Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 677
Filtrar
1.
Methods Mol Biol ; 2829: 329-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951347

RESUMO

Mammalian cell lines are one of the best options when it comes to the production of complex proteins requiring specific glycosylation patterns. Plasmid DNA transfection and stable cell lines are frequently used for recombinant protein production, but they are expensive at large scale or can become time-consuming, respectively. The BacMam baculovirus (BV) is a safe and cost-effective platform to produce recombinant proteins in mammalian cells. The process of generating BacMam BVs is straightforward and similar to the generation of "insect" BVs, with different commercially available platforms. Although there are several protocols that describe recombinant protein expression with the BacMam BV in adherent cell lines, limited information is available on suspension cells. Therefore, it is of relevance to define the conditions to produce recombinant proteins in suspension cell cultures with BacMam BVs that facilitate bioprocess transfer to larger volumes. Here, we describe a method to generate a high titer BacMam BV stock and produce recombinant proteins in suspension HEK293 cells.


Assuntos
Baculoviridae , Proteínas Recombinantes , Baculoviridae/genética , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Células HEK293 , Animais , Transfecção/métodos , Vetores Genéticos/genética , Técnicas de Cultura de Células/métodos , Expressão Gênica , Glicosilação
2.
ACS Synth Biol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023433

RESUMO

Plastid engineering offers the potential to carry multigene traits in plants; however, it requires reliable genetic parts to balance expression. The difficulty of chloroplast transformation and slow plant growth makes it challenging to build plants just to characterize genetic parts. To address these limitations, we developed a high-yield cell-free system from Nicotiana tabacum chloroplast extracts for prototyping genetic parts. Our cell-free system uses combined transcription and translation driven by T7 RNA polymerase and works with plasmid or linear template DNA. To develop our system, we optimized lysis, extract preparation procedures (e.g., runoff reaction, centrifugation, and dialysis), and the physiochemical reaction conditions. Our cell-free system can synthesize 34 ± 1 µg/mL luciferase in batch reactions and 60 ± 4 µg/mL in semicontinuous reactions. We apply our batch reaction system to test a library of 103 ribosome binding site (RBS) variants and rank them based on cell-free gene expression. We observe a 1300-fold dynamic range of luciferase expression when normalized by maximum mRNA expression, as assessed by the malachite green aptamer. We also find that the observed normalized gene expression in chloroplast extracts and the predictions made by the RBS Calculator are correlated. We anticipate that chloroplast cell-free systems will increase the speed and reliability of building genetic systems in plant chloroplasts for diverse applications.

3.
Biotechnol Biofuels Bioprod ; 17(1): 91, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951910

RESUMO

BACKGROUND: Research on protein production holds significant importance in the advancement of food technology, agriculture, pharmaceuticals, and bioenergy. Aspergillus niger stands out as an ideal microbial cell factory for the production of food-grade proteins, owing to its robust protein secretion capacity and excellent safety profile. However, the extensive oxidative folding of proteins within the endoplasmic reticulum (ER) triggers ER stress, consequently leading to protein misfolding reactions. This stressful phenomenon results in the accelerated generation of reactive oxygen species (ROS), thereby inducing oxidative stress. The accumulation of ROS can adversely affect intracellular DNA, proteins, and lipids. RESULT: In this study, we enhanced the detoxification of ROS in A. niger (SH-1) by integrating multiple modules, including the NADPH regeneration engineering module, the glutaredoxin system, the GSH synthesis engineering module, and the transcription factor module. We assessed the intracellular ROS levels, growth under stress conditions, protein production levels, and intracellular GSH content. Our findings revealed that the overexpression of Glr1 in the glutaredoxin system exhibited significant efficacy across various parameters. Specifically, it reduced the intracellular ROS levels in A. niger by 50%, boosted glucoamylase enzyme activity by 243%, and increased total protein secretion by 88%. CONCLUSION: The results indicate that moderate modulation of intracellular redox conditions can enhance overall protein output. In conclusion, we present a strategy for augmenting protein production in A. niger and propose a potential approach for optimizing microbial protein production system.

4.
Methods Mol Biol ; 2810: 123-135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926276

RESUMO

The production of recombinant proteins has helped in understanding of their function and developing new therapies. However, one of the major bottlenecks for protein production is the establishment of reliable mammalian cell lines with high expression levels. In this chapter, we describe a simple and robust system that allows for the quick establishment of stable transgenic 293 cell lines with reproducible and high protein expression levels. This methodology is based on the piggyBac transposon system and enables the inducible production of the protein of interest. Finally, this methodology can easily be used in conventional laboratory cell culture settings without requiring specialized devices.


Assuntos
Elementos de DNA Transponíveis , Proteínas Recombinantes , Elementos de DNA Transponíveis/genética , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Células HEK293 , Transfecção/métodos , Vetores Genéticos/genética
5.
Methods Mol Biol ; 2810: 317-327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926288

RESUMO

With an increasing number of blockbuster drugs being recombinant mammalian proteins, protein production platforms that focus on mammalian proteins have had a profound impact in many areas of basic and applied research. Many groups, both academic and industrial, have been focusing on developing cost-effective methods to improve the production of mammalian proteins that would support potential therapeutic applications. As it stands, while a wide range of platforms have been successfully developed for laboratory use, the majority of biologicals are still produced in mammalian cell lines due to the requirement for posttranslational modification and the biosynthetic complexity of target proteins. An unbiased high-throughput RNAi screening approach can be an efficient tool to identify target genes involved in recombinant protein production. Here, we describe the process of optimizing the transfection conditions, performing the genome-wide siRNA screen, the activity and cell viability assays, and the validation transfection to identify genes involved with protein expression.


Assuntos
Ensaios de Triagem em Larga Escala , Interferência de RNA , RNA Interferente Pequeno , Transfecção , Ensaios de Triagem em Larga Escala/métodos , Humanos , RNA Interferente Pequeno/genética , Transfecção/métodos , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sobrevivência Celular/genética
6.
Methods Mol Biol ; 2810: 285-300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926286

RESUMO

MicroRNAs represent an interesting group of regulatory molecules with the unique ability of a single miRNA able to regulate the expression of potentially hundreds of target genes. In that regard, their utility has been demonstrated as a strategy to improve the cellular phenotypes important in the biomanufacturing of recombinant proteins. Common approaches to stably deplete miRNAs are the use of sponge decoy transcripts or shRNA inhibitors, both of which require the introduction and expression of extra genetic material in the cell. As an alternative, we implemented the CRISPR/Cas9 system in our laboratory to generate CHO cells which lack the expression of a specific miRNA for the purpose of functional studies. To implement the system, miR-27a/b was chosen as it has been shown to be upregulated during hypothermic conditions and therefore may be involved in influencing CHO cell growth and recombinant protein productivity. In this chapter, we present a protocol for targeting miRNAs in CHO cells using CRISPR/Cas9 and the analysis of the resulting phenotype, using miR-27 as an example. We show that it is possible to target miRNAs in CHO cells and achieved ≥80% targeting efficiency. Indel analysis and TOPO-TA cloning combined with Sanger sequencing showed a range of different indels. Furthermore, it was possible to identify clones with no detectable expression of mature miR-27b. Depletion of miR-27b led to improved viability in late stages of batch and fed-batch cultures, making it a potentially interesting target to improve bioprocess performance of CHO cells.


Assuntos
Sistemas CRISPR-Cas , Cricetulus , MicroRNAs , Proteínas Recombinantes , Animais , Células CHO , MicroRNAs/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Edição de Genes/métodos , Deleção de Genes
7.
Biomedicines ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38927433

RESUMO

The CRISPR-Cas9 system is a revolutionary tool in genetic engineering, offering unprecedented precision and efficiency in genome editing. Cas9, an enzyme derived from bacteria, is guided by RNA to edit DNA sequences within cells precisely. However, while CRISPR-Cas9 presents notable benefits and encouraging outcomes as a molecular tool and a potential therapeutic agent, the process of producing and purifying recombinant Cas9 protein remains a formidable hurdle. In this study, we systematically investigated the expression of recombinant SpCas9-His in four distinct Escherichia coli (E. coli) strains (Rosetta2, BL21(DE3), BL21(DE3)-pLysS, and BL21(DE3)-Star). Through optimization of culture conditions, including temperature and post-induction time, the BL21(DE3)-pLysS strain demonstrated efficient SpCas9 protein expression. This study also presents a detailed protocol for the purification of recombinant SpCas9, along with detailed troubleshooting tips. Results indicate successful SpCas9 protein expression using E. coli BL21(DE3)-pLysS at 0.5 mM IPTG concentration. Furthermore, the findings suggest potential avenues for further enhancements, paving the way for large-scale Cas9 production. This research contributes valuable insights into optimizing E. coli strains and culture conditions for enhanced Cas9 expression, offering a step forward in the development of efficient genome editing tools and therapeutic proteins.

8.
Microbiology (Reading) ; 170(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847798

RESUMO

Bacillus subtilis is a Gram-positive bacterium that is frequently used in the bioindustry for the production of various proteins, because of its superior protein secretion capacities. To determine optimal conditions for protein secretion by B. subtilis, a quick and sensitive method for measuring protein secretion is crucial. A fast and universal assay is most useful for detecting diverse proteins in a high-throughput manner. In this study, we introduce a split-luciferase-based method for measuring protein secretion by B. subtilis. The NanoBiT system was used to monitor secretion of four different proteins: xylanase A, amylase M, protein glutaminase A, and GFP nanobody. Our findings underscore the split-luciferase system as a quick, sensitive, and user-friendly method.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Luciferases/metabolismo , Luciferases/genética , Endo-1,4-beta-Xilanases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Transporte Proteico , Amilases/metabolismo , Glutaminase/metabolismo
9.
Microb Cell Fact ; 23(1): 177, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879507

RESUMO

BACKGROUND: Heme-incorporating peroxygenases are responsible for electron transport in a multitude of organisms. Yet their application in biocatalysis is hindered due to their challenging recombinant production. Previous studies suggest Komagataella phaffi to be a suitable production host for heme-containing enzymes. In addition, co-expression of helper proteins has been shown to aid protein folding in yeast. In order to facilitate recombinant protein expression for an unspecific peroxygenase (AnoUPO), we aimed to apply a bi-directionalized expression strategy with Komagataella phaffii. RESULTS: In initial screenings, co-expression of protein disulfide isomerase was found to aid the correct folding of the expressed unspecific peroxygenase in K. phaffi. A multitude of different bi-directionalized promoter combinations was screened. The clone with the most promising promoter combination was scaled up to bioreactor cultivations and compared to a mono-directional construct (expressing only the peroxygenase). The strains were screened for the target enzyme productivity in a dynamic matter, investigating both derepression and mixed feeding (methanol-glycerol) for induction. Set-points from bioreactor screenings, resulting in the highest peroxygenase productivity, for derepressed and methanol-based induction were chosen to conduct dedicated peroxygenase production runs and were analyzed with RT-qPCR. Results demonstrated that methanol-free cultivation is superior over mixed feeding in regard to cell-specific enzyme productivity. RT-qPCR analysis confirmed that mixed feeding resulted in high stress for the host cells, impeding high productivity. Moreover, the bi-directionalized construct resulted in a much higher specific enzymatic activity over the mono-directional expression system. CONCLUSIONS: In this study, we demonstrate a methanol-free bioreactor production strategy for an unspecific peroxygenase, yet not shown in literature. Hence, bi-directionalized assisted protein expression in K. phaffii, cultivated under derepressed conditions, is indicated to be an effective production strategy for heme-containing oxidoreductases. This very production strategy might be opening up further opportunities for biocatalysis.


Assuntos
Reatores Biológicos , Oxigenases de Função Mista , Regiões Promotoras Genéticas , Proteínas Recombinantes , Saccharomycetales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Metanol/metabolismo
10.
Eur J Protistol ; 94: 126085, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703600

RESUMO

Tetrahymena thermophila is an alternative organism for recombinant protein production. However, the production efficiency in T. thermophila is quite low mainly due to the rich cysteine proteases. In this study, we studied whether supplementation of the E-64 inhibitor to T. thermophila cultures increases the recombinant protein production efficiency without any toxic side effects. Our study showed that supplementation of E-64 had no lethal effects on T. thermophila cells in flask culture at 30 °C and 38 °C. In vitro protease activity analysis using secretome as protease enzyme source from E-64-supplemented cell cultures showed a reduced protein substrate degradation using bovine serum albumin, rituximab, and milk lactoglobulin proteins. E-64 also prevented proteolysis of the recombinantly produced and secreted TtmCherry2-sfGFP fusion protein at some level. This reduced inhibitory effect of E-64 could be due to genetic compensation of the inhibited proteases. As a result, the 5 µM concentration of E-64 was found to be a non-toxic protease inhibitory supplement to improve extracellular recombinant protein production efficiency in T. thermophila. This study suggests that the use of E-64 may increase the efficiency of extracellular recombinant protein production by continuously reducing extracellular cysteine protease activity during cultivation.


Assuntos
Inibidores de Cisteína Proteinase , Proteínas Recombinantes , Tetrahymena thermophila , Inibidores de Cisteína Proteinase/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/efeitos dos fármacos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Leucina/análogos & derivados
11.
World J Microbiol Biotechnol ; 40(7): 200, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38730212

RESUMO

Recombinant protein production technology is widely applied to the manufacture of biologics used as drug substances and industrial proteins such as recombinant enzymes and bioactive proteins. Various heterologous protein production systems have been developed using prokaryotic and eukaryotic hosts. Especially methylotrophic yeast in eukaryotic hosts is suggested to be particularly valuable because such systems have the following advantages: protein secretion into culture broth, eukaryotic quality control systems, a post-translational modification system, rapid growth, and established recombinant DNA tools and technologies such as strong promoters, effective selection markers, and gene knock-in and -out systems. Many methylotrophic yeasts such as the genera Candida, Ogataea, and Komagataella have been studied since methylotrophic yeast was first isolated in 1969. The methanol-consumption-related genes in methylotrophic yeast are strongly and strictly regulated under methanol-containing conditions. The well-regulated gene expression systems under the methanol-inducible gene promoter lead to the potential application of heterologous protein production in methylotrophic yeast. In this review, we describe the recent progress of heterologous protein production technology in methylotrophic yeast and introduce Ogataea minuta as an alternative production host as a substitute for K. phaffii and O. polymorpha.


Assuntos
Metanol , Regiões Promotoras Genéticas , Proteínas Recombinantes , Saccharomycetales , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Metanol/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Regulação Fúngica da Expressão Gênica
12.
Microb Cell Fact ; 23(1): 131, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711081

RESUMO

BACKGROUND: Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS: This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS: This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.


Assuntos
Fermentação , Proteínas Recombinantes , Saccharomycetales , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Saccharomycetales/metabolismo , Saccharomycetales/genética , Biomassa , Técnicas de Cultura Celular por Lotes , Polissacarídeos/metabolismo , Polissacarídeos/biossíntese
13.
Microb Cell ; 11: 128-142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799406

RESUMO

Modular Cloning (MoClo) is based on libraries of standardized genetic parts that can be directionally assembled via Golden Gate cloning in one-pot reactions into transcription units and multigene constructs. Here, a team of bachelor students established a MoClo toolkit for the protist Leishmania tarentolae in the frame of the international Genetically Engineered Machine (iGEM) competition. Our modular toolkit is based on a domesticated version of a commercial LEXSY expression vector and comprises 34 genetic parts encoding various affinity tags, targeting signals as well as fluorescent and luminescent proteins. We demonstrated the utility of our kit by the successful production of 16 different tagged versions of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in L. tarentolae liquid cultures. While highest yields of secreted recombinant RBD were obtained for GST-tagged fusion proteins 48 h post induction, C-terminal peptide tags were often degraded and resulted in lower yields of secreted RBD. Fusing secreted RBD to a synthetic O-glycosylation SP20 module resulted in an apparent molecular mass shift around 10 kDa. No disadvantage regarding the production of RBD was detected when the three antibiotics of the LEXSY system were omitted during the 48-h induction phase. Furthermore, the successful purification of secreted RBD from the supernatant of L. tarentolae liquid cultures was demonstrated in pilot experiments. In summary, we established a MoClo toolkit and exemplified its application for the production of recombinant proteins in L. tarentolae.

14.
Biotechnol J ; 19(5): e2300715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38797727

RESUMO

Human erythropoietin (hEPO) is one of the most in-demand biopharmaceuticals, however, its production is challenging. When produced in a plant expression system, hEPO results in extensive plant tissue damage and low expression. It is demonstrated that the modulation of the plant protein synthesis machinery enhances hEPO production. Co-expression of basic leucine zipper transcription factors with hEPO prevents plant tissue damage, boosts expression, and increases hEPO solubility. bZIP28 co-expression up-regulates genes associated with the unfolded protein response, indicating that the plant tissue damage caused by hEPO expression is due to the native protein folding machinery being overwhelmed and that this can be overcome by co-expressing bZIP28.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Eritropoetina , Nicotiana , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Eritropoetina/genética , Eritropoetina/metabolismo , Humanos , Nicotiana/genética , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulação da Expressão Gênica de Plantas , Resposta a Proteínas não Dobradas/genética
15.
Sci Rep ; 14(1): 12271, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806637

RESUMO

The impact of recombinant protein production (RPP) on host cells and the metabolic burden associated with it undermine the efficiency of the production system. This study utilized proteomics to investigate the dynamics of parent and recombinant cells induced at different time points for RPP. The results revealed significant changes in both transcriptional and translational machinery that may have impacted the metabolic burden, growth rate of the culture and the RPP. The timing of protein synthesis induction also played a critical role in the fate of the recombinant protein within the host cell, affecting protein and product yield. The study identified significant differences in the expression of proteins involved in fatty acid and lipid biosynthesis pathways between two E. coli host strains (M15 and DH5⍺), with the E. coli M15 strain demonstrating superior expression characteristics for the recombinant protein. Overall, these findings contribute to the knowledge base for rational strain engineering for optimized recombinant protein production.


Assuntos
Escherichia coli , Proteômica , Proteínas Recombinantes , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteômica/métodos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Biossíntese de Proteínas
16.
J Microbiol Biotechnol ; 34(5): 1126-1134, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38563095

RESUMO

The production of disulfide bond-containing recombinant proteins in Escherichia coli has traditionally been done by either refolding from inclusion bodies or by targeting the protein to the periplasm. However, both approaches have limitations. Two broad strategies were developed to allow the production of proteins with disulfide bonds in the cytoplasm of E. coli: i) engineered strains with deletions in the disulfide reduction pathways, e.g. SHuffle, and ii) the co-expression of oxidative folding catalysts, e.g. CyDisCo. However, to our knowledge, the relative effectiveness of these strategies has not been properly evaluated. Here, we systematically compare the purified yields of 14 different proteins of interest (POI) that contain disulfide bonds in their native state when expressed in both systems. We also compared the effects of different background strains, commonly used promoters, and two media types: defined and rich autoinduction. In rich autoinduction media, POI which can be produced in a soluble (non-native) state without a system for disulfide bond formation were produced in higher purified yields from SHuffle, whereas all other proteins were produced in higher purified yields using CyDisCo. In chemically defined media, purified yields were at least 10x higher in all cases using CyDisCo. In addition, the quality of the three POI tested was superior when produced using CyDisCo.


Assuntos
Citoplasma , Dissulfetos , Proteínas de Escherichia coli , Escherichia coli , Dobramento de Proteína , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Dissulfetos/metabolismo , Dissulfetos/química , Citoplasma/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Periplasma/metabolismo , Periplasma/genética , Meios de Cultura/química
17.
Microb Cell Fact ; 23(1): 115, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643109

RESUMO

BACKGROUND: The process of producing proteins in bacterial systems and secreting them through ATP-binding cassette (ABC) transporters is an area that has been actively researched and used due to its high protein production capacity and efficiency. However, some proteins are unable to pass through the ABC transporter after synthesis, a phenomenon we previously determined to be caused by an excessive positive charge in certain regions of their amino acid sequence. If such an excessive charge is removed, the secretion of any protein through ABC transporters becomes possible. RESULTS: In this study, we introduce 'linear charge density' as the criteria for possibility of protein secretion through ABC transporters and confirm that this criterion can be applied to various non-secretable proteins, such as SARS-CoV-2 spike proteins, botulinum toxin light chain, and human growth factors. Additionally, we develop a new algorithm, PySupercharge, that enables the secretion of proteins containing regions with high linear charge density. It selectively converts positively charged amino acids into negatively charged or neutral amino acids after linear charge density analysis to enable protein secretion through ABC transporters. CONCLUSIONS: PySupercharge, which also minimizes functional/structural stability loss of the pre-mutation proteins through the use of sequence conservation data, is currently being operated on an accessible web server. We verified the efficacy of PySupercharge-driven protein supercharging by secreting various previously non-secretable proteins commonly used in research, and so suggest this tool for use in future research requiring effective protein production.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Aminoácidos , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Mutação , Sequência de Aminoácidos
18.
ACS Synth Biol ; 13(5): 1477-1491, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38676700

RESUMO

Escherichia coli is often used as a factory to produce recombinant proteins. In many cases, the recombinant protein needs disulfide bonds to fold and function correctly. These proteins are genetically fused to a signal peptide so that they are secreted to the oxidizing environment of the periplasm (where the enzymes required for disulfide bond formation exist). Currently, it is difficult to determine in vivo whether a recombinant protein is efficiently secreted from the cytoplasm and folded in the periplasm or if there is a bottleneck in one of these steps because cellular capacity has been exceeded. To address this problem, we have developed a biosensor that detects cellular stress caused by (1) inefficient secretion of proteins from the cytoplasm and (2) aggregation of proteins in the periplasm. We demonstrate how the fluorescence fingerprint obtained from the biosensor can be used to identify induction conditions that do not exceed the capacity of the cell and therefore do not cause cellular stress. These induction conditions result in more effective biomass and in some cases higher titers of soluble recombinant proteins.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Proteínas Periplásmicas , Técnicas Biossensoriais/métodos , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas Periplásmicas/metabolismo , Proteínas Periplásmicas/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Periplasma/metabolismo , Estresse Fisiológico , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
19.
Curr Protoc ; 4(3): e1016, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511507

RESUMO

Investigating the function of target proteins for functional prospection or therapeutic applications typically requires the production and purification of recombinant proteins. The fusion of these proteins with tag peptides and fluorescently derived proteins allows the monitoring of candidate proteins using SDS-PAGE coupled with western blotting and fluorescent microscopy, respectively. However, protein engineering poses a significant challenge for many researchers. In this protocol, we describe step-by-step the engineering of a recombinant protein with various tags: TAT-HA (trans-activator of transduction-hemagglutinin), 6×His and EGFP (enhanced green fluorescent protein) or mCherry. Fusion proteins are produced in E. coli BL21(DE3) cells and purified by immobilized metal affinity chromatography (IMAC) using a Ni-nitrilotriacetic acid (NTA) column. Then, tagged recombinant proteins are introduced into cultured animal cells by using the penetrating peptide TAT-HA. Here, we present a thorough protocol providing a detailed guide encompassing every critical step from plasmid DNA molecular assembly to protein expression and subsequent purification and outlines the conditions necessary for protein transduction technology into animal cells in a comprehensive manner. We believe that this protocol will be a valuable resource for researchers seeking an exhaustive, step-by-step guide for the successful production and purification of recombinant proteins and their entry by transduction within living cells. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA cloning, molecular assembly strategies, and protein production Basic Protocol 2: Protein purification Basic Protocol 3: Protein transduction in mammalian cells.


Assuntos
Escherichia coli , Peptídeos , Animais , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Peptídeos/genética , Peptídeos/metabolismo , Indicadores e Reagentes/metabolismo , Produtos do Gene tat/metabolismo , Corantes/metabolismo , DNA/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
20.
Viruses ; 16(3)2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38543791

RESUMO

(1) Recombinant protein production in mammalian cells is either based on transient transfection processes, often inefficient and underlying high batch-to-batch variability, or on laborious generation of stable cell lines. Alternatively, BacMam, a transduction process using the baculovirus, can be employed. (2) Six transfecting agents were compared to baculovirus transduction in terms of transient and stable protein expression characteristics of the model protein ACE2-eGFP using HEK293-6E, CHO-K1, and Vero cell lines. Furthermore, process optimization such as expression enhancement using sodium butyrate and TSA or baculovirus purification was assessed. (3) Baculovirus transduction efficiency was superior to all transfection agents for all cell lines. Transduced protein expression was moderate, but an 18-fold expression increase was achieved using the enhancer sodium butyrate. Ultracentrifugation of baculovirus from a 3.5 L bioreactor significantly improved the transduction efficiency and protein expression. Stable cell lines were obtained with each baculovirus transduction, yet stable cell line generation after transfection was highly unreliable. (4) This study demonstrated the superiority of the BacMam platform to standard transfections. The baculovirus efficiently transduced an array of cell lines both transiently and stably and achieved the highest efficiency for all tested cell lines. The feasibility of the scale-up of baculovirus production was demonstrated and the possibility of baculovirus purification was successfully explored.


Assuntos
Baculoviridae , Vetores Genéticos , Animais , Humanos , Ácido Butírico , Células HEK293 , Vetores Genéticos/genética , Baculoviridae/genética , Baculoviridae/metabolismo , Plasmídeos/genética , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA