Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Insect Biochem Mol Biol ; 164: 104047, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072082

RESUMO

The non-neuronal cholinergic system, widely distributed in nature, is an ancient system that has not been well studied in insects. This study aims to investigate the key components of the cholinergic system and to identify the non-neuronal acetylcholine (ACh)-producing cells and the acting sites of ACh in the Malpighian tubules (MTs) of Mythimna separata. We found that non-neuronal ACh in MTs is synthesized by carnitine acetyltransferase (CarAT), rather than choline acetyltransferase (ChAT), as confirmed by using enzyme inhibitors and high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Fluorescence in situ hybridization revealed the presence of CarAT mRNA within MTs, specifically localized in the principal cells. Immunohistochemistry showed strong staining for A-mAChR, a muscarinic acetylcholine receptor, in the principal cells. Pharmacological analysis further demonstrated that ACh acts through A-mAChR in the principal cells to increase the intracellular Ca2+ concentration. These findings provide compelling evidence for the existence of a non-neuronal cholinergic system in the MTs of M. separata, and the principal cells play a crucial role in ACh synthesis via CarAT.


Assuntos
Acetilcolina , Sistema Colinérgico não Neuronal , Animais , Acetilcolina/farmacologia , Túbulos de Malpighi/metabolismo , Hibridização in Situ Fluorescente , Espectrometria de Massas em Tandem
2.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142537

RESUMO

Tuberous sclerosis complex (TSC) is caused by mutations in the hamartin (TSC1) or tuberin (TSC2) genes. Using a mouse model of TSC renal cystogenesis that we have previously described, the current studies delineate the metabolic changes in the kidney and their relation to alterations in renal gene expression. To accomplish this, we compared the metabolome and transcriptome of kidneys from 28-day-old wildtype (Wt) and principal cell-specific Tsc1 KO (Tsc1 KO) mice using targeted 1H nuclear magnetic resonance targeted metabolomic and RNA-seq analyses. The significant changes in the kidney metabolome of Tsc1 KO mice included reductions in the level of several amino acids and significant decreases in creatine, NADH, inosine, UDP-galactose, GTP and myo-inositol levels. These derangements may affect energy production and storage, signal transduction and synthetic pathways. The pertinent derangement in the transcriptome of Tsc1 KO mice was associated with increased collecting duct acid secretion, active cell division and the up-regulation of signaling pathways (e.g., MAPK and AKT/PI3K) that suppress the TSC2 GTPase-activating function. The combined renal metabolome and transcriptome alterations observed in these studies correlate with the unregulated growth and predominance of genotypically normal A-intercalated cells in the epithelium of renal cysts in Tsc1 KO mice.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Creatina/metabolismo , Galactose/metabolismo , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/metabolismo , Inosina/metabolismo , Inositol/metabolismo , Rim/metabolismo , Metaboloma , NAD/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transcriptoma , Esclerose Tuberosa/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor/genética , Difosfato de Uridina/metabolismo
3.
Mol Biol Rep ; 48(8): 6015-6023, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34328598

RESUMO

BACKGROUND: Sperm acquire the ability to fertilize ova through a complex process of epididymal maturation. To identify the functions of genes expressed in the proximal epididymis, mouse models specific to this region are needed. METHODS AND RESULTS: A Lcn8-Cre knock-in mouse line was generated using CRISPR/Cas9 technology. A 37 bp coding sequence of Lcn8 from the ATG start codon was replaced by an NLS-Cre-polyA cassette, resulting in Cre expression and the absence of Lcn8. Epididymal initial segment-specific Cre expression was identified using RT-PCR and western blotting, and the spatial-temporal Cre activity was further confirmed by using the Rosa26tdTomato reporter mice. Immunofluorescence staining showed that active Cre recombinase was present in the principal cells. Histological analyses of sperm and epididymides, and the four-month mating tests, were used to confirm that Cre expression did not affect normal development and male fecundity. CONCLUSIONS: The novel Lcn8-Cre mice can be used to establish epididymal initial segment-specific conditional knock-out mouse models.


Assuntos
Epididimo/metabolismo , Lipocalinas/genética , Espermatozoides/metabolismo , Animais , Doenças dos Genitais Masculinos , Integrases , Lipocalinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testículo/metabolismo
4.
Curr Biol ; 31(13): 2831-2843.e6, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33989528

RESUMO

In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing. Comparative perspectives across vertebrates provide a lens to understand the common features of pallium that are important for advanced cognition. Studies in songbirds have established strikingly parallel features of neuronal types between mammalian and avian pallium. However, lack of genetic access to defined pallial cell types in non-mammalian vertebrates has hindered progress in resolving connections between molecular and physiological phenotypes. A definitive mapping of the physiology of pallial cells onto their molecular identities in birds is critical for understanding how synaptic and computational properties depend on underlying molecular phenotypes. Using viral tools to target excitatory versus inhibitory neurons in the zebra finch auditory association pallium (calmodulin-dependent kinase alpha [CaMKIIα] and glutamate decarboxylase 1 [GAD1] promoters, respectively), we systematically tested predictions derived from mammalian pallium. We identified two genetically distinct neuronal populations that exhibit profound physiological and computational similarities with mammalian excitatory and inhibitory pallial cells, definitively aligning putative cell types in avian caudal nidopallium with these molecular identities. Specifically, genetically identified CaMKIIα and GAD1 cell types in avian auditory association pallium exhibit distinct intrinsic physiological parameters, distinct auditory coding principles, and inhibitory-dependent pallial synchrony, gamma oscillations, and local suppression. The retention, or convergence, of these molecular and physiological features in both birds and mammals clarifies the characteristics of pallial circuits for advanced cognitive abilities.


Assuntos
Aves Canoras , Telencéfalo , Animais , Mamíferos/genética , Neurônios , Aves Canoras/genética , Vertebrados
5.
Dev Biol ; 466(1-2): 1-11, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800756

RESUMO

The distal nephron and collecting duct segments of the mammalian kidney consist of intercalated cell types intermingled among principal cell types. Notch signaling ensures that a sufficient number of cells select a principal instead of an intercalated cell fate. However, the precise mechanisms by which Notch signaling patterns the distal nephron and collecting duct cell fates is unknown. Here we observed that Hes1, a direct target of Notch signaling pathway, is required within the mouse developing collecting ducts for repression of Foxi1 expression, an essential intercalated cell specific transcription factor. Interestingly, inactivation of Foxi1 in Hes1-deficient collecting ducts rescues the deficiency in principal cell fate selection, overall urine concentrating deficiency, and reduces the occurrence of hydronephrosis. However, Foxi1 inactivation does not rescue the reduction in expression of all principal cell genes in the Hes1-deficient kidney collecting duct cells that select the principal cell fate. Additionally, suppression of Notch/Hes1 signaling in mature principal cells reduces principal cell gene expression without activating Foxi1. We conclude that Hes1 is a Notch signaling target that is essential for normal patterning of the collecting ducts with intermingled cell types by repressing Foxi1, and for maintenance of principal cell gene expression independent of repressing Foxi1.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição HES-1/deficiência , Animais , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Mutantes , Receptores Notch/genética , Fatores de Transcrição HES-1/metabolismo
6.
Am J Physiol Cell Physiol ; 319(1): C136-C147, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401606

RESUMO

The cortical collecting duct (CCD) of the mammalian kidney plays a major role in the maintenance of total body electrolyte, acid/base, and fluid homeostasis by tubular reabsorption and excretion. The mammalian CCD is heterogeneous, composed of Na+-absorbing principal cells (PCs) and acid-base-transporting intercalated cells (ICs). Perturbations in luminal flow rate alter hydrodynamic forces to which these cells in the cylindrical tubules are exposed. However, most studies of tubular ion transport have been performed in cell monolayers grown on or epithelial sheets affixed to a flat support, since analysis of transepithelial transport in native tubules by in vitro microperfusion requires considerable expertise. Here, we report on the generation and characterization of an in vitro, perfusable three-dimensional kidney CCD model (3D CCD), in which immortalized mouse PC-like mpkCCD cells are seeded within a cylindrical channel embedded within an engineered extracellular matrix and subjected to luminal fluid flow. We find that a tight epithelial barrier composed of differentiated and polarized PCs forms within 1 wk. Immunofluorescence microscopy reveals the apical epithelial Na+ channel ENaC and basolateral Na+/K+-ATPase. On cessation of luminal flow, benzamil-inhibitable cell doming is observed within these 3D CCDs consistent with the presence of ENaC-mediated Na+ absorption. Our 3D CCD provides a geometrically and microphysiologically relevant platform for studying the development and physiology of renal tubule segments.


Assuntos
Túbulos Renais Coletores/anatomia & histologia , Túbulos Renais Coletores/fisiologia , Modelos Biológicos , Perfusão/métodos , Impressão Tridimensional , Animais , Transporte Biológico/fisiologia , Linhagem Celular Transformada , Camundongos , Microscopia de Fluorescência/métodos
7.
J Am Soc Nephrol ; 31(5): 1009-1023, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32245797

RESUMO

BACKGROUND: Water and solute transport across epithelia can occur via the transcellular or paracellular pathways. Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. In the renal collecting duct, which is a typical absorptive tight epithelium, coordination between transcellular sodium reabsorption and paracellular permeability may prevent the backflow of reabsorbed sodium to the tubular lumen along a steep electrochemical gradient. METHODS: To investigate whether transcellular sodium transport controls tight-junction composition and paracellular permeability via modulating expression of the transmembrane protein claudin-8, we used cultured mouse cortical collecting duct cells to see how overexpression or silencing of epithelial sodium channel (ENaC) subunits and claudin-8 affect paracellular permeability. We also used conditional kidney tubule-specific knockout mice lacking ENaC subunits to assess the ENaC's effect on claudin-8 expression. RESULTS: Overexpression or silencing of the ENaC γ-subunit was associated with parallel and specific changes in claudin-8 abundance. Increased claudin-8 abundance was associated with a reduction in paracellular permeability to sodium, whereas decreased claudin-8 abundance was associated with the opposite effect. Claudin-8 overexpression and silencing reproduced these functional effects on paracellular ion permeability. Conditional kidney tubule-specific ENaC γ-subunit knockout mice displayed decreased claudin-8 expression, confirming the cell culture experiments' findings. Importantly, ENaC ß-subunit or α-subunit silencing or kidney tubule-specific ß-ENaC or α-ENaC knockout mice did not alter claudin-8 abundance. CONCLUSIONS: Our data reveal the specific coupling between ENaC γ-subunit and claudin-8 expression. This coupling may play an important role in preventing the backflow of reabsorbed solutes and water to the tubular lumen, as well as in coupling paracellular and transcellular sodium permeability.


Assuntos
Claudinas/metabolismo , Canais Epiteliais de Sódio/metabolismo , Regulação da Expressão Gênica , Túbulos Renais Coletores/metabolismo , Sódio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Transporte Biológico , Células Cultivadas , Cloretos/metabolismo , Claudinas/deficiência , Claudinas/genética , Canais Epiteliais de Sódio/deficiência , Canais Epiteliais de Sódio/genética , Inativação Gênica , Transporte de Íons , Camundongos , Camundongos Knockout , RNA Mensageiro/biossíntese , Proteínas Recombinantes/metabolismo , Transdução Genética
8.
Function (Oxf) ; 1(1): zqaa007, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35330743

RESUMO

The revolution of the omics technologies has enabled profiling of the molecules of any sample. However, the heterogeneity of the kidney with highly specialized nephron segments like the cortical collecting duct (CCD) poses a challenge regarding integration of omics data and functional analysis. We examined function and proteome from the same single CCDs of C57Bl6 mice by investigating them in a double-barreled perfusion system before targeted mass spectrometry. Transepithelial voltage (Vte), transepithelial resistance, as well as amiloride-sensitive voltage (ΔVteamil) were recorded. CCDs were of 400-600 µm of length, showed lumen negative Vte between -8.5 and -32.5 mV and an equivalent short circuit current I'sc between 54 and 192 µA/cm2. On a single-tubule proteome level, intercalated cell (IC) markers strongly correlated with other intercalated cell markers and negatively with principal cell markers. Integration of proteome data with phenotype data revealed that tubular length correlated with actin and Na+-K+-ATPase expression. ΔVte(amil) reflected the expression level of the ß-subunit of the epithelial sodium channel. Intriguingly, ΔVte(amil) correlated inversely with the water channel AQP2 and the negative regulator protein NEDD4L (NEDD4-2). In pendrin knockout (KO) mice, the CCD proteome was accompanied by strong downregulation of other IC markers like CLCNKB, BSND (Barttin), and VAA (vH+-ATPase), a configuration that may contribute to the salt-losing phenotype of Pendred syndrome. Proteins normally coexpressed with pendrin were decreased in pendrin KO CCDs. In conclusion, we show that functional proteomics on a single nephron segment scale allows function-proteome correlations, and may potentially help predicting function from omics data.


Assuntos
Túbulos Renais Coletores , Animais , Camundongos , Aquaporina 2/genética , Proteoma/genética , Proteômica , Camundongos Endogâmicos C57BL , Transportadores de Sulfato/genética , Fenótipo , Adenosina Trifosfatases/genética
9.
J Insect Physiol ; 109: 55-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29908900

RESUMO

Classical studies have described in detail the complex and regionalized morphology of the Malpighian tubule (MT) in larval Lepidoptera. Recent studies revealed unusual aspects of ion transport in the Malpighian tubules of the larva of the cabbage looper, Trichoplusia ni. These included: cation reabsorption via secondary cells (SC); coupling of SCs to neighbouring PCs via gap junctions to enable reabsorption; and a reversal from cation secretion to reabsorption by the principal cells in the distal ileac plexus region of the in situ tubule in response to dietary ion loading. The current paper aimed to identify molecular components of ion transport in the MTs of T. ni and to describe their role in the recently reported reversal of ion transport in ion-loaded animals. Using a combination of molecular, immunohistochemical and electrophysiological techniques, we assigned roles to Na+/K+-ATPase (NKA), V-type H+-ATPase (VA), Na+/K+/Cl- co-transporter (NKCC), K+/Cl- co-transporter (KCC), inward-rectifying K+ channel (Kir), and Na+/H+ exchangers (NHE)-7 and -8 in the transport of Na+ and K+ by the distal ileac plexus of T. ni. The yellow region of the tubule lacked all of the above except VA, and the white region lacked all of the above transporters but expressed an amiloride-sensitive Na+ channel (NaC). Overall, the ion transport machinery in the distal ileac plexus of the T. ni tubule shows remarkable similarity to that in tubules of other groups of insects, yet this region transports ions very differently. Shutdown of secretory ATPases and utilisation of the same molecular machinery in the face of changing ion gradients may enable ion transport reversal in lepidopteran MTs. We propose that gap junction-based coupling of the two cell types likely aids in toggling between ion secretion and ion reabsorption in this segment.


Assuntos
Transporte de Íons/fisiologia , Túbulos de Malpighi/fisiologia , Mariposas/fisiologia , Animais , Dieta/veterinária , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Potássio/metabolismo , Sódio/metabolismo
10.
Protoplasma ; 255(4): 1121-1128, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29429130

RESUMO

The larvae of Bittacidae, a cosmopolitan family in Mecoptera, have an interesting habit of spraying the body surface with soil through the anus after hatching, and each molts. The fine structure of Malpighian tubules, however, remains largely unknown in the larvae of Bittacidae to date. Here, we studied the ultrastructure of the larval Malpighian tubules in the hangingfly Terrobittacus implicatus (Huang & Hua) using scanning and transmission electron microscopy. The larvae of T. implicatus have six elongate Malpighian tubules at the junction of the midgut and hindgut. The tubule comprises a basal lamina, a single-layered epithelium, and a central lumen. The basal plasma membranes of the epithelial cells are conspicuously infolded and generate a labyrinth. The epithelium consists of two types of cells: large principal cells and scattered stellate cells. Mitochondria and cisterns of rough endoplasmic reticulum are numerous in the principal cells but are sparsely distributed in the stellate cells, indicating that the principal cells are active in transport. On the other hand, spherites are only abundant in the principal cells and are likely associated with the soil-spraying habit of the larvae.


Assuntos
Insetos/ultraestrutura , Larva/ultraestrutura , Túbulos de Malpighi/ultraestrutura , Animais
11.
Am J Physiol Renal Physiol ; 315(4): F812-F823, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468965

RESUMO

The urinary tract is usually culture negative despite its close proximity to microbial flora. The precise mechanism by which the kidneys and urinary tract defends against infection is not well understood. The initial kidney cells to encounter ascending pathogens are the collecting tubule cells that consist of principal cells (PCs) that express aquaporin 2 (AQP2) and intercalated cells (ICs) that express vacuolar H+-ATPase (V-ATPase, B1 subunit). We have previously shown that ICs are involved with the human renal innate immune defense. Here we generated two reporter mice, VATPase B1-cre+tdT+ mice to fluorescently label ICs and AQP2-cre+tdT+ mice to fluorescently label PCs, and then performed flow sorting to enrich PCs and ICs for analysis. Isolated ICs and PCs along with proximal tubular cells were used to measure antimicrobial peptide (AMP) mRNA expression. ICs and PCs were significantly enriched for AMPs. Isolated ICs responded to uropathogenic Escherichia coli (UPEC) challenge in vitro and had higher RNase4 gene expression than control while both ICs and PCs responded to UPEC challenge in vivo by upregulating Defb1 mRNA expression. To our knowledge, this is the first report of isolating murine collecting tubule cells and performing targeted analysis for multiple classes of AMPs.


Assuntos
Aquaporina 2/imunologia , Células Epiteliais/metabolismo , Túbulos Renais Coletores/imunologia , Reação em Cadeia da Polimerase , Animais , Aquaporina 2/genética , Imunidade Inata/imunologia , Rim/imunologia , Rim/metabolismo , Camundongos Transgênicos , Reação em Cadeia da Polimerase/métodos , Regulação para Cima/imunologia , ATPases Vacuolares Próton-Translocadoras/imunologia , ATPases Vacuolares Próton-Translocadoras/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(46): E9989-E9998, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29089413

RESUMO

Prior RNA sequencing (RNA-seq) studies have identified complete transcriptomes for most renal epithelial cell types. The exceptions are the cell types that make up the renal collecting duct, namely intercalated cells (ICs) and principal cells (PCs), which account for only a small fraction of the kidney mass, but play critical physiological roles in the regulation of blood pressure, extracellular fluid volume, and extracellular fluid composition. To enrich these cell types, we used FACS that employed well-established lectin cell surface markers for PCs and type B ICs, as well as a newly identified cell surface marker for type A ICs, c-Kit. Single-cell RNA-seq using the IC- and PC-enriched populations as input enabled identification of complete transcriptomes of A-ICs, B-ICs, and PCs. The data were used to create a freely accessible online gene-expression database for collecting duct cells. This database allowed identification of genes that are selectively expressed in each cell type, including cell-surface receptors, transcription factors, transporters, and secreted proteins. The analysis also identified a small fraction of hybrid cells expressing aquaporin-2 and anion exchanger 1 or pendrin transcripts. In many cases, mRNAs for receptors and their ligands were identified in different cells (e.g., Notch2 chiefly in PCs vs. Jag1 chiefly in ICs), suggesting signaling cross-talk among the three cell types. The identified patterns of gene expression among the three types of collecting duct cells provide a foundation for understanding physiological regulation and pathophysiology in the renal collecting duct.


Assuntos
Aquaporina 2/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais Coletores/metabolismo , Rim/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Sequência de Bases , Biomarcadores/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Proteína Jagged-1/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA/metabolismo , Receptor Notch2/metabolismo , Transdução de Sinais , Transportadores de Sulfato , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
13.
Histochem Cell Biol ; 145(1): 17-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26496924

RESUMO

The mammalian renal collecting duct consists of principal cells (PCs) and intercalated cells (ICs). Both PCs and ICs are involved in potassium (K(+)) homeostasis, PCs through their role in K(+) secretion and ICs through their ability to facilitate K(+) resorption. We previously hypothesized that PCs may differentiate into ICs upon K(+) depletion. However, no direct evidence has yet been obtained to conclusively demonstrate that PCs differentiate into ICs in response to K(+) depletion. Here, we present direct evidence for the differentiation of PCs into ICs by cell lineage tracing using aquaporin 2 (AQP2)-Cre mice and R26R-EYFP transgenic mice. In control mice, AQP2-EYFP(+) cells exhibited mainly a PC phenotype (AQP2-positive/H(+)-ATPase-negative). Interestingly, some AQP2-EYFP(+) cells exhibited an IC phenotype (H(+)-ATPase-positive/AQP2-negative); these cells accounted for 1.7 %. After K(+) depletion, the proportion of AQP2-EYFP(+) cells with an IC phenotype was increased to 4.1 %. Furthermore, some AQP2-EYFP(+) cells exhibited a "null cell" phenotype (AQP2-negative/H(+)-ATPase-negative) after K(+) depletion. Collectively, our data demonstrate that AQP2-labeled cells can differentiate into ICs, as well as null cells, in response to K(+) depletion. This finding indicates that some of AQP2-labeled cells possess properties of progenitor cells and that they can differentiate into ICs in the adult mouse kidney.


Assuntos
Aquaporina 2/genética , Células Epiteliais/citologia , Túbulos Renais Coletores/citologia , Potássio/metabolismo , Animais , Proteínas de Bactérias/genética , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Proteínas Luminescentes/genética , Camundongos , Camundongos Knockout
14.
J Exp Biol ; 218(Pt 20): 3206-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26491192

RESUMO

In larvae of most Lepidoptera the distal ends of the Malpighian tubules are closely applied to the rectal epithelia and are ensheathed within the perinephric membrane, thus forming the rectal complex. The cryptonephric Malpighian tubules within the rectal complex are bathed in fluid within a functional compartment, the perinephric space, which is separate from the haemolymph. In this study, the scanning ion-selective electrode technique (SIET) was used to measure transport of Na(+) and K(+) across the rectal complex and across multiple regions of the Malpighian tubules of larvae of the cabbage looper Trichoplusia ni. Measurements were made in an intact preparation in which connections of the tubules upstream to the rectal complex and downstream to the urinary bladder and gut remained intact. SIET measurements revealed reabsorption of Na(+) and K(+) across the intact rectal complex and into the bath (haemolymph), with K(+) fluxes approximately twice as large as those of Na(+). Analyses of fluxes in larvae with empty guts, found in recently moulted larvae, versus those with full guts highlighted differences in the rates of K(+) or Na(+) transport within tubule regions that appeared morphologically homogeneous, such as the rectal lead. The distal rectal lead of larvae with empty guts reabsorbed K(+), whereas the same region secreted K(+) in tubules of larvae with full guts. SIET measurements of the ileac plexus also indicated a novel role for secondary (type II) cells in cation reabsorption. Secondary cells reabsorb K(+), whereas the adjacent principal (type I) cells secrete K(+). Na(+) is reabsorbed by both principal and secondary cells, but the rate of reabsorption by the secondary cells is approximately twice the rate in the adjacent principal cells.


Assuntos
Túbulos de Malpighi/metabolismo , Mariposas/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Animais , Transporte Biológico Ativo , Cátions , Hemolinfa/metabolismo , Mucosa Intestinal/metabolismo , Transporte de Íons , Larva/metabolismo
15.
Am J Physiol Renal Physiol ; 308(6): F627-38, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25587115

RESUMO

PKA plays a critical role in water excretion through regulation of the production and action of the antidiuretic hormone arginine vasopressin (AVP). The AVP prohormone is produced in the hypothalamus, where its transcription is regulated by cAMP. Once released into the circulation, AVP stimulates antidiuresis through activation of vasopressin 2 receptors in renal principal cells. Vasopressin 2 receptor activation increases cAMP and activates PKA, which, in turn, phosphorylates aquaporin (AQP)2, triggering apical membrane accumulation, increased collecting duct permeability, and water reabsorption. We used single-minded homolog 1 (Sim1)-Cre recombinase-mediated expression of a dominant negative PKA regulatory subunit (RIαB) to disrupt kinase activity in vivo and assess the role of PKA in fluid homeostasis. RIαB expression gave rise to marked polydipsia and polyuria; however, neither hypothalamic Avp mRNA expression nor urinary AVP levels were attenuated, indicating a primary physiological effect on the kidney. RIαB mice displayed a marked deficit in urinary concentrating ability and greatly reduced levels of AQP2 and phospho-AQP2. Dehydration induced Aqp2 mRNA in the kidney of both control and RIαB-expressing mice, but AQP2 protein levels were still reduced in RIαB-expressing mutants, and mice were unable to fully concentrate their urine and conserve water. We conclude that partial PKA inhibition in the kidney leads to posttranslational effects that reduce AQP2 protein levels and interfere with apical membrane localization. These findings demonstrate a distinct physiological role for PKA signaling in both short- and long-term regulation of AQP2 and characterize a novel mouse model of diabetes insipidus.


Assuntos
Aquaporina 2/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Diabetes Insípido/etiologia , Animais , Arginina Vasopressina/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Hipotálamo/metabolismo , Rim/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Receptores de Vasopressinas/metabolismo , Equilíbrio Hidroeletrolítico
16.
Clin J Am Soc Nephrol ; 10(1): 135-46, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24875192

RESUMO

The principal cell of the kidney collecting duct is one of the most highly regulated epithelial cell types in vertebrates. The effects of hormonal, autocrine, and paracrine factors to regulate principal cell transport processes are central to the maintenance of fluid and electrolyte balance in the face of wide variations in food and water intake. In marked contrast with the epithelial cells lining the proximal tubule, the collecting duct is electrically tight, and ion and osmotic gradients can be very high. The central role of principal cells in salt and water transport is reflected by their defining transporters-the epithelial Na(+) channel (ENaC), the renal outer medullary K(+) channel, and the aquaporin 2 (AQP2) water channel. The coordinated regulation of ENaC by aldosterone, and AQP2 by arginine vasopressin (AVP) in principal cells is essential for the control of plasma Na(+) and K(+) concentrations, extracellular fluid volume, and BP. In addition to these essential hormones, additional neuronal, physical, and chemical factors influence Na(+), K(+), and water homeostasis. Notably, a variety of secreted paracrine and autocrine agents such as bradykinin, ATP, endothelin, nitric oxide, and prostaglandin E2 counterbalance and limit the natriferic effects of aldosterone and the water-retaining effects of AVP. Considerable recent progress has improved our understanding of the transporters, receptors, second messengers, and signaling events that mediate principal cell responses to changing environments in health and disease. This review primarily addresses the structure and function of the key transporters and the complex interplay of regulatory factors that modulate principal cell ion and water transport.


Assuntos
Células Epiteliais/metabolismo , Túbulos Renais Coletores/metabolismo , Equilíbrio Hidroeletrolítico , Animais , Aquaporina 2/metabolismo , Água Corporal/metabolismo , Canais Epiteliais de Sódio/metabolismo , Humanos , Transporte de Íons , Túbulos Renais Coletores/citologia , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Transdução de Sinais , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
17.
Am J Physiol Renal Physiol ; 307(7): F806-13, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25100278

RESUMO

The polarized nature of epithelial cells allows for different responses to luminal or serosal stimuli. In kidney tubules, ATP is produced luminally in response to changes in luminal flow. Luminal increases in ATP have been previously shown to inhibit the renal epithelial Na⁺ channel (ENaC). On the other hand, ATP is increased basolaterally in renal epithelia in response to aldosterone. We tested the hypothesis that basolateral ATP can stimulate ENaC function through activation of the P2X4receptor/channel. Using single channel cell-attached patch-clamp techniques, we demonstrated the existence of a basolaterally expressed channel stimulated by the P2X4agonist 2-methylthio-ATP (meSATP) in Xenopus A6 cells, a renal collecting duct principal cell line. This channel had a similar reversal potential and conductance to that of P2X4channels. Cell surface biotinylation of the basolateral side of these cells confirmed the basolateral presence of the P2X4 receptor. Basolateral addition of meSATP enhanced the activity of ENaC in single channel patch-clamp experiments, an effect that was absent in cells transfected with a dominant negative P2X4receptor construct, indicating that activation of P2X4channels stimulates ENaC activity in these cells. The effect of meSATP on ENaC activity was reduced after chelation of basolateral Ca²âº with EGTA or inhibition of phosphatidylinositol 3-kinase with LY-294002. Overall, our results show that ENaC is stimulated by P2X4receptor activation and that the stimulation is dependent on increases in intracellular Ca²âº and phosphatidylinositol 3-kinase activation.


Assuntos
Cálcio/metabolismo , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Animais , Linhagem Celular , Xenopus
18.
Am J Physiol Renal Physiol ; 306(10): F1107-20, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24647713

RESUMO

Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4(+) with a new model in which specific and regulated transport of both NH3 and NH4(+) across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport.


Assuntos
Amônia/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Glicoproteínas/metabolismo , Rim/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Equilíbrio Ácido-Base/fisiologia , Animais , Transporte Biológico/fisiologia , Homeostase/fisiologia , Humanos , Camundongos , Modelos Animais
19.
Am J Physiol Renal Physiol ; 305(6): F919-29, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23825070

RESUMO

The cellular morphology of the collecting duct is altered by chronic lithium treatment. We have previously shown that lithium increases the fraction of type-A intercalated cells and lowers the fraction of principal cells along the collecting duct. Moreover, type-A intercalated cells acquire a long-row distribution pattern along the tubules. In the present study, we show that these morphological changes reverse progressively after discontinuation of lithium and finally disappear after 19 days from lithium suspension. In this time frame we have identified for the first time, in vivo, a novel cellular type positive for both intercalated and principal cells functional markers, as recognized by colabeling with H(+)-ATPase/aquaporin-4 (AQP4) and anion exchanger-1 (AE-1)/AQP2 and Foxi1/AQP4. This cell type is mainly present after 6 days of lithium washout, and it disappears in parallel with the long-row pattern of the type-A intercalated cells. It usually localizes either in the middle or at the edge of the long-row pattern. Its ultrastructure resembles the intercalated cells as shown both by differential interference contrast and by electron microscopy. The time course of appearance, the localization along the collecting duct, and the ultrastructure suggest that the cells double labeled for principal and intercalated cells markers could represent a transition element driving the conversion of intercalated cells into principal cells.


Assuntos
Diabetes Insípido Nefrogênico/induzido quimicamente , Diabetes Insípido Nefrogênico/patologia , Túbulos Renais Coletores/citologia , Lítio/efeitos adversos , Síndrome de Abstinência a Substâncias , Animais , Aquaporina 2/biossíntese , Aquaporina 4/biossíntese , Proliferação de Células , Diabetes Insípido Nefrogênico/metabolismo , Fatores de Transcrição Forkhead/biossíntese , Masculino , ATPases Translocadoras de Prótons/biossíntese , Ratos , Síndrome de Abstinência a Substâncias/patologia
20.
Front Neuroanat ; 6: 13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615687

RESUMO

Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for "mixed" (electrical/chemical) synapses on both principal cells and interneurons in adult rat hippocampus. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF) terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr), apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into weakly fixed CA3pyr was detected in MF axons that contacted four injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold labeling revealed diverse sizes and morphologies of connexin-36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328-1140 connexons), three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin-section images of a CA3pyr, but none were found by immunogold labeling, suggesting the rarity of GABAergic mixed synapses. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA