Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Vaccines (Basel) ; 12(9)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39340093

RESUMO

Despite treatment and other interventions, an effective prophylactic HIV vaccine is still an essential goal in the control of HIV. Inducing robust and long-lasting antibody responses is one of the main targets of an HIV vaccine. The delivery of HIV envelope glycoproteins (Env) using nanoparticle (NP) platforms has been shown to elicit better immunogenicity than soluble HIV Env. In this paper, we describe the development of a nanoparticle-based vaccine decorated with HIV Env using the SpyCatcher/SpyTag system. The Env utilised in this study, CAP255, was derived from a transmitted founder virus isolated from a patient who developed broadly neutralising antibodies. Negative stain and cryo-electron microscopy analyses confirmed the assembly and stability of the mi3 into uniform icosahedral NPs surrounded by regularly spaced CAP255 gp140 Env trimers. A three-dimensional reconstruction of CAP255 gp140 SpyTag-SpyCatcher mi3 clearly showed Env trimers projecting from the centre of each of the pentagonal dodecahedral faces of the NP. To our knowledge, this is the first study to report the formation of SpyCatcher pentamers on the dodecahedral faces of mi3 NPs. To investigate the immunogenicity, rabbits were primed with two doses of DNA vaccines expressing the CAP255 gp150 and a mosaic subtype C Gag and boosted with three doses of the NP-developed autologous Tier 2 CAP255 neutralising antibodies (Nabs) and low levels of heterologous CAP256SU NAbs.

2.
Int J Nanomedicine ; 19: 8029-8042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130684

RESUMO

Purpose: Heterologous immunization using different vaccine platforms has been demonstrated as an efficient strategy to enhance antigen-specific immune responses. In this study, we performed a head-to-head comparison of both humoral and cellular immune response induced by different prime-boost immunization regimens of mRNA vaccine and adjuvanted protein subunit vaccine against varicella-zoster virus (VZV) in middle-aged mice, aiming to get a better understanding of the influence of vaccination schedule on immune response. Methods: VZV glycoprotein (gE) mRNA was synthesized and encapsulated into SM-102-based lipid nanoparticles (LNPs). VZV-primed middle-aged C57BL/6 mice were then subjected to homologous and heterologous prime-boost immunization strategies using VZV gE mRNA vaccine (RNA-gE) and protein subunit vaccine (PS-gE). The antigen-specific antibodies were evaluated using enzyme-linked immunosorbent assay (ELISA) analysis. Additionally, cell-mediated immunity (CMI) was detected using ELISPOT assay and flow cytometry. Besides, in vivo safety profiles were also evaluated and compared. Results: The mRNA-loaded lipid nanoparticles had a hydrodynamic diameter of approximately 130 nm and a polydispersity index of 0.156. Total IgG antibody levels exhibited no significant differences among different immunization strategies. However, mice received 2×RNA-gE or RNA-gE>PS-gE showed a lower IgG1/IgG2c ratio than those received 2×PS-gE and PS-gE> RNA-gE. The CMI response induced by 2×RNA-gE or RNA-gE>PS-gE was significantly stronger than that induced by 2×PS-gE and PS-gE> RNA-gE. The safety evaluation indicated that both mRNA vaccine and protein vaccine induced a transient body weight loss in mice. Furthermore, the protein vaccine produced a notable inflammatory response at the injection sites, while the mRNA vaccine showed no observable inflammation. Conclusion: The heterologous prime-boost strategy has demonstrated that an mRNA-primed immunization regimen can induce a better cell-mediated immune response than a protein subunit-primed regimen in middle-aged mice. These findings provide valuable insights into the design and optimization of VZV vaccines with the potentials to broaden varicella vaccination strategies in the future.


Assuntos
Adjuvantes Imunológicos , Imunidade Celular , Camundongos Endogâmicos C57BL , Nanopartículas , Vacinas de Subunidades Antigênicas , Animais , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Nanopartículas/química , Adjuvantes Imunológicos/administração & dosagem , Feminino , Vacinas de mRNA , Camundongos , Herpesvirus Humano 3/imunologia , Anticorpos Antivirais/sangue , Imunização Secundária/métodos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/administração & dosagem , Vacina contra Herpes Zoster/imunologia , Vacina contra Herpes Zoster/administração & dosagem , Lipossomos
3.
Front Immunol ; 15: 1416375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131158

RESUMO

With the rapid global spread of COVID-19 and the continuous emergence of variants, there is an urgent need to develop safe and effective vaccines. Here, we developed a novel mRNA vaccine, HC009, based on new formulation by the QTsome delivery platform. Immunogenicity results showed that the prime-boost immunization strategy with HC009 was able to induce robust and durable humoral immunity, as well as Th1-biased cellular responses in rodents or non-human primates (NHPs). After further challenge with live SARS-CoV-2 virus, HC009 provided adequate protection against virus infection in hACE2 transgenic mice. Therefore, HC009 could provide significant immune protection against SARS-CoV-2.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , Camundongos Transgênicos , SARS-CoV-2 , Vacinas de mRNA , Animais , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Camundongos , Vacinas de mRNA/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Humanos , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Imunidade Humoral , Feminino , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Camundongos Endogâmicos BALB C , Eficácia de Vacinas
4.
Vaccines (Basel) ; 12(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39204050

RESUMO

Although many people have been vaccinated against COVID-19, infections with SARS-CoV-2 seem hard to avoid. There is a need to develop more effective vaccines and immunization strategies against emerging variants of infectious diseases. To understand whether different immunization strategies using variants sequence-based virus-like particles (VLPs) vaccines could offer superior immunity against future SARS-CoV-2 variants, our team constructed VLPs for the original Wuhan-Hu-1 strain (prototype), Delta (δ) variant, and Omicron (ο) variant of SARS-CoV-2, using baculovirus-insect expression system. Then we used these VLPs to assess the immune responses induced by homologous prime-boost, heterologous prime-boost, and sequential immunizations strategies in a mouse model. Our results showed that the pro+δ+ο sequential strategies elicited better neutralizing antibody responses. These sequential strategies also take advantage of inducing CD4+ T and CD8+ T lymphocytes proliferation and tendency to cytokine of Th1. Currently, our data suggest that sequential immunization with VLPs of encoding spike protein derived from SARS-CoV-2 variants of concern may be a potential vaccine strategy against emerging diseases, such as "Disease X".

5.
ACS Nano ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041587

RESUMO

Protein nanoparticles are effective platforms for antigen presentation and targeting effector immune cells in vaccine development. Encapsulins are a class of protein-based microbial nanocompartments that self-assemble into icosahedral structures with external diameters ranging from 24 to 42 nm. Encapsulins from Myxococcus xanthus were designed to package bacterial RNA when produced in E. coli and were shown to have immunogenic and self-adjuvanting properties enhanced by this RNA. We genetically incorporated a 20-mer peptide derived from a mutant strain of the SARS-CoV-2 receptor binding domain (RBD) into the encapsulin protomeric coat protein for presentation on the exterior surface of the particle, inducing the formation of several nonicosahedral structures that were characterized by cryogenic electron microscopy. This immunogen elicited conformationally relevant humoral responses to the SARS-CoV-2 RBD. Immunological recognition was enhanced when the same peptide was presented in a heterologous prime/boost vaccination strategy using the engineered encapsulin and a previously reported variant of the PP7 virus-like particle, leading to the development of a selective antibody response against a SARS-CoV-2 RBD point mutant. While generating epitope-focused antibody responses is an interplay between inherent vaccine properties and B/T cells, here we demonstrate the use of orthogonal nanoparticles to fine-tune the control of epitope focusing.

6.
Vaccines (Basel) ; 12(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066432

RESUMO

Immunity against respiratory pathogens is often short-term, and, consequently, there is an unmet need for the effective prevention of such infections. One such infectious disease is coronavirus disease 19 (COVID-19), which is caused by the novel Beta coronavirus SARS-CoV-2 that emerged around the end of 2019. The World Health Organization declared the illness a pandemic on 11 March 2020, and since then it has killed or sickened millions of people globally. The development of COVID-19 systemic vaccines, which impressively led to a significant reduction in disease severity, hospitalization, and mortality, contained the pandemic's expansion. However, these vaccines have not been able to stop the virus from spreading because of the restricted development of mucosal immunity. As a result, breakthrough infections have frequently occurred, and new strains of the virus have been emerging. Furthermore, SARS-CoV-2 will likely continue to circulate and, like the influenza virus, co-exist with humans. The upper respiratory tract and nasal cavity are the primary sites of SARS-CoV-2 infection and, thus, a mucosal/nasal vaccination to induce a mucosal response and stop the virus' transmission is warranted. In this review, we present the status of the systemic vaccines, both the approved mucosal vaccines and those under evaluation in clinical trials. Furthermore, we present our approach of a B-cell peptide-based vaccination applied by a prime-boost schedule to elicit both systemic and mucosal immunity.

7.
Front Immunol ; 15: 1397579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835755

RESUMO

Background: Yersinia pestis is the etiological agent of plague, which can manifest as bubonic, septicemic, and/or pneumonic disease. Plague is a severe and rapidly progressing illness that can only be successfully treated with antibiotics initiated early after infection. There are no FDA-approved vaccines for plague, and some vaccine candidates may be less effective against pneumonic plague than bubonic plague. Y. pestis is not known to impact males and females differently in mechanisms of pathogenesis or severity of infection. However, one previous study reported sex-biased vaccine effectiveness after intranasal Y. pestis challenge. As part of developing a safe and effective vaccine, it is essential that potential sex differences are characterized. Methods: In this study we evaluated novel vaccines in male and female BALB/c mice using a heterologous prime-boost approach and monitored survival, bacterial load in organs, and immunological correlates. Our vaccine strategy consisted of two subcutaneous immunizations, followed by challenge with aerosolized virulent nonencapsulated Y. pestis. Mice were immunized with a combination of live Y. pestis pgm- pPst-Δcaf1, live Y. pestis pgm- pPst-Δcaf1/ΔyopD, or recombinant F1-V (rF1-V) combined with adjuvants. Results: The most effective vaccine regimen was initial priming with rF1-V, followed by boost with either of the live attenuated strains. However, this and other strategies were more protective in female mice. Males had higher bacterial burden and differing patterns of cytokine expression and serum antibody titers. Male mice did not demonstrate synergy between vaccination and antibiotic treatment as repeatedly observed in female mice. Conclusions: This study provides new knowledge about heterologous vaccine strategies, sex differences in plague-vaccine efficacy, and the immunological factors that differ between male and female mice.


Assuntos
Camundongos Endogâmicos BALB C , Vacina contra a Peste , Peste , Yersinia pestis , Animais , Feminino , Peste/prevenção & controle , Peste/imunologia , Masculino , Yersinia pestis/imunologia , Vacina contra a Peste/imunologia , Vacina contra a Peste/administração & dosagem , Camundongos , Anticorpos Antibacterianos/sangue , Caracteres Sexuais , Fatores Sexuais , Modelos Animais de Doenças , Eficácia de Vacinas
8.
Immunity ; 57(8): 1848-1863.e7, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38889716

RESUMO

Expression of the transcriptional regulator ZFP318 is induced in germinal center (GC)-exiting memory B cell precursors and memory B cells (MBCs). Using a conditional ZFP318 fluorescence reporter that also enables ablation of ZFP318-expressing cells, we found that ZFP318-expressing MBCs were highly enriched with GC-derived cells. Although ZFP318-expressing MBCs constituted only a minority of the antigen-specific MBC compartment, their ablation severely impaired recall responses. Deletion of Zfp318 did not alter the magnitude of primary responses but markedly reduced MBC participation in recall. CD40 ligation promoted Zfp318 expression, whereas B cell receptor (BCR) signaling was inhibitory. Enforced ZFP318 expression enhanced recall performance of MBCs that otherwise responded poorly. ZFP318-deficient MBCs expressed less mitochondrial genes, had structurally compromised mitochondria, and were susceptible to reactivation-induced cell death. The abundance of ZFP318-expressing MBCs, instead of the number of antigen-specific MBCs, correlated with the potency of prime-boost vaccination. Therefore, ZFP318 controls the MBC recallability and represents a quality checkpoint of humoral immune memory.


Assuntos
Centro Germinativo , Memória Imunológica , Células B de Memória , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Camundongos , Memória Imunológica/genética , Memória Imunológica/imunologia , Células B de Memória/imunologia , Células B de Memória/metabolismo , Centro Germinativo/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Regulação da Expressão Gênica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transdução de Sinais/imunologia , Antígenos CD40/metabolismo , Antígenos CD40/genética , Antígenos CD40/imunologia , Imunidade Humoral , Transcrição Gênica , Proteínas de Membrana , Proteínas Mitocondriais
9.
Virol Sin ; 39(3): 490-500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768713

RESUMO

As of December 2022, 2603 laboratory-identified Middle East respiratory syndrome coronavirus (MERS-CoV) infections and 935 associated deaths, with a mortality rate of 36%, had been reported to the World Health Organization (WHO). However, there are still no vaccines for MERS-CoV, which makes the prevention and control of MERS-CoV difficult. In this study, we generated two DNA vaccine candidates by integrating MERS-CoV Spike (S) gene into a replicating Vaccinia Tian Tan (VTT) vector. Compared to homologous immunization with either vaccine, mice immunized with DNA vaccine prime and VTT vaccine boost exhibited much stronger and durable humoral and cellular immune responses. The immunized mice produced robust binding antibodies and broad neutralizing antibodies against the EMC2012, England1 and KNIH strains of MERS-CoV. Prime-Boost immunization also induced strong MERS-S specific T cells responses, with high memory and poly-functional (CD107a-IFN-γ-TNF-α) effector CD8+ T cells. In conclusion, the research demonstrated that DNA-Prime/VTT-Boost strategy could elicit robust and balanced humoral and cellular immune responses against MERS-CoV-S. This study not only provides a promising set of MERS-CoV vaccine candidates, but also proposes a heterologous sequential immunization strategy worthy of further development.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Coronavirus , Imunidade Celular , Imunidade Humoral , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas de DNA , Vacinas Virais , Animais , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Anticorpos Antivirais/sangue , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Feminino , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Linfócitos T CD8-Positivos/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Imunização Secundária , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética
10.
Front Immunol ; 15: 1308238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660313

RESUMO

Introduction: Limited data were available on the effectivenessfour years after Homo or Hetero prime-boost with 10 µg Hansenulapolymorpha recombinant hepatitis B vaccine (HepB-HP) and 20 µgChinese hamster ovary cell HepB (HepB-CHO). Methods: A crosssectional study was performed in maternalhepatitis B surface antigen (HBsAg)-negative children whoreceived one dose of 10 µg HepB-HP at birth, Homo or Heteroprime-boost with 10 µg HepB-HP and 20 µg HepB-CHO at 1 and 6months. HBsAg and hepatitis B surface antibody (anti-HBs) fouryears after immunization were quantitatively detected by achemiluminescent microparticle immunoassay (CMIA). Results: A total of 359 children were included; 119 childrenreceived two doses of 10 µg HepB-HP and 120 children receivedtwo doses of 20 µg HepB-CHO, called Homo prime-boost; 120children received Hetero prime-boost with 10 µg HepB-HP and 20µg HepB-CHO. All children were HBsAg negative. The geometricmean concentration (GMC) and overall seropositivity rate (SPR) ofanti-HBs were 59.47 (95%CI: 49.00 - 72.16) mIU/ml and 85.51%(307/359). Nearly 15% of the study subjects had an anti-HBsconcentration < 10 mIU/ml and 5.01% had an anti-HBsconcentration ≤ 2.5 mIU/ml. The GMC of the 20 µg CHO Homoprime-boost group [76.05 (95%CI: 54.97 - 105.19) mIU/ml] washigher than that of the 10 µg HP Homo group [45.86 (95%CI:31.94 - 65.84) mIU/ml] (p = 0.035). The GMCs of the Heteroprime-boost groups (10 µg HP-20 µg CHO and 20 µg CHO-10 µgHP) were 75.86 (95% CI: 48.98 - 107.15) mIU/ml and 43.65(95%CI: 27.54 - 69.18) mIU/ml, respectively (p = 0.041). Aftercontrolling for sex influence, the SPR of the 20 µg CHO Homoprime-boost group was 2.087 times than that of the 10 µg HPHomo group. Discussion: The HepB booster was not necessary in the generalchildren, Homo/Hetero prime-boost with 20 µg HepB-CHO wouldincrease the anti-HBs concentration four years after immunization,timely testing and improved knowledge about the self-pay vaccinewould be good for controlling hepatitis B.


Assuntos
Cricetulus , Anticorpos Anti-Hepatite B , Antígenos de Superfície da Hepatite B , Vacinas contra Hepatite B , Hepatite B , Imunização Secundária , Vacinas Sintéticas , Humanos , Vacinas contra Hepatite B/imunologia , Vacinas contra Hepatite B/administração & dosagem , Antígenos de Superfície da Hepatite B/imunologia , Feminino , Animais , Masculino , Hepatite B/prevenção & controle , Hepatite B/imunologia , Anticorpos Anti-Hepatite B/sangue , Anticorpos Anti-Hepatite B/imunologia , Células CHO , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Estudos Transversais , Criança , Lactente , Pré-Escolar , Vírus da Hepatite B/imunologia
11.
Hum Vaccin Immunother ; 20(1): 2337987, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38658133

RESUMO

There is a growing interest in development of novel vaccines against respiratory tract infections, due to COVID-19 pandemic. Here, we examined mucosal adjuvanticity and the mucosal booster effect of membrane vesicles (MVs) of a novel probiotic E. coli derivative lacking both flagella and potentially carcinogenic colibactin (ΔflhDΔclbP). ΔflhDΔclbP-derived MVs showed rather strong mucosal adjuvanticity as compared to those of a single flagellar mutant strain (ΔflhD-MVs). In addition, glycoengineered ΔflhDΔclbP-MVs displaying serotype-14 pneumococcal capsular polysaccharide (CPS14+MVs) were well-characterized based on biological and physicochemical parameters. Subcutaneous (SC) and intranasal (IN) booster effects of CPS14+MVs on systemic and mucosal immunity were evaluated in mice that have already been subcutaneously prime-immunized with the same MVs. With a two-dose regimen, an IN boost (SC-IN) elicited stronger IgA responses than homologous prime-boost immunization (SC-SC). With a three-dose regimen, serum IgG levels were comparable among all tested regimens. Homologous immunization (SC-SC-SC) elicited the highest IgM responses among all regimens tested, whereas SC-SC-SC failed to elicit IgA responses in blood and saliva. Furthermore, serum IgA and salivary SIgA levels were increased with an increased number of IN doses administrated. Notably, SC-IN-IN induced not only robust IgG response, but also the highest IgA response in both serum and saliva among the groups. The present findings suggest the potential of a heterologous three-dose administration for building both systemic and mucosal immunity, e.g. an SC-IN-IN vaccine regimen could be beneficial. Another important observation was abundant packaging of colibactin in MVs, suggesting increased applicability of ΔflhDΔclbP-MVs in the context of vaccine safety.


Assuntos
Adjuvantes Imunológicos , Escherichia coli , Imunidade nas Mucosas , Imunização Secundária , Camundongos Endogâmicos BALB C , Policetídeos , Probióticos , Animais , Camundongos , Probióticos/administração & dosagem , Escherichia coli/imunologia , Imunização Secundária/métodos , Feminino , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina A , Peptídeos/imunologia , Administração Intranasal , Imunoglobulina G/sangue , Imunoglobulina M , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem
12.
Expert Rev Vaccines ; 23(1): 432-444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517153

RESUMO

BACKGROUND: Heterologous prime-boost schedules have been employed in SARS-CoV-2 vaccination, yet additional data on immunogenicity and effectiveness are still needed. RESEARCH DESIGN AND METHODS: Here, we measured the immunogenicity and effectiveness in the real-world setting of the mRNA booster dose in 181 subjects who had completed primary vaccination with ChAdOx1, BNT162b2, or mRNA1273 vaccines (IMMUNO_COV study; protocol code 18,869). The spike-specific antibody and B cell responses were analyzed up to 6 months after boosting. RESULTS: After an initial slower antibody response, the heterologous ChAdOx1/mRNA prime-boost formulation elicited spike-specific IgG titers comparable to homologous approaches, while spike-specific B cells showed a higher percentage of CD21-CD27- atypical cells compared to homologous mRNA vaccination. Mixed combinations of BNT162b2 and mRNA-1273 elicited an immune response comparable with homologous strategies. Non-significant differences in the Relative Risk of infection, calculated over a period of 18 months after boosting, were reported among homologous or heterologous vaccination groups, indicating a comparable relative vaccine effectiveness. CONCLUSIONS: Our data endorse the heterologous booster vaccination with mRNA as a valuable alternative to homologous schedules. This approach can serve as a solution in instances of formulation shortages and contribute to enhancing vaccine strategies for potential epidemics or pandemics.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Vacina BNT162 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacinação , Vacina de mRNA-1273 contra 2019-nCoV , Pandemias , RNA Mensageiro , Adenoviridae , Anticorpos Antivirais , Anticorpos Neutralizantes
13.
Vaccines (Basel) ; 12(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38400107

RESUMO

Pneumococcal diseases are an important public health problem, with high mortality rates in young children. Although conjugated pneumococcal vaccines offer high protection against invasive pneumococcal diseases, this is restricted to vaccine serotypes, leading to serotype replacement. Furthermore, the current vaccines do not protect neonates. Therefore, several protein-based pneumococcal vaccines have been studied over the last few decades. Our group established a recombinant BCG expressing rPspA-PdT as a prime/rPspA-PdT boost strategy, which protected adult mice against lethal intranasal pneumococcal challenge. Here, we immunized groups of neonate C57/Bl6 mice (6-10) (at 5 days) with rBCG PspA-PdT and a boost with rPspA-PdT (at 12 days). Controls were saline or each antigen alone. The prime/boost strategy promoted an IgG1 to IgG2c isotype shift compared to protein alone. Furthermore, there was an increase in specific memory cells (T and B lymphocytes) and higher cytokine production (IFN-γ, IL-17, TNF-α, IL-10, and IL-6). Immunization with rBCG PspA-PdT/rPspA-PdT showed 100% protection against pulmonary challenge with the WU2 pneumococcal strain; two doses of rPspA-PdT showed non-significant protection in the neonates. These results demonstrate that a prime/boost strategy using rBCG PspA-PdT/rPspA-PdT is effective in protecting neonates against lethal pneumococcal infection via the induction of strong antibody and cytokine responses.

14.
Biomed Pharmacother ; 170: 115901, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056238

RESUMO

BACKGROUND: Hepatitis C virus (HCV) vaccines are an urgent need to prevent hepatitis C and its further progression of hepatocellular carcinoma. Since the promising T cell based chimpanzee adenovirus and modified vaccinia virus Ankara vectorial HCV vaccines were failed in clinical phase II trial, the vaccine designs to improve protection efficacy in combination of cellular and humoral immunity have been hypothesized against multi-genotypic HCV. METHODS: Eight HCV vaccine strains were constructed with two novel adenovirus vectors (Sad23L and Ad49L) encoding E1E2 or NS3-5B proteins of HCV genotype (Gt) 1b and 6a isolates, covering 80 % HCV strains prevalent in south China and south-east Asia. Eight HCV vaccine strains were grouped into Sad23L-based vaccine cocktail-1 and Ad49L-based vaccine cocktail-2 for vaccinating mice, respectively. RESULTS: The immunogenicity of a single dose of 107-1010 PFU HCV individual vaccines was evaluated in mice, showing weak specific antibody to E1 and E2 protein but a dose-dependent T cell response to E1E2/NS3-5B peptides, which could be significantly enhanced by boosting with an alternative vector vaccine carrying homologous antigen. Prime-boost vaccinations with vaccine cocktail-1 and cocktail-2 induced significantly higher cross-reactive antibody and stronger T cell responses to HCV Gt-1b/6a. The high frequency of intrasplenic and intrahepatic NS31629-1637 CD8+ T cell responses were identified, in which the high proportion of TRM and TEM cells might play an important role against HCV infection in liver. CONCLUSIONS: Prime-boost regimens with HCV vaccine cocktails elicited the broad cross-reactive antibody and robust T cell responses against multi-genotypic HCV in mice.


Assuntos
Hepatite C , Vacinas , Animais , Camundongos , Hepacivirus/genética , Hepatite C/prevenção & controle , Vetores Genéticos , Vaccinia virus/genética , Adenoviridae/genética , Imunidade , Genótipo
15.
Vaccines (Basel) ; 11(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38140219

RESUMO

Previous reports have shown that heterologous boosting with the AD5-vectored COVID-19 vaccine Convidecia based on a primary series of two doses of inactivated vaccine induces increasing immune responses. However, the immune persistence until 6 months after the heterologous prime-boost immunization was limited. Participants were from two single-center, randomized, controlled, observer-blinded trials, which involved individuals of 18-59 years of age and over 60 years of age. Eligible participants who previously primed with one dose or two doses of CoronaVac were stratified and randomly assigned to inoculate a booster dose of Convidecia or CoronaVac. Neutralizing antibodies against a live SARS-CoV-2 prototype virus and Delta and Omicron (B.1.1.529) variants, pseudovirus neutralizing antibodies against Omicron BA.4/5 variants, and anti-SARS-CoV-2 RBD antibodies at month 6 were detected, and the fold decreases and rate difference were calculated by comparing the levels of antibodies at month 6 with the peak levels at month 1. The neutralizing antibody titers against prototype SARS-CoV-2, RBD-specific IgG antibodies, and the Delta variant in the heterologous regimen of the CoronaVac plus Convidecia groups were significantly higher than those of the homologous prime-boost groups. In three-dose regimen groups, the geometric mean titers (GMTs) of neutralizing antibodies against prototype SARS-CoV-2 were 30.6 (95% CI: 25.1; 37.2) in the heterologous boosting group versus 6.9 (95% CI: 5.6; 8.6) in the homologous boosting group (p < 0.001) at month 6 in participants aged 18-59 years, and in the two-dose regimen, the neutralizing antibody GMTs were 8.5 (95% CI: 6.2; 11.7) and 2.7 (2.3 to 3.1) (heterologous regimen group versus CoronaVac regimen group, p < 0.001). Participants aged over 60 years had similar levels of neutralizing antibodies against the prototype, with GMTs of 49.1 (38.0 to 63.6) in the group receiving two doses of CoronaVac plus one dose of Convidecia versus 9.4 (7.7 to 11.4) in the group receiving three doses of CoronaVac (p < 0.001) and 11.6 (8.4 to 16.0) in the group receiving one dose of CoronaVac and one dose of Convidecia versus 3.3 (2.7 to 4.0) in the group receiving two doses of CoronaVac (p < 0.001). Compared with day 14, over sixfold decreases in neutralizing antibody GMTs were observed in the heterologous groups of the three- or two-dose regimen groups of younger and elderly participants, while in the homologous regimen groups, the GMTs of neutralizing antibodies decreased about fivefold in the two age groups. The heterologous prime-boost regimen with two doses of CoronaVac and one dose of Convidecia was persistently more immunogenic than the regimen of the homologous prime-boost with three doses of CoronaVac.

16.
Front Immunol ; 14: 1253626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928521

RESUMO

Influenza A viruses (IAVs) pose a significant threat to both human and animal health. Developing IAV vaccine strategies able to elicit broad heterologous protection against antigenically diverse IAV strains is pivotal in effectively controlling the disease. The goal of this study was to examine the immunogenicity and protective efficacy of diverse H1N1 influenza vaccine strategies including monovalent, bivalent, and heterologous prime-boost vaccination regimens, against a mismatched H1N2 swine influenza virus. Five groups were homologous prime-boost vaccinated with either an oil-adjuvanted whole-inactivated virus (WIV) monovalent A/swine/Georgia/27480/2019 (GA19) H1N2 vaccine, a WIV monovalent A/sw/Minnesota/A02636116/2021 (MN21) H1N1 vaccine, a WIV monovalent A/California/07/2009 (CA09) H1N1, a WIV bivalent vaccine composed of CA09 and MN21, or adjuvant only (mock-vaccinated group). A sixth group was prime-vaccinated with CA09 WIV and boosted with MN21 WIV (heterologous prime-boost group). Four weeks post-boost pigs were intranasally and intratracheally challenged with A/swine/Georgia/27480/2019, an H1N2 swine IAV field isolate. Vaccine-induced protection was evaluated based on five critical parameters: (i) hemagglutination inhibiting (HAI) antibody responses, (ii) clinical scores, (iii) virus titers in nasal swabs and respiratory tissue homogenates, (iv) BALf cytology, and (v) pulmonary pathology. While all vaccination regimens induced seroprotective titers against homologous viruses, heterologous prime-boost vaccination failed to enhance HAI responses against the homologous vaccine strains compared to monovalent vaccine regimens and did not expand the scope of cross-reactive antibody responses against antigenically distinct swine and human IAVs. Mismatched vaccination regimens not only failed to confer clinical and virological protection post-challenge but also exacerbated disease and pathology. In particular, heterologous-boosted pigs showed prolonged clinical disease and increased pulmonary pathology compared to mock-vaccinated pigs. Our results demonstrated that H1-specific heterologous prime-boost vaccination, rather than enhancing cross-protection, worsened the clinical outcome and pathology after challenge with the antigenically distant A/swine/Georgia/27480/2019 strain.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Suínos , Vírus da Influenza A Subtipo H1N2 , Anticorpos Antivirais , Vacinação , Adjuvantes Imunológicos
17.
Heliyon ; 9(10): e20555, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37810803

RESUMO

COVID-19 pandemic has been managed through global vaccination programs. However, the antibody waning in various types of vaccines came to notice. Hereby, PastoCovac Plus as a protein subunit vaccine was investigated in immunized health care workers by COVAXIN (BBV152). The booster vaccine was recommended at least three months post the second dose of COVAXIN. Sera collection was done before and after each injection. SARS-CoV-2 PCR test was done monthly to detect any asymptomatic and symptomatic vaccine breakthrough. 47.9 and 24.3% of the participants were seronegative for anti-N and anti-S antibodies three months after the second dose of COVAXIN, respectively. On average, fold-rises of 70, 93, 8 and mean-rises of 23.32, 892.4, 5.59 were recorded regarding neutralizing antibody, quantitative and semi-quantitative anti-Spike antibody, respectively. Anti-Spike and neutralizing antibodies seroconversion was seen 59.3% and 45.7%, respectively. The vaccine breakthrough assessment showed that all the isolated samples belonged to SARS-CoV-2 Delta variant. PastoCovac Plus boosting is strongly recommended in combination with inactivated vaccine platforms against SARS-CoV-2.

18.
J Virol ; 97(11): e0096323, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37846984

RESUMO

IMPORTANCE: Currently licensed dengue vaccines do not induce long-term protection in children without previous exposure to dengue viruses in nature. These vaccines are based on selected attenuated strains of the four dengue serotypes and employed in combination for two or three consecutive doses. In our search for a better dengue vaccine candidate, live attenuated strains were followed by non-infectious virus-like particles or the plasmids that generate these particles upon injection into the body. This heterologous prime-boost immunization induced elevated levels of virus-specific antibodies and helped to prevent dengue virus infection in a high proportion of vaccinated macaques. In macaques that remained susceptible to dengue virus, distinct mechanisms were found to account for the immunization failures, providing a better understanding of vaccine actions. Additional studies in humans in the future may help to establish whether this combination approach represents a more effective means of preventing dengue by vaccination.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Vacinas de Partículas Semelhantes a Vírus , Animais , Humanos , Anticorpos Antivirais , Vacinas contra Dengue/administração & dosagem , Macaca fascicularis , Imunização Secundária , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
19.
Microb Pathog ; 183: 106328, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37661073

RESUMO

Vaccination is principally used to control and treat porcine reproductive and respiratory syndrome virus (PRRSV) infection. This study investigated immunogenicity and protective efficacy of heterologous prime-boost regimens in pigs, including recombinant DNA and vaccinia virus vectors coexpressing PRRSV European genotype (EU) isolate GP3 and GP5: group A, pVAX1-EU-GP3-GP5 prime and rddVTT-EU-GP3-GP5 boost; group B, rddVTT-EU-GP3-GP5 prime and pVAX1-EU-GP3-GP5 boost; group C, empty vector pVAX1; group D, E3L gene-deleted vaccinia virus E3L- VTT. Vaccine efficacy was tested in an EU-type PRRSV (Lelystad virus strain) challenge pig model based on evaluating PRRSV-specific antibody responses, neutralizing antibodies, cytokines, T lymphocyte proliferation, CD4+ and CD8+ T lymphocytes, clinical symptoms, viremia and tissue virus loads. Plasmid DNA was delivered as chitosan-DNA nanoparticles, and Quil A (Quillaja) was used to increase vaccine efficiency. All piglets were boosted 21 days post the initial inoculation (dpi) and then challenged 14 days later. At 14, 21, 28 and 35 dpi, groups A and B developed significantly higher PRRSV-specific antibody responses compared with control groups C and D. Two weeks after the boost, significant differences in neutralizing antibody and IFN-γ levels were observed between groups A, C, D and B. At 49 dpi, groups A and B had markedly increased peripheral blood CD3+CD4+ T cell levels. Following virus challenge, group A showed viremia, but organ virus loads were lower than those in other groups. Thus, a heterologous prime-boost vaccine regimen (rddVTT-EU-GP3-GP5 prime, pVAX1-EU-GP3-GP5 boost) can improve humoral- and cell-mediated immune responses to provide resistance to EU-type PRRSV infection in vivo.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vaccinia virus/genética , Viremia/prevenção & controle , Vacinação , Imunização , DNA , Anticorpos Neutralizantes , Anticorpos Antivirais
20.
Future Sci OA ; 9(9): FSO887, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37752921
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA