Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cryobiology ; 116: 104934, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936594

RESUMO

This study investigated the impact of protein enrichment on the physicochemical, cooking, textural, and color properties of frozen cooked noodles (FCN) stored for 0-3 weeks at -18 °C. Incorporating casein, egg white protein, and soy protein into the noodles significantly increased moisture content, with casein-enriched noodles showing the highest initial moisture levels. The addition of proteins also led to increased ash content, indicating improved nutritional quality. Protein enrichment resulted in reduced cooking loss and enhanced water retention during cooking and frozen storage. Casein-enriched noodles exhibited the highest water absorption capacity and the most substantial enhancement in textural properties, maintaining cohesiveness, gumminess, and elasticity better than egg white protein and soy protein during storage. The results indicated that egg white protein promotes intermolecular interactions, leading to enhanced color stability over time. These findings suggest that enriching with the protein could be a viable approach to elevate the overall quality of FCN.


Assuntos
Caseínas , Culinária , Proteínas de Soja , Proteínas de Soja/química , Caseínas/química , Congelamento , Água/química , Proteínas do Ovo/química , Melhoria de Qualidade , Cor , Armazenamento de Alimentos/métodos
2.
Sci Rep ; 14(1): 13446, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862766

RESUMO

Present study concerns the transformation of the agro-industrial by-products olive mill stone waste (OMSW) and walnut shell (WS) to a protein-enriched animal feedstuff utilizing the solid state fermentation (SSF) technique. For this purpose, various mixtures of these by-products were exploited as substrates of the SSF process which was initiated by the P. ostreatus fungus. The respective results indicated that the substrate consisted of 80% WS and 20% OMSW afforded the product with the highest increase in protein content, which accounted the 7.57% of its mass (69.35% increase). In addition, a 26.13% reduction of lignin content was observed, while the most profound effect was observed for their 1,3-1,6 ß-glucans profile, which was increased by 3-folds reaching the 6.94% of substrate's mass. These results are indicative of the OMSW and WS mixtures potential to act as efficient substrate for the development of novel proteinaceous animal feed supplements using the SSF procedure. Study herein contributes to the reintegration of the agro-industrial by-products aiming to confront the problem of proteinaceous animal feed scarcity and reduce in parallel the environmental footprint of the agro-industrial processes within the context of circular economy.


Assuntos
Ração Animal , Fermentação , Resíduos Industriais , Juglans , Olea , Pleurotus , Pleurotus/metabolismo , Juglans/metabolismo , Juglans/química , Olea/metabolismo , Olea/química , Ração Animal/análise , Resíduos Industriais/análise , Lignina/metabolismo , Animais
3.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194977, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37625568

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Despite advances in treatment, drug resistance remains a critical impediment. Post-translational modifications (PTMs) regulate protein stability, localization, and activity, impacting vital cellular processes. Recent research has highlighted the essential role of PTMs in the development of CRC resistance. This review summarizes recent advancements in understanding PTMs' roles in CRC resistance, focusing on the latest discoveries. We discuss the functional impact of PTMs on signaling pathways and molecules involved in CRC resistance, progress in drug development, and potential therapeutic targets. We also summarize the primary enrichment methods for PTMs. Finally, we discuss current challenges and future directions, including the need for more comprehensive PTM analysis methods and PTM-targeted therapies. This review identifies potential therapeutic interventions for addressing medication resistance in CRC, proposes prospective therapeutic options, and gives an overview of the function of PTMs in CRC resistance.


Assuntos
Neoplasias Colorretais , Proteômica , Humanos , Proteômica/métodos , Proteínas , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
4.
Plant Foods Hum Nutr ; 78(3): 597-603, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37624568

RESUMO

Structural modification of protein prior to food application is an emergent approach to improve functionalization. The effectiveness of high-power ultrasound at varying amplitudes (0-100%) on the properties of pea protein powder was investigated in this study. The resulting modification was also tested with model gluten-free bread formulation and by screening the emulsion properties within vegetable oil. The 50% and beyond amplitude levels had significant impact on protein solubility, viscosity, Fourier Transform Infrared (FTIR) spectra, emulsion activity and stability. Foaming capacity and stability were enhanced with 75 and 100% amplitudes while the 25% amplitude exhibited the highest absolute zeta-potential. There was a concomitant increase in ultrasound amplitude and oil-binding capacity (2.83-6.43 g/g) where the water-holding capacity gradually decreased (5.78-3.61 g/g) with the increase in ultrasound power. The increase in ultrasound power led to decrease in L* values but progressively increased the total color difference (ΔE). Sonication (50% amplitude) also promoted the in-vitro digestibility of proteins by 22% as compared to the untreated sample. Scanning electron microscopy (SEM) fairly depictured the structural modification and FTIR spectra clearly demonstrated conformational changes in protein powders. The fortification with restructured pea protein powder significantly affected the volume and adhesiveness of glutenfree bread.


Assuntos
Pão , Proteínas de Ervilha , Emulsões , Pós , Digestão
5.
Front Plant Sci ; 14: 1171957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324680

RESUMO

To sustain normal growth and allow rapid responses to environmental cues, plants alter the plasma membrane protein composition under different conditions presumably by regulation of delivery, stability, and internalization. Exocytosis is a conserved cellular process that delivers proteins and lipids to the plasma membrane or extracellular space in eukaryotes. The octameric exocyst complex contributes to exocytosis by tethering secretory vesicles to the correct site for membrane fusion; however, whether the exocyst complex acts universally for all secretory vesicle cargo or just for specialized subsets used during polarized growth and trafficking is currently unknown. In addition to its role in exocytosis, the exocyst complex is also known to participate in membrane recycling and autophagy. Using a previously identified small molecule inhibitor of the plant exocyst complex subunit EXO70A1, Endosidin2 (ES2), combined with a plasma membrane enrichment method and quantitative proteomic analysis, we examined the composition of plasma membrane proteins in the root of Arabidopsis seedlings, after inhibition of the ES2-targetted exocyst complex, and verified our findings by live imaging of GFP-tagged plasma membrane proteins in root epidermal cells. The abundance of 145 plasma membrane proteins was significantly reduced following short-term ES2 treatments and these likely represent candidate cargo proteins of exocyst-mediated trafficking. Gene Ontology analysis showed that these proteins play diverse functions in cell growth, cell wall biosynthesis, hormone signaling, stress response, membrane transport, and nutrient uptake. Additionally, we quantified the effect of ES2 on the spatial distribution of EXO70A1 with live-cell imaging. Our results indicate that the plant exocyst complex mediates constitutive dynamic transport of subsets of plasma membrane proteins during normal root growth.

6.
J Biomol Struct Dyn ; : 1-16, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288779

RESUMO

Phytochemicals are bioactive agents present in medicinal plants with therapeutic values. Phytochemicals isolated from plants target multiple cellular processes. In the current work, we have used fractionation techniques to identify 13 bioactive polyphenols in ayurvedic medicine Haritaki Churna. Employing the advanced spectroscopic and fractionation, structure of bioactive polyphenols was determined. Blasting the phytochemical structure allow us to identify a total of 469 protein targets from Drug bank and Binding DB. Phytochemicals with their protein targets from Drug bank was used to create a phytochemical-protein network comprising of 394 nodes and 1023 edges. It highlights the extensive cross-talk between protein target corresponding to different phytochemicals. Analysis of protein targets from Binding data bank gives a network comprised of 143 nodes and 275 edges. Taking the data together from Drug bank and binding data, seven most prominent drug targets (HSP90AA1, c-Src kinase, EGFR, Akt1, EGFR, AR, and ESR-α) were found to be target of the phytochemicals. Molecular modelling and docking experiment indicate that phytochemicals are fitting nicely into active site of the target proteins. The binding energy of the phytochemicals were better than the inhibitors of these protein targets. The strength and stability of the protein ligand complexes were further confirmed using molecular dynamic simulation studies. Further, the ADMET profiles of phytochemicals extracted from HCAE suggests that they can be potential drug targets. The phytochemical cross-talk was further proven by choosing c-Src as a model. HCAE down regulated c-Src and its downstream protein targets such as Akt1, cyclin D1 and vimentin. Hence, network analysis followed by molecular docking, molecular dynamics simulation and in-vitro studies clearly highlight the role of protein network and subsequent selection of drug candidate based on network pharmacology.Communicated by Ramaswamy H. Sarma.

7.
BMC Genomics ; 24(1): 244, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147612

RESUMO

BACKGROUND: In many organisms increased reproductive effort is associated with a shortened life span. This trade-off is reflected in conserved molecular pathways that link nutrient-sensing with fecundity and longevity. Social insect queens apparently defy the fecundity / longevity trade-off as they are both, extremely long-lived and highly fecund. Here, we have examined the effects of a protein-enriched diet on these life-history traits and on tissue-specific gene expression in a termite species of low social complexity. RESULTS: On a colony level, we did not observe reduced lifespan and increased fecundity, effects typically seen in solitary model organisms, after protein enrichment. Instead, on the individual level mortality was reduced in queens that consumed more of the protein-enriched diet - and partially also in workers - while fecundity seemed unaffected. Our transcriptome analyses supported our life-history results. Consistent with life span extension, the expression of IIS (insulin/insulin-like growth factor 1 signalling) components was reduced in fat bodies after protein enrichment. Interestingly, however, genes involved in reproductive physiology (e.g., vitellogenin) were largely unaffected in fat body and head transcriptomes. CONCLUSION: These results suggest that IIS is decoupled from downstream fecundity-associated pathways, which can contribute to the remoulding of the fecundity/longevity trade-off in termites as compared to solitary insects.


Assuntos
Isópteros , Longevidade , Animais , Longevidade/fisiologia , Fertilidade , Reprodução/fisiologia , Insetos , Isópteros/genética , Dieta
8.
ChemistryOpen ; 12(3): e202200259, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36971105

RESUMO

Protein analysis is an important approach for disease diagnosis, in which sample pretreatment is an essential step since protein samples are often complex and many protein biomarkers are of low abundance. Here, given the good openness and light transmission of liquid plasticine (LP), which is a liquid entity formed by SiO2 nanoparticles and encapsulated aqueous solution, we developed a LP-based field-amplified sample stacking (FASS) system for protein enrichment. The system was composed of a LP container, a sample solution and a Tris-HCl solution containing hydroxyethyl cellulose (HEC). The system design, mechanism investigation, optimization of experimental parameters and characterization of LP-FASS performance for protein enrichment were well studied. Under the optimized experimental conditions of 1 % HEC, 100 mm Tris-HCl and 100 V in the LP-FASS system, a 40-80 times enrichment of proteins was obtained in 40 min using bovine hemoglobin (BHb) as the model protein using the constructed LP-FASS system. The simultaneous enrichment of multiple proteins (phycocyanin, BHb and cytochrome C) was also realized using the system. The LP-FASS system can serve as a new platform for protein enrichment which is easy to be combined with online and offline detections.


Assuntos
Técnicas Eletroquímicas , Cinética , Animais , Bovinos , Hemoglobinas/química , Dióxido de Silício/química , Nanopartículas
9.
Mol Cell Proteomics ; 22(1): 100480, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36494044

RESUMO

Alternative ORFs (AltORFs) are unannotated sequences in genome that encode novel peptides or proteins named alternative proteins (AltProts). Although ribosome profiling and bioinformatics predict a large number of AltProts, mass spectrometry as the only direct way of identification is hampered by the short lengths and relative low abundance of AltProts. There is an urgent need for improvement of mass spectrometry methodologies for AltProt identification. Here, we report an approach based on size-exclusion chromatography for simultaneous enrichment and fractionation of AltProts from complex proteome. This method greatly simplifies the variance of AltProts discovery by enriching small proteins smaller than 40 kDa. In a systematic comparison between 10 methods, the approach we reported enabled the discovery of more AltProts with overall higher intensities, with less cost of time and effort compared to other workflows. We applied this approach to identify 89 novel AltProts from mouse liver, 39 of which were differentially expressed between embryonic and adult mice. During embryonic development, the upregulated AltProts were mainly involved in biological pathways on RNA splicing and processing, whereas the AltProts involved in metabolisms were more active in adult livers. Our study not only provides an effective approach for identifying AltProts but also novel AltProts that are potentially important in developmental biology.


Assuntos
Peptídeos , Proteômica , Animais , Camundongos , Proteômica/métodos , Peptídeos/metabolismo , Proteoma/metabolismo , Splicing de RNA , Fígado/metabolismo
10.
Biotechnol J ; 17(12): e2200271, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35933602

RESUMO

Today, the availability of methods for the activity-preserving and cost-efficient downstream processing of enzymes forms a major bottleneck to the use of these valuable tools in technical processes. A promising technology appears to be foam fractionation, which utilizes the adsorption of proteins at a gas-liquid interface. However, the employment of surfactants and the dependency of the applicability on individual properties of the target molecules are considerable drawbacks. Here, we demonstrate that a reversible fusion of the large, surface-active protein Ranaspumin-2 (Rsn-2) to a ß-lactamase (Bla) enabled both surfactant-free formation of a stable foam and directed enrichment of the enzyme by the foaming. At the same time, Bla maintained 70% of its catalytic activity, which was in stark contrast to the enzyme without fusion to Rsn-2. Rsn-2 predominantly mediated adsorption. Comparable results were obtained after fusion to the structurally more complex penicillin G acylase (PGA) as the target enzyme. The results indicate that using a surface-active protein as a fusion tag might be the clue to the establishment of foam fractionation as a general method for enzyme downstream processing.


Assuntos
Proteínas , beta-Lactamases , Adsorção , Tensoativos
11.
Curr Res Food Sci ; 5: 1195-1204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992631

RESUMO

Water soluble coconut extract (WSCE) was reported as a suitable matrix for probiotic delivery as yogurt alternatives. The study aimed to evaluate the roles of brewers' spent grain (BSG) derivatives in enhancing the properties of WSCE-based yogurt alternatives. BSG flour (BSGF) and 3 different protein extracts (BSGPs) including protein control (BSGP-C), protamex treatment (BSGP-P), and protamex combined with flavourzyme treatment (BSGP-PF) were incorporated in WSCE-based yogurt alternatives. Confocal laser scanning microscopy showed that BSGPs prepared with protease treatment generated less dense fat distribution and more homogenous globules compared to that in WSCE control yogurt. It also resulted in a softer, denser and more homogenous matrix. The modification in microstructural properties was aligned with differences in several functional groups including ⍺-glycosidic bond and hydroxyl groups from polysaccharides, aliphatic ethers and acid functional groups as well as aromatic hydrocarbons of lignin, amide I, acetyl groups and amide III. BSGF and BSGPs increased the mechanical properties, viscosity and modified flow behaviour properties demonstrating its ability in maintaining textural and gel formation. After 14 days of storage, maintenance in flow behaviour, syneresis and mechanical properties was identified. Furthermore, BSG derivatives enhanced lactic acid production up to 3 folds. In conclusion, BSG derivatives maintained the microstructure and gel formation, improved the properties of WSCE-based yogurt alternatives and preserved its behaviour during 14 days of storage.

12.
Nutr Bull ; 47(3): 356-365, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045102

RESUMO

Dementia is a major public health challenge owing to its increasing prevalence and recognised impact on disability among older adults. Observational data indicate that weight loss is associated with increased dementia risk of 30%-40% and precedes a diagnosis of cognitive impairment or dementia by at least one decade. Although relatively little is known about the mechanisms of unintentional weight loss in dementia, this provides a window of opportunity to intervene with strategies to counteract undernutrition and delay, or prevent, the onset of dementia. This article provides an overview of the PROMED-COG project and associated work packages. The project aimes to (1) strengthen the epidemiologic evidence to better understand the potential benefits of combating undernutrition for healthy neurocognitive ageing; (2) increase scientific knowledge on the balance between a protein enriched Mediterranean diet (PROMED) and physical exercise to prevent undernutrition and promote healthy neurocognitive ageing, and generate data on mechanistic pathways; (3) stimulate collaboration and capacity building for nutrition and neurocognitive ageing research in Europe; and (4) develop public and practice recommendations to combat undernutrition and promote healthy neurocognitive ageing in older adults. Findings will provide new and critical insights into the role of undernutrition in neurocognitive ageing, how this role can differ by sex, genetic risk and timing of undernutrition exposure, and how modifications of dietary and physical activity behaviour can reduce the burden of undernutrition and neurodegeneration. The research outcomes will be useful to inform policy and practice about the dietary guidelines of older people and provide insight to industry for the development of food-based solutions to prevent undernutrition.


Assuntos
Demência , Dieta Mediterrânea , Desnutrição , Idoso , Envelhecimento , Demência/prevenção & controle , Humanos , Desnutrição/epidemiologia , Redução de Peso
13.
Proteomics Clin Appl ; 16(3): e2100109, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35195368

RESUMO

PURPOSE: The use of dental restorative materials is a routine task in clinical dentistry. Upon exposure to the oral cavity, continuous adsorption of salivary proteins and other macromolecules to all surfaces occurs, representing the first step in dental biofilm formation. Different physico-chemical properties of substrate materials potentially influence the composition of the initial biofilm, termed pellicle. This study aimed at characterizing and comparing the individual proteomic composition of the 3-min pellicle formed on bovine enamel and six restorative materials. EXPERIMENTAL DESIGN: After chemical elution, pellicle proteins were identified by nano-LC-HR-MS/MS. Proteomic profiles were analyzed in terms of molecular weights, isoelectric points, molecular functions and compared to saliva to reveal substrate material-specific adsorption patterns. RESULTS: A total of 1348 different pellicle proteins were identified, with 187-686 proteins in individual 3-min pellicles. Unexpectedly, this yielded quite similar distribution patterns independent of the substrate materials. Furthermore, overall similar fold changes were obtained for the major part of commonly enriched or depleted proteins in the pellicles. CONCLUSIONS AND CLINICAL RELEVANCE: The current results point to a minor role of the substrate material on the proteomic composition of the 3-min pellicle and represent core data for understanding the complex surface interactions in the oral cavity.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Bovinos , Película Dentária , Saliva/química , Proteínas e Peptídeos Salivares
14.
Front Plant Sci ; 13: 1071225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589080

RESUMO

Plant plasma membranes (PMs) play an important role in maintaining the stability of the intracellular environment and exchanging information with the external environment. Therefore, deciphering dynamics of PM proteome provides crucial information for elucidating cellular regulation in response to diverse stimuli. In the study, we developed a simplified method for enriching PM proteins in leaf and root tissues of a tropical forage Stylosanthes by combining differential centrifugation and Brij-58 treatment. Both immunoblot analysis and mass spectrometry demonstrated that the representation and abundance of PM proteins were increased in the enrichment fraction, and the contamination of other organellar proteins was decreased. A total of 426 and 388 proteins were predicted to be PM proteins in leaves and roots, respectively. Functional analysis classified these PM proteins into six major categories (transporter, enzyme, receptor, membrane structure protein, vesicular trafficking and chaperone), and orthologs of many PM proteins regulating the responses to abiotic and biotic stresses have been detected. In addition, the sequence analysis, subcellular localization and gene expression analyses of a newly identified receptor-like kinase, SgRKL1, has been performed. Together, these results show that the simplified PM enrichment method can be successfully applied to different plant tissue types and to study the dynamics of PM proteome of Stylosanthes in response to multiple stresses.

15.
J Proteome Res ; 21(1): 189-199, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34860524

RESUMO

A high-throughput method was developed for the automated enrichment of newly synthesized proteins (NSPs), which are labeled metabolically by substituting methionine with the "click-able" analogue azidohomoalanine (AHA). A suitable conjugate containing a dibenzocyclooctyne (DBCO) group allows the specific selection of NSPs by a fast 1 h click chemistry-based reaction with AHA. Through an automated pipetting platform, the samples are loaded into streptavidin cartridges for the selective binding of the NSPs by means of a biotin bait contained in the conjugate. The enriched proteins are eluted by a reproducible chemical cleavage of the 4,4-dimethyl-2,6-dioxocyclohexylidene (Dde) group in the conjugate, which increases selectivity. The NSPs can be collected and digested in the same well plate, and the resulting peptides can be subsequently loaded for automated cleanup, followed by mass spectrometry analysis. The proposed automated method allows for the robust and effective enrichment of samples in 96-well plates in a period of 3 h. Our developed enrichment method was comprehensively evaluated and then applied to the proteomics analysis of the melanoma A375 cell secretome, after treatment with the cytokines interferon α (IFN-α) and γ (IFN-γ), resulting in the quantification of 283 and 263 proteins, respectively, revealing intricate tumor growth-supportive and -suppressive effects.


Assuntos
Proteínas , Proteômica , Biotina/química , Química Click , Peptídeos , Proteínas/análise , Proteômica/métodos
16.
Environ Sci Pollut Res Int ; 29(20): 29562-29569, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34302241

RESUMO

Brewers' spent grain (BSG) represents the 85% of the total residue produced during the beer brewing process, with a global annual production volume exceeding 30 Mtons. The current study concerns the application of solid state fermentation (SSF) as a bioprocess where the nutritional value of BSG is improved for further use as animal feed with increased value. The investigated SSF procedure was initiated by the edible fungi Pleurotus ostreatus, which constitutes a natural source of proteins, ß-glucans, and various metabolites (vitamins, nutrients, etc.). Herein, the SSF of BSG resulted in a significant increase of protein content by 49.49%, a 10-fold increase of 1,3-1,6 ß-glucans, and a respective reduction of cellulose by 11.42%. The application of this method is expected to provide some useful information on the utilization of BSG as substrate for fungi-initiated SSF, a bioprocess allowing the significant reduction of the environmental impact caused by the beer brewing industry and simultaneously producing animal feed with higher protein content and improved nutritional characteristics. Such studies contribute to confront the unavailability of proteinaceous animal feed observed in the last decade.


Assuntos
Grão Comestível , beta-Glucanas , Ração Animal , Animais , Cerveja , Grão Comestível/química , Fermentação , Fungos , beta-Glucanas/análise
17.
Sheng Wu Gong Cheng Xue Bao ; 37(11): 4102-4110, 2021 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-34841810

RESUMO

The abundance of proteins in human urine is low and easily to be masked by high-abundance proteins during mass spectrometry analysis. Development of efficient and highly selective enrichment methods is therefore a prerequisite for achieving deep coverage of urine protein markers. Notably, different experimental methods would affect the urine protein enrichment efficacy and the coverage of urine proteome. In this study, ultrafiltration, nitrocellulose membrane enrichment and saturated ammonium sulfate precipitation were used to process 10 mL urine samples from five healthy volunteers and five bladder cancer patients. The urine proteins were enriched and separate by SDS-PAGE to compare the purification efficiency of different methods. Moreover, the peptide identification effects of different purification methods were analyzed by mass spectrometry to determine the best method for enriching urine protein histones. Saturated ammonium sulfate precipitation method outperformed the ultrafiltration and the nitrocellulose membrane enrichment methods in terms of the protein enrichment efficacy and quality. The interference of highly abundant albumin was reduced, whereas the amount of low-abundance protein was increased, and the sensitivity of mass spectrometry identification was increased. The saturated ammonium sulfate precipitation method may be applied for large-scale urine processing for screening clinical diagnostic markers through proteomics.


Assuntos
Proteoma , Proteômica , Histonas , Humanos , Espectrometria de Massas , Urinálise
18.
Food Res Int ; 147: 110517, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399495

RESUMO

The potential application of 3D printing technology in creating protein-rich desserts with multisensory design was investigated. Yoghurt-gel inks were formulated by varying the concentration of gelatine and whey protein isolate (WPI). Assessment of rheological and textural properties prior to printing, showed that an increase of gelatine concentration from 7.5 to 12.5% w/w increased the yield stress, storage modulus, loss modulus, firmness, and resilience of yoghurt gels. Addition of 12% WPI reduced these effects; creating softer gels with reduced resilience. However, these gels showed stable shape after printing, especially in formulations with higher gelatine concentrations. The changes in textural properties caused by the extrusion process need to be considered when designing yoghurt gels, as a significant reduction in firmness and resilience and an increase in adhesiveness were observed after 3D printing. The more stable and well-shaped 3D printed yoghurt gels were obtained by the combined effect of WPI and gelatine which provided a good balance of appearance, taste, flavour, and mouthfeel attributes evaluated by a trained sensory panel. A consumer study performed with thirty healthy adults showed the potential to improve sensory acceptance through the creation of multisensory layered design.


Assuntos
Gelatina , Iogurte , Géis , Humanos , Impressão Tridimensional , Reologia , Iogurte/análise
19.
Proteomics ; 21(19): e2100152, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390184

RESUMO

Mass spectrometry-based proteomics revolutionized global proteomic profiling. Although high molecular weight abundant proteins are readily sampled in global proteomics studies, less abundant low molecular weight proteins are often underrepresented. This includes biologically important classes of low molecular weight proteins including ligands, growth factors, peptide hormones and cytokines. Although extensive fractionation can facilitate achieving better coverage of proteome, it requires additional infrastructure, mass spectrometry time and labour. There is need for a simple method that can selectively deplete high molecular weight abundant proteins and enrich for low molecular weight less abundant proteins to improve their coverage in proteomics studies. We present a simple organic-solvent based protein precipitation method that selectively depletes high molecular weight proteins and enriches low molecular weight proteins in the soluble fraction. Using this strategy, we demonstrate identification of low molecular weight proteins that are generally underrepresented in proteomics datasets. In addition, we show the utility of this approach in identifying functional cleavage products from precursor proteins and low molecular weight short open reading frame proteins encoded by non-coding regions such as lncRNAs and UTRs. As the method does not require additional infrastructure, it can complement existing proteomics workflows to increase detection and coverage of low molecular weight proteins that are less abundant.


Assuntos
Peptídeos , Proteômica , Peso Molecular , Proteoma , Solventes
20.
Protein Pept Lett ; 28(9): 1071-1082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33820508

RESUMO

BACKGROUND: Some pathogenic bacteria can be potentially used for nefarious applications in the event of bioterrorism or biowarfare. Accurate identification of biological agent from clinical and diverse environmental matrices is of paramount importance for implementation of medical countermeasures and biothreat mitigation. OBJECTIVE: A novel methodology is reported here for the development of a novel enrichment strategy for the generally conserved abundant bacterial proteins for an accurate downstream species identification using tandem MS analysis in biothreat scenario. METHODS: Conserved regions in the common bacterial protein markers were analyzed using bioinformatic tools and stitched for a possible generic immuno-capture for an intended downstream MS/MS analysis. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of 60 kDa chaperonin GroEL. Hyper-immune serum was raised against recombinant synthetic GroEL protein. RESULTS: The conserved regions of common bacterial proteins were stitched for a possible generic immuno-capture and subsequent specific identification by tandem MS using variable regions of the molecule. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of GroEL. In a proof-of-concept study, hyper-immune serum raised against recombinant synthetic GroEL protein exhibited reactivity with ~60 KDa proteins from the cell lysates of three bacterial species tested. CONCLUSION: The envisaged methodology can lead to the development of a novel enrichment strategy for the abundant bacterial proteins from complex environmental matrices for the downstream species identification with increased sensitivity and substantially reduce the time-to-result.


Assuntos
Bactérias , Infecções Bacterianas , Proteínas de Bactérias , Chaperonina 60 , Filogenia , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA