Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
Mol Genet Genomics ; 299(1): 90, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325237

RESUMO

Primordial germ cells (PGCs) in avian species exhibit unique developmental features, including the ability to migrate through the bloodstream and colonize the gonads, allowing their isolation at various developmental stages. Several methods have been developed for the isolation of avian PGCs, including density gradient centrifugation, size-dependent separation, and magnetic-activated cell sorting (MACS) or fluorescence-activated cell sorting (FACS) using a stage-specific embryonic antigen-1 (SSEA-1) antibody. However, these methods present limitations in terms of efficiency and applicability across development stages. In particular, the specificity of SSEA-1 decreases in later developmental stages. Furthermore, surface markers that can be utilized for isolating or utilizing PGCs are lacking for wild birds, including zebra finches, and endangered avian species. To address this, we used single-cell RNA sequencing (scRNA-seq) to uncover novel PGC-specific surface markers in chicken and zebra finch. We screened for genes that were primarily expressed in the PGC population within the gonadal cells. Analyses of gene expression patterns and levels based on scRNA-seq, coupled with validation by RT-PCR, identified NEGR1 and SLC34A2 as novel PGC-specific surface markers in chickens and ESYT3 in zebra finches. Notably, these newly identified genes exhibited sustained expression not only during later developmental stages but also in reproductive tissues.


Assuntos
Galinhas , Tentilhões , Células Germinativas , Análise de Célula Única , Animais , Tentilhões/genética , Análise de Célula Única/métodos , Células Germinativas/metabolismo , Células Germinativas/citologia , Galinhas/genética , Biomarcadores/metabolismo , Análise de Sequência de RNA/métodos , Regulação da Expressão Gênica no Desenvolvimento , Masculino
2.
Vet Res Forum ; 15(7): 335-342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39257460

RESUMO

Primordial germ cells (PGCs) have potential applications in genetic conservation, vaccination, tissue repair therapies, and genetic research. Chicken bone marrow-derived mesenchymal stem cells (cbMSCs) is a good candidate for co-culture with PGCs. However, there is no consensus on the optimal age of donors. In this study, we aimed to compare specific parameters of H'Mong cbMSCs obtained from day 14th and 19th embryos, and day 3rd newborns. Isolated cbMSCs showed characteristics of MSCs. Cells had fibroblast-like morphology, plastic-adherent, expressed specific markers of MSCs and multilineage differentiation potential. The growth rate of cells from day 19th embryos was higher than from other ages. Moreover, cells expressed markers of pluripotency such as Nanog, PouV, Sox2, CVH, DAZL, and KIT, known for their role in maintaining stem cell self-renewal and pluripotency. As feeder cells, cbMSCs from three different ages promoted proliferation of H'Mong PGCs during co-culture. These results suggested that cbMSCs from different ages can be used for co-culture H'Mong PGCs which were further used for genetic preservation of H'Mong chicken or gene editing research.

3.
Animals (Basel) ; 14(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123740

RESUMO

Avian primordial germ cells (PGCs) are essential in avian transgenic research, germplasm conservation, and disease resistance breeding. However, cultured PGCs are prone to fragmentation and apoptosis, regulated at transcriptional and translational levels, with N6-methyladenosine (m6A) being the most common mRNA modification. Resveratrol (RSV) is known for its antioxidant and anti-apoptotic properties, but its effects on PGCs and the underlying mechanisms are not well understood. This study shows that RSV supplementation in cultured PGCs improves cell morphology, significantly enhances total antioxidant capacity (p < 0.01), reduces malondialdehyde levels (p < 0.05), increases anti-apoptotic BCL2 expression, and decreases Caspase-9 expression (p < 0.05). Additionally, RSV upregulates the expression of m6A reader proteins YTHDF1 and YTHDF3 (p < 0.05). m6A methylation sequencing revealed changes in mRNA m6A levels after RSV treatment, identifying 6245 methylation sites, with 1223 unique to the control group and 798 unique to the RSV group. Combined analysis of m6A peaks and mRNA expression identified 65 mRNAs with significantly altered methylation and expression levels. Sixteen candidate genes were selected, and four were randomly chosen for RT-qPCR validation, showing results consistent with the transcriptome data. Notably, FAM129A and SFRP1 are closely related to apoptosis, indicating potential research value. Overall, our study reveals the protective effects and potential mechanisms of RSV on chicken PGCs, providing new insight into its use as a supplement in reproductive stem cell culture.

4.
Fish Physiol Biochem ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196454

RESUMO

Primordial germ cells (PGCs) play a crucial role in sexual development in fish, with recent studies revealing their influence on sexual fate. Notably, PGC number at specific developmental stages can determine whether an individual develops as male or female. Temperature was shown to impact PGC proliferation and the subsequent phenotypic sex in some fish species. Here, we aimed at testing the role of food deprivation on gonad development in the European seabass Dicentrarchus labrax, a species displaying a polygenic sex determination system with an environmental influence. We subjected larvae to two periods of starvation to investigate whether restricting growth affects both gonadal size and vasa gene expression. We first confirmed by immunohistochemistry that Vasa was indeed a marker of PGCs in the European seabass, as in other fish species. We also showed that vasa correlated positively with fish size, confirming that it could be used as a marker of feminization. However, starvation did not show any significant effects on vasa expression nor on gonadal size. It is hypothesized that evolutionary mechanisms likely safeguard PGCs against environmental stressors to ensure reproductive success. Further research is needed to elucidate the intricate interplay between environmental cues, PGC biology, and sexual differentiation in fish.

5.
Reprod Biol Endocrinol ; 22(1): 82, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010074

RESUMO

BACKGROUND: Exploring the molecular mechanisms of primordial germ cell (PGC) migration and the involvement of gonadal somatic cells in gonad development is valuable for comprehending the origins and potential treatments of reproductive-related diseases. METHODS: Diaphanous related formin 1 (Diaph1, also known as mDia1) was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). Subsequently, the CRISPR-Cas9 technology was used to construct Diaph1 knockout mice to investigate the role of Diaph1 in gonad development. RESULTS: Based on data from public databases, a differentially expressed gene Diaph1, was identified in the migration of mouse PGC. Additionally, the number of PGCs was significantly reduced in Diaph1 knockout mice compared to wild type mice, and the expression levels of genes related to proliferation (Dicer1, Mcm9), adhesion (E-cadherin, Cdh1), and migration (Cxcr4, Hmgcr, Dazl) were significantly decreased. Diaph1 knockout also inhibited Leydig cell proliferation and induced apoptosis in the testis, as well as granulosa cell apoptosis in the ovary. Moreover, the sperm count in the epididymal region and the count of ovarian follicles were significantly reduced in Diaph1 knockout mice, resulting in decreased fertility, concomitant with lowered levels of serum testosterone and estradiol. Further research found that in Diaph1 knockout mice, the key enzymes involved in testosterone synthesis (CYP11A1, 3ß-HSD) were decreased in Leydig cells, and the estradiol-associated factor (FSH receptor, AMH) in granulosa cells were also downregulated. CONCLUSIONS: Overall, our findings indicate that the knockout of Diaph1 can disrupt the expression of factors that regulate sex hormone production, leading to impaired secretion of sex hormones, ultimately resulting in damage to reproductive function. These results provide a new perspective on the molecular mechanisms underlying PGC migration and gonadal development, and offer valuable insights for further research on the causes, diagnosis, and treatment of related diseases.


Assuntos
Proliferação de Células , Forminas , Células Germinativas , Gônadas , Camundongos Knockout , Animais , Camundongos , Feminino , Masculino , Forminas/genética , Forminas/metabolismo , Proliferação de Células/genética , Gônadas/metabolismo , Células Germinativas/metabolismo , Apoptose/genética , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/citologia , Movimento Celular/genética , Ovário/metabolismo , Ovário/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL
6.
Front Cell Dev Biol ; 12: 1410177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911025

RESUMO

Mammalian germ cells are derived from primordial germ cells (PGCs) and ensure species continuity through generations. Unlike irreversible committed mature germ cells, migratory PGCs exhibit a latent pluripotency characterized by the ability to derive embryonic germ cells (EGCs) and form teratoma. Here, we show that inhibition of p38 mitogen-activated protein kinase (MAPK) by chemical compounds in mouse migratory PGCs enables derivation of chemically induced Embryonic Germ-like Cells (cEGLCs) that do not require conventional growth factors like LIF and FGF2/Activin-A, and possess unique naïve pluripotent-like characteristics with epiblast features and chimera formation potential. Furthermore, cEGLCs are regulated by a unique PI3K-Akt signaling pathway, distinct from conventional naïve pluripotent stem cells described previously. Consistent with this notion, we show by performing ex vivo analysis that inhibition of p38 MAPK in organ culture supports the survival and proliferation of PGCs and also potentially reprograms PGCs to acquire indefinite proliferative capabilities, marking these cells as putative teratoma-producing cells. These findings highlight the utility of our ex vivo model in mimicking in vivo teratoma formation, thereby providing valuable insights into the cellular mechanisms underlying tumorigenesis. Taken together, our research underscores a key role of p38 MAPK in germ cell development, maintaining proper cell fate by preventing unscheduled pluripotency and teratoma formation with a balance between proliferation and differentiation.

7.
Cell Rep ; 43(6): 114323, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38861385

RESUMO

Aberrant male germline development can lead to the formation of seminoma, a testicular germ cell tumor. Seminomas are biologically similar to primordial germ cells (PGCs) and many bear an isochromosome 12p [i(12p)] with two additional copies of the short arm of chromosome 12. By mapping seminoma transcriptomes and open chromatin landscape onto a normal human male germline trajectory, we find that seminoma resembles premigratory/migratory PGCs; however, it exhibits enhanced germline and pluripotency programs and upregulation of genes involved in apoptosis, angiogenesis, and MAPK/ERK pathways. Using pluripotent stem cell-derived PGCs from Pallister-Killian syndrome patients mosaic for i(12p), we model seminoma and identify gene dosage effects that may contribute to transformation. As murine seminoma models do not exist, our analyses provide critical insights into genetic, cellular, and signaling programs driving seminoma transformation, and the in vitro platform developed herein permits evaluation of additional signals required for seminoma tumorigenesis.


Assuntos
Epigênese Genética , Células Germinativas , Seminoma , Neoplasias Testiculares , Humanos , Seminoma/genética , Seminoma/patologia , Seminoma/metabolismo , Masculino , Células Germinativas/metabolismo , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Neoplasias Testiculares/metabolismo , Transcrição Gênica , Regulação Neoplásica da Expressão Gênica , Transcriptoma/genética
8.
EMBO J ; 43(14): 3044-3071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858601

RESUMO

MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.


Assuntos
RNA Helicases DEAD-box , Instabilidade Genômica , Proteínas de Manutenção de Minicromossomo , Estruturas R-Loop , Animais , Feminino , Humanos , Masculino , Camundongos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Dano ao DNA , Células Germinativas/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Estruturas R-Loop/genética
9.
Genes (Basel) ; 15(5)2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38790253

RESUMO

Primordial germ cells (PGCs) are the precursors of functional gametes and the only cell type capable of transmitting genetic and epigenetic information from generation to generation. These cells offer valuable starting material for cell-based genetic engineering and genetic preservation, as well as epigenetic studies. While chicken PGCs have demonstrated resilience in maintaining their germness characteristics during both culturing and cryopreservation, their handling remains a complex challenge requiring further refinement. Herein, the study aimed to compare the effects of different conditions (freezing-thawing and in vitro cultivation) on the expression of PGC-specific marker genes. Embryonic blood containing circulating PGCs was isolated from purebred Green-legged Partridgelike chicken embryos at 14-16 Hamburger-Hamilton (HH) embryonic development stage. The blood was pooled separately for males and females following sex determination. The conditions applied to the blood containing PGCs were as follows: (1) fresh isolation; (2) cryopreservation for a short term (2 days); and (3) in vitro culture (3 months) with long-term cryopreservation of purified PGCs (~2 years). To characterize PGCs, RNA isolation was carried out, followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) to assess the expression levels of specific germ cell markers (SSEA1, CVH, and DAZL), as well as pluripotency markers (OCT4 and NANOG). The investigated genes exhibited consistent expression among PGCs maintained under diverse conditions, with no discernible differences observed between males and females. Notably, the analyzed markers demonstrated higher expression levels in PGCs when subjected to freezing than in their freshly isolated counterparts.


Assuntos
Galinhas , Criopreservação , Células Germinativas , Animais , Criopreservação/métodos , Células Germinativas/metabolismo , Células Germinativas/citologia , Galinhas/genética , Masculino , Feminino , Embrião de Galinha , Células Cultivadas , Biomarcadores
10.
Theriogenology ; 222: 22-30, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615433

RESUMO

Primordial germ cells (PGCs) are the precursors of germ cells and play a crucial role in germline transmission. In chickens, PGCs can be cultured in vitro while maintaining their germline stem cell characteristics. The Deleted in Azoospermia-Like (DAZL) gene, which is highly expressed in PGCs, is essential for germ cell development. Here, through gene knockout experiments, we discovered that the loss of DAZL expression in chicken PGCs led to decreased proliferation and survival. By next employed techniques such as RIP-seq (RNA Binding Protein Immunoprecipitation) and Co-IP-MS/MS (Co-immunoprecipitation Mass Spectrometry), we identified genes directly regulated by DAZL or cooperating with DAZL at the transcriptomic and proteomic levels. DAZL was found to control genes related to germline development, pluripotency, and cell proliferation in PGCs. Additionally, we observed a significant overlap between RNAs and proteins that interact with both DAZL and DDX4, indicating their cooperation in the gene regulation network in chicken PGCs. Our research provides valuable insights into the function of the DAZL gene in germline cells.


Assuntos
Proliferação de Células , Galinhas , RNA Helicases DEAD-box , Células Germinativas , Proteínas de Ligação a RNA , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Galinhas/genética , Células Germinativas/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA