and negative predictive value (all 1.00), but low positive predictive value (0.61 and 0.43) were obtained to predict either high or low contribution of patient's effort. Conclusion: Our results preliminarily suggested the feasibility of pressure support adjustment according to the PMI target from the ventilator screen. PMI could reliably predict the high and low contribution of a patient's effort during assisted ventilation.Clinical trial registration: ClinicalTrials.gov, identifier NCT05970393.

6.
Acta Anaesthesiol Scand ; 68(7): 932-939, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38764089

RESUMO

BACKGROUND AND AIM: Assisted mechanical ventilation may alter the pressure profile in the thorax compared to normal breathing, which can affect the blood flow to and from the heart. Studies suggest that in patients with severe lung disease, airway pressure release ventilation (APRV) may be haemodynamically beneficial compared to other ventilator settings. The primary aim of this study was to investigate if APRV affects cardiac index in intubated intensive care patients without severe lung disease when compared to pressure support ventilation (PSV). The secondary aim comprised potential changes in other haemodynamic and ventilatory parameters. METHODS: Twenty patients were enrolled in the intensive care unit (ICU) at Sahlgrenska University Hospital. Eligible patients met the inclusion criteria; 18 years of age or above, intubated and mechanically ventilated, triggering and stable on PSV mode, with indwelling haemodynamic monitoring via a pulse-induced continuous cardiac output (PiCCO) catheter. The study protocol started with a 30-min interval on PSV mode, followed by a 30-min interval on APRV mode, and finally a 30-min interval back on PSV mode. At the end of each interval, PiCCO outputs, ventilator outputs, arterial and venous blood gas analyses, heart rate and central venous pressure were recorded and compared between modes. RESULTS: There was no significant difference in cardiac index (3.42 vs. 3.39 L/min/m2) between PSV and APRV, but a significant increase in central venous pressure (+1.0 mmHg, p = .027). Furthermore, we found a significant reduction in peak airway pressure (-3.16 cmH2O, p < .01) and an increase in mean airway pressure (+2.1 cmH2O, p < .01). No statistically significant change was found in oxygenation index (partial pressure of O2 [pO2]/fraction of inspired oxygen) nor in other secondary outcomes when comparing PSV and APRV. There was no significant association between global end-diastolic volume index and cardiac index (R2 = 0.0089) or central venous pressure (R2 = 0.278). All parameters returned to baseline after switching the ventilator mode back to PSV. CONCLUSION: We could not detect any changes in cardiac index in ICU patients without severe lung disease during APRV compared to PSV mode, despite lower peak airway pressure and increased mean airway pressure.


Assuntos
Hemodinâmica , Respiração Artificial , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Hemodinâmica/fisiologia , Idoso , Respiração Artificial/métodos , Cuidados Críticos/métodos , Pressão Positiva Contínua nas Vias Aéreas/métodos , Débito Cardíaco/fisiologia , Adulto
7.
Br J Anaesth ; 133(2): 424-436, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816331

RESUMO

BACKGROUND: Postoperative pulmonary complications (PPCs) are associated with postoperative mortality and prolonged hospital stay. Although intraoperative mechanical ventilation (MV) is a risk factor for PPCs, strategies addressing weaning from MV are understudied. In this systematic review, we evaluated weaning strategies and their effects on postoperative pulmonary outcomes. METHODS: Our protocol was registered on PROSPERO (CRD42022379145). Eligible studies included randomised controlled trials and observational studies of adults weaned from MV in the operating room. Primary outcomes included atelectasis and oxygenation; secondary outcomes included lung volume changes and PPCs. Risk of bias was assessed using the Cochrane Risk of Bias (RoB2) tool, and quality of evidence with the GRADE framework. RESULTS: Screening identified 14 randomised controlled trials including 1719 patients; seven studies were limited to the weaning phase and seven included interventions not restricted to the weaning phase. Strategies combining pressure support ventilation (PSV) with positive end-expiratory pressure (PEEP) and low fraction of inspired oxygen (FiO2) improved atelectasis, oxygenation, and lung volumes. Low FiO2 improved atelectasis and oxygenation but might not improve lung volumes. A fixed-PEEP strategy led to no improvement in oxygenation or atelectasis; however, individualised PEEP with low FiO2 improved oxygenation and might be associated with reduced PPCs. Half of included studies are of moderate or high risk of bias; the overall quality of evidence is low. CONCLUSIONS: There is limited research evaluating weaning from intraoperative MV. Based on low-quality evidence, PSV, individualised PEEP, and low FiO2 may be associated with reduced postoperative pulmonary outcomes. SYSTEMATIC REVIEW PROTOCOL: PROSPERO (CRD42022379145).


Assuntos
Salas Cirúrgicas , Desmame do Respirador , Humanos , Desmame do Respirador/métodos , Respiração Artificial/métodos , Complicações Pós-Operatórias/prevenção & controle , Respiração com Pressão Positiva/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
J Clin Med ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38592687

RESUMO

A very low incidence of acute kidney injury (AKI) has been observed in COVID-19 patients purposefully treated with early pressure support ventilation (PSV) compared to those receiving mainly controlled ventilation. The prevention of subdiaphragmatic venous congestion through limited fluid intake and the lowering of intrathoracic pressure is a possible and attractive explanation for this observed phenomenon. Both venous congestion, or "venous bagging", and a positive fluid balance correlate with the occurrence of AKI. The impact of PSV on venous return, in addition to the effects of limiting intravenous fluids, may, at least in part, explain this even more clearly when there is no primary kidney disease or the presence of nephrotoxins. Optimizing the patient-ventilator interaction in PSV is challenging, in part because of the need for the ongoing titration of sedatives and opioids. The known benefits include improved ventilation/perfusion matching and reduced ventilator time. Furthermore, conservative fluid management positively influences cognitive and psychiatric morbidities in ICU patients and survivors. Here, it is hypothesized that cranial lymphatic congestion in relation to a more positive intrathoracic pressure, i.e., in patients predominantly treated with controlled mechanical ventilation (CMV), is a contributing risk factor for ICU delirium. No studies have addressed the question of how PSV can limit AKI, nor are there studies providing high-level evidence relating controlled mechanical ventilation to AKI. For this perspective article, we discuss studies in the literature demonstrating the effects of venous congestion leading to AKI. We aim to shed light on early PSV as a preventive measure, especially for the development of AKI and ICU delirium and emphasize the need for further research in this domain.

9.
Animals (Basel) ; 14(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38539963

RESUMO

Non-invasive ventilation (NIV) is a method of providing respiratory support without the need for airway intubation. The current study was undertaken to assess tolerance to bi-nasal prongs and NIV in healthy, standing, lightly sedated foals. Bi-nasal prongs were well tolerated by foals, remaining in place for the allocated five minutes in four of six unsedated foals and, subsequently, in five of six lightly sedated foals. All foals tolerated NIV through bi-nasal prongs, although increasing airway pressures were associated with increases in inspiratory volume, duration of inspiration and air leakage in most foals. These changes preceded discontinuation/intolerance of NIV on the basis of behaviour changes consistent with discomfort. Increased circuit leakage was associated with reduced return of expired air to the ventilator and increasing disparity between inspiratory and expiratory times and tidal volumes. The study results suggest that bi-nasal prongs might be suitable for NIV but that design or fitting requires further optimization and that behaviour and ventilator variables should be monitored to assess patient tolerance of the procedure.

10.
Respir Care ; 69(4): 482-491, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538023

RESUMO

BACKGROUND: Patients receiving mechanical ventilation commonly experience sleep fragmentation. The present meta-analysis compared the effects of pressure controlled ventilation (PCV) and pressure support ventilation (PSV) on sleep quality. METHODS: We conducted a search of the PubMed, Embase, and Cochrane Library databases for studies published before November 2023. In this meta-analysis, individual effect sizes were standardized, and the pooled effect size was determined by using random-effects models. The primary outcome was sleep efficiency. The secondary outcomes were wakefulness, percentages of REM (rapid eye movement) sleep and stages 3 and 4 non-REM sleep, the fragmentation index, and the incidence of apneic events. RESULTS: This meta-analysis examined 4 trials that involved 67 subjects. Sleep efficiency was significantly higher in the PCV group than in the PSV group (mean difference 15.57%, 95% CI 8.54%-22.59%). Wakefulness was significantly lower in the PCV group than in the PSV group (mean difference -18.67%, 95% CI -30.29% to -7.04%). The percentage of REM sleep was significantly higher in the PCV group than in the PSV group (mean difference 2.32%, 95% CI 0.20%-4.45%). Among the subjects with a tendency to develop sleep apnea, the fragmentation index was significantly lower in those receiving PCV than PSV (mean difference -40.00%, 95% CI -51.12% to -28.88%). The incidence of apneic events was significantly lower in the PCV group than in the PSV group (risk ratio 0.06, 95% CI 0.01-0.45). CONCLUSIONS: Compared with PSV, PCV may improve sleep quality in patients receiving nocturnal mechanical ventilation.


Assuntos
Respiração Artificial , Humanos , Respiração Artificial/métodos , Respiração Artificial/efeitos adversos , Qualidade do Sono , Masculino , Feminino , Vigília/fisiologia , Respiração com Pressão Positiva/métodos , Sono REM , Pessoa de Meia-Idade , Privação do Sono , Idoso
11.
Crit Care Explor ; 6(2): e1039, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343444

RESUMO

OBJECTIVES: In patients with COVID-19 respiratory failure, controlled mechanical ventilation (CMV) is often necessary during the acute phases of the disease. Weaning from CMV to pressure support ventilation (PSV) is a key objective when the patient's respiratory functions improve. Limited evidence exists regarding the factors predicting a successful transition to PSV and its impact on patient outcomes. DESIGN: Retrospective observational cohort study. SETTING: Twenty-four Italian ICUs from February 2020 to May 2020. PATIENTS: Mechanically ventilated ICU patients with COVID-19-induced respiratory failure. INTERVENTION: The transition period from CMV to PSV was evaluated. We defined it as "failure of assisted breathing" if the patient returned to CMV within the first 72 hours. MEASUREMENTS AND MAIN RESULTS: Of 1260 ICU patients screened, 514 were included. Three hundred fifty-seven patients successfully made the transition to PSV, while 157 failed. Pao2/Fio2 ratio before the transition emerged as an independent predictor of a successful shift (odds ratio 1.00; 95% CI, 0.99-1.00; p = 0.003). Patients in the success group displayed a better trend in Pao2/Fio2, Paco2, plateau and peak pressure, and pH level. Subjects in the failure group exhibited higher ICU mortality (hazard ratio 2.08; 95% CI, 1.42-3.06; p < 0.001), an extended ICU length of stay (successful vs. failure 21 ± 14 vs. 27 ± 17 d; p < 0.001) and a longer duration of mechanical ventilation (19 ± 18 vs. 24 ± 17 d, p = 0.04). CONCLUSIONS: Our study emphasizes that the Pao2/Fio2 ratio was the sole independent factor associated with a failed transition from CMV to PSV. The unsuccessful transition was associated with worse outcomes.

12.
Ann Intensive Care ; 13(1): 131, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117367

RESUMO

BACKGROUND: Internal redistribution of gas, referred to as pendelluft, is a new potential mechanism of effort-dependent lung injury. Neurally-adjusted ventilatory assist (NAVA) and proportional assist ventilation (PAV +) follow the patient's respiratory effort and improve synchrony compared with pressure support ventilation (PSV). Whether these modes could prevent the development of pendelluft compared with PSV is unknown. We aimed to compare pendelluft magnitude during PAV + and NAVA versus PSV in patients with resolving acute respiratory distress syndrome (ARDS). METHODS: Patients received either NAVA, PAV + , or PSV in a crossover trial for 20-min using comparable assistance levels after controlled ventilation (> 72 h). We assessed pendelluft (the percentage of lost volume from the non-dependent lung region displaced to the dependent region during inspiration), drive (as the delta esophageal swing of the first 100 ms [ΔPes 100 ms]) and inspiratory effort (as the esophageal pressure-time product per minute [PTPmin]). We performed repeated measures analysis with post-hoc tests and mixed-effects models. RESULTS: Twenty patients mechanically ventilated for 9 [5-14] days were monitored. Despite matching for a similar tidal volume, respiratory drive and inspiratory effort were slightly higher with NAVA and PAV + compared with PSV (ΔPes 100 ms of -2.8 [-3.8--1.9] cm H2O, -3.6 [-3.9--2.4] cm H2O and -2.1 [-2.5--1.1] cm H2O, respectively, p < 0.001 for both comparisons; PTPmin of 155 [118-209] cm H2O s/min, 197 [145-269] cm H2O s/min, and 134 [93-169] cm H2O s/min, respectively, p < 0.001 for both comparisons). Pendelluft magnitude was higher in NAVA (12 ± 7%) and PAV + (13 ± 7%) compared with PSV (8 ± 6%), p < 0.001. Pendelluft magnitude was strongly associated with respiratory drive (ß = -2.771, p-value < 0.001) and inspiratory effort (ß = 0.026, p < 0.001), independent of the ventilatory mode. A higher magnitude of pendelluft in proportional modes compared with PSV existed after adjusting for PTPmin (ß = 2.606, p = 0.010 for NAVA, and ß = 3.360, p = 0.004 for PAV +), and only for PAV + when adjusted for respiratory drive (ß = 2.643, p = 0.009 for PAV +). CONCLUSIONS: Pendelluft magnitude is associated with respiratory drive and inspiratory effort. Proportional modes do not prevent its occurrence in resolving ARDS compared with PSV.

13.
Ann Intensive Care ; 13(1): 132, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123757

RESUMO

BACKGROUND: During Pressure Support Ventilation (PSV) an inspiratory hold allows to measure plateau pressure (Pplat), driving pressure (∆P), respiratory system compliance (Crs) and pressure-muscle-index (PMI), an index of inspiratory effort. This study aims [1] to assess systematically how patient's effort (estimated with PMI), ∆P and tidal volume (Vt) change in response to variations in PSV and [2] to confirm the robustness of Crs measurement during PSV. METHODS: 18 patients recovering from acute respiratory failure and ventilated by PSV were cross-randomized to four steps of assistance above (+ 3 and + 6 cmH2O) and below (-3 and -6 cmH2O) clinically set PS. Inspiratory and expiratory holds were performed to measure Pplat, PMI, ∆P, Vt, Crs, P0.1 and occluded inspiratory airway pressure (Pocc). Electromyography of respiratory muscles was monitored noninvasively from body surface (sEMG). RESULTS: As PSV was decreased, Pplat (from 20.5 ± 3.3 cmH2O to 16.7 ± 2.9, P < 0.001) and ∆P (from 12.5 ± 2.3 to 8.6 ± 2.3 cmH2O, P < 0.001) decreased much less than peak airway pressure did (from 21.7 ± 3.8 to 9.7 ± 3.8 cmH2O, P < 0.001), given the progressive increase of patient's effort (PMI from -1.2 ± 2.3 to 6.4 ± 3.2 cmH2O) in line with sEMG of the diaphragm (r = 0.614; P < 0.001). As ∆P increased linearly with Vt, Crs did not change through steps (P = 0.119). CONCLUSION: Patients react to a decrease in PSV by increasing inspiratory effort-as estimated by PMI-keeping Vt and ∆P on a desired value, therefore, limiting the clinician's ability to modulate them. PMI appears a valuable index to assess the point of ventilatory overassistance when patients lose control over Vt like in a pressure-control mode. The measurement of Crs in PSV is constant-likely suggesting reliability-independently from the level of assistance and patient's effort.

14.
J Intensive Care Med ; : 8850666231212807, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37964754

RESUMO

Mechanical ventilation serves as crucial life support for critically ill patients. Although it is life-saving prolonged ventilation carries risks and complications like barotrauma, Ventilator-associated pneumonia, sepsis, and many others. Optimizing patient-ventilator interactions and facilitating early weaning is necessary for improved intensive care unit (ICU) outcomes. Traditionally Pressure support ventilation (PSV) mode is widely used for weaning patients who are intubated and mechanically ventilated. Neurally adjusted ventilatory assist (NAVA) mode of the ventilator is an emerging ventilator mode that delivers pressure depending on the patient's respiratory drive, which in turn prevents over-inflation and improves the patient's ventilator interactions. Our article revises and compares the effectiveness of NAVA compared to PSV ventilation under different contexts. Overall we conclude that NAVA level of ventilation can be safely administered in a patient with acute respiratory failure, provided diaphragmatic paralysis is not considered. NAVA improves asynchrony index, wean-off time, and sleep quality and is associated with increased ventilator-free days. These results are based on small-scale studies with low power, and further studies are warranted in large-scale cohorts with more diverse populations to confirm these results.

15.
Comput Biol Med ; 167: 107670, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37939406

RESUMO

The SARS-CoV-2 pandemic led to the development and implementation of emergency ventilators owing to the shortage of ventilators globally. Using invasive ventilators for patient intubation has medical experts concerned about increasing mortality. Early intervention with oxygen and respiratory therapy reduces the need for intubation, increases survival rates, and reduces the stress of critical care ventilators in hospitals. This study explores the capabilities of an easy-to-build and accessible non-invasive ventilator during an emergency and the practical implementation of the ventilator beyond the scope of the emergency. The proposed system consists of a high-pressure turbine integrated with a microcontroller and pressure and flow sensors assembled in a portable design. The non-invasive pressure support system is tested with a single-chamber high-precision lung simulator capable of simulating multiple lung diseases. The system is operated in a spontaneous pressure support mode as a Bi-level Ventilator for varying degrees of pressure level and lung conditions. The proposed study implements two most commonly adapted non-invasive patient circuits, i.e., single passive limb leak circuit and single limb active circuit. Both circuits are tested with and without leakage compensation. Two clinically accepted ventilation modes, i.e., pressure support and volume-assured pressure support ventilation, are presented. The results demonstrate the feasibility of using this type of device for non-invasive respiratory support and highlight the need for further testing to assess its safety and effectiveness in various clinical settings.


Assuntos
Ventilação não Invasiva , Ventiladores Mecânicos , Humanos , Pulmão , Respiração com Pressão Positiva , SARS-CoV-2
16.
Front Med (Lausanne) ; 10: 1224242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720511

RESUMO

Introduction: Severe COVID-19 is a life-threatening condition characterized by complications such as interstitial pneumonia, hypoxic respiratory failure, and acute respiratory distress syndrome (ARDS). Non-pharmacological intervention with mechanical ventilation plays a key role in treating COVID-19-related ARDS but is influenced by a high risk of failure in more severe patients. Dexmedetomidine is a new generation highly selective α2-adrenergic receptor (α2-AR) agonist that provides sedative effects with preservation of respiratory function. The aim of this study is to assess how dexmedetomidine influences gas exchange during non-invasive ventilation (NIV) and high-flow nasal cannula (HFNC) in moderate to severe ARDS caused by COVID-19 in a non-intensive care setting. Methods: This is a single center retrospective cohort study. We included patients who showed moderate to severe respiratory distress. All included subjects had indication to NIV and were suitable for a non-intensive setting of care. A total of 170 patients were included, divided in a control group (n = 71) and a treatment group (DEX group, n = 99). Results: A total of 170 patients were hospitalized for moderate to severe ARDS and COVID-19. The median age was 71 years, 29% females. The median Charlson comorbidity index (CCI) was 2.5. Obesity affected 21% of the study population. The median pO2/FiO2 was 82 mmHg before treatment. After treatment, the increase of pO2/FiO2 ratio was clinically and statistically significant in the DEX group compared to the controls (125 mmHg [97-152] versus 94 mmHg [75-122]; ***p < 0.0001). A significative reduction of NIV duration was observed in DEX group (10 [7-16] days vs. 13 [10-17] days; *p < 0.02). Twenty four patients required IMV in control group (n = 71) and 16 patients in DEX group (n = 99) with a reduction of endotracheal intubation of 62% (OR 0.38; **p < 0.008). A higher incidence of sinus bradycardia was observed in the DEX group. Conclusion: Dexmedetomidine provides a "calm and arousal" status which allows spontaneous ventilation in awake patients treated with NIV and HFNC. The adjunctive therapy with dexmedetomidine is associated with a higher pO2/FiO2, lower duration of NIV, and a lower risk of NIV failure. A higher incidence of sinus bradycardia needs to be considered.

17.
J Clin Med ; 12(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37510970

RESUMO

BACKGROUND: Reverse triggered breath (RTB) has been extensively described during assisted-controlled modes of ventilation. We aimed to assess whether RTB occurs during Pressure Support Ventilation (PSV) and Neurally Adjusted Ventilatory Assist (NAVA) at varying depths of propofol sedation. METHODS: This is a retrospective analysis of a prospective crossover randomized controlled trial conducted in an Intensive Care Unit (ICU) of a university hospital. Fourteen intubated patients for acute respiratory failure received six trials of 25 minutes randomly applying PSV and NAVA at three different propofol infusions: awake, light, and deep sedation. We assessed the occurrence of RTBs at each protocol step. The incidence level of RTBs was determined through the RTB index, which was calculated by dividing RTBs by the total number of breaths triggered and not triggered. RESULTS: RTBs occurred during both PSV and NAVA. The RTB index was greater during PSV than during NAVA at mild (1.5 [0.0; 5.3]% vs. 0.6 [0.0; 1.1]%) and deep (5.9 [0.7; 9.0]% vs. 1.7 [0.9; 3.5]%) sedation. CONCLUSIONS: RTB occurs in patients undergoing assisted mechanical ventilation. The level of propofol sedation and the mode of ventilation may influence the incidence of RTBs.

18.
Clin Respir J ; 17(6): 527-535, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37158128

RESUMO

INTRODUCTION: Low-level pressure support ventilation (PSV) is most commonly adopted in spontaneous breathing trials (SBTs), and some have proposed setting the positive end-expiratory pressure (PEEP) to 0 cmH2 O in order to shorten the observation time of SBTs. This study aims to investigate the effects of two PSV protocols on the patients' respiratory mechanics. MATERIAL AND METHOD: A prospective randomized self-controlled crossover design was adopted in this study, which involved enrolling 30 difficult-to-wean patients who were admitted to the intensive care unit of the First Affiliated Hospital of Guangzhou Medical University between July 2019 and September 2021. Patients were subjected to the S group (pressure support: 8 cmH2 O, PEEP: 5 cmH2 O) and S1 group (PS: 8 cmH2 O, PEEP: 0 cmH2 O) for 30 min in a random order, and respiratory mechanics indices were dynamically monitored via a four-lumen multi-functional catheter with an integrated gastric tube. Among the 30 enrolled patients, 27 were successfully weaned. RESULT: The S group showed higher airway pressure (Paw), intragastric pressure (Pga) and airway pressure-time product (PTP) than the S1 group. The S group also showed a shorter inspiratory trigger delay, (93.80 ± 47.85) versus (137.33 ± 85.66) ms (P = 0.004); and fewer abnormal triggers, (0.97 ± 2.65) versus (2.67 ± 4.48) (P = 0.042) compared with the S1 group. Stratification based on the causes of mechanical ventilation revealed that under the S1 protocol, patients with chronic obstructive pulmonary disease (COPD) had a longer inspiratory trigger delay compared to both post-thoracic surgery (PTS) patients and patients with acute respiratory distress syndrome. Despite providing greater respiratory support, S group led to significant reductions in inspiratory trigger delay and less abnormal triggers compared to S1 group, especially among patients with chronic obstructive pulmonary disease. CONCLUSION: These findings suggest that the zero PEEP group was more likely to induce a higher number of patient-ventilator asynchronies in difficult-to-wean patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Respiração Artificial , Humanos , Respiração Artificial/métodos , Estudos Prospectivos , Respiração com Pressão Positiva/métodos , Mecânica Respiratória
19.
Medicina (Kaunas) ; 59(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37109680

RESUMO

Introduction: Complex cervicofacial cancer surgery with free flap reconstruction is known to have a high incidence of postoperative pulmonary complications (PPCs). We hypothesized that by implementing an optimized respiratory protocol, including preemptive postoperative pressure support ventilation, physiotherapy, and critical respiratory support and follow-up, we could decrease the incidence of PPCs. Patients and methods: We evaluated the incidence of PPCs over two periods in two groups of patients having a routine or optimized postoperative respiratory protocol: 156 adult patients undergoing major cervicofacial cancer surgery were assessed; 91 were in Group 1 (routine) and 65 were in Group 2 (optimized). In Group 1, no ventilatory support sessions were performed. The incidence of pulmonary complications in both groups was compared using a multivariate analysis. Mortality was also compared until one year postoperatively. Results: In Group 2 with an optimized protocol, the mean number of ventilatory support sessions was 3.7 ± 1 (minimum 2, maximum 6). The incidence of respiratory complications, which was 34% in Group 1 (routine), was reduced by 59% OR = 0.41 (0.16; 0.95), p = 0.043) to 21% for the optimized Group 2. No difference in mortality was found. Conclusions: The present retrospective study showed that using an optimized preemptive respiratory pressure support ventilation combined with physiotherapy after a major cervicofacial surgery could possibly help reduce the incidence of pulmonary complications. Prospective studies are needed to verify these findings.


Assuntos
Pulmão , Neoplasias , Adulto , Humanos , Estudos Retrospectivos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Modalidades de Fisioterapia
20.
J Vet Intern Med ; 37(3): 1233-1242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051768

RESUMO

BACKGROUND: Continuous positive airway pressure (CPAP) and pressure support ventilation (PSV) can improve respiratory mechanics and gas exchange, but different airway pressures have not been compared in foals. HYPOTHESIS/OBJECTIVES: Assess the effect of different airway pressures during CPAP and PSV have on respiratory function in healthy foals with pharmacologically induced respiratory insufficiency. We hypothesized that increased airway pressures would improve respiratory mechanics and increased positive end-expiratory pressure (PEEP) would be associated with hypercapnia. ANIMALS: Six healthy foals from a university teaching herd. METHODS: A prospective, 2-phase, 2-treatment, randomized cross-over study design was used to evaluate sequential interventions in sedated foals using 2 protocols (CPAP and PSV). Outcome measures included arterial blood gases, spirometry, volumetric capnography, lung volume and aeration assessed using computed tomography (CT). RESULTS: Sedation and dorsal recumbency were associated with significant reductions in arterial oxygen pressure (PaO2 ), respiratory rate, and tidal volume. Continuous positive airway pressure was associated with improved PaO2 , without concurrent hypercapnia. Volumetric capnography identified improved ventilation:perfusion (V/Q) matching and increased carbon dioxide elimination during ventilation, and spirometry identified decreased respiratory rate and increased tidal volume. Peak inspiratory pressure was moderately associated with PaO2 and lung volume. Improved pulmonary aeration was evident in CT images, and lung volume was increased, particularly during CPAP. CONCLUSIONS AND CLINICAL IMPORTANCE: Both CPAP and PSV improved lung mechanics and gas exchange in healthy foals with induced respiratory insufficiency.


Assuntos
Doenças dos Cavalos , Insuficiência Respiratória , Cavalos , Animais , Hipercapnia/veterinária , Estudos Prospectivos , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/veterinária , Mecânica Respiratória , Insuficiência Respiratória/veterinária , Doenças dos Cavalos/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA