Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Front Cell Dev Biol ; 12: 1444953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372952

RESUMO

In polarized cells, the precise regulation of protein transport to and from the plasma membrane is crucial to maintain cellular function. Dysregulation of intracellular protein transport in neurons can lead to neurodegenerative diseases such as Retinitis Pigmentosa, Alzheimer's and Parkinson's disease. Here we used the light-dependent transport of the TRPL (transient receptor potential-like) ion channel in Drosophila photoreceptor cells to study the role of Rab proteins in TRPL recycling. TRPL is located in the rhabdomeric membrane of dark-adapted flies, but it is transported out of the rhabdomere upon light exposure and localizes at the Endoplasmatic Reticulum within 12 h. Upon subsequent dark adaptation, TRPL is recycled back to the rhabdomeric membrane within 90 min. To screen for Rab proteins involved in TRPL recycling, we established a tissue specific (ts) CRISPR/Cas9-mediated knock-out of individual Rab genes in Drosophila photoreceptors and assessed TRPL localization using an eGFP tagged TRPL protein in the intact eyes of these mutants. We observed severe TRPL recycling defects in the knockouts of Rab3, Rab4, Rab7, Rab32, and RabX2. Using immunohistochemistry, we further showed that Rab3 and RabX2 each play a significant role in TRPL recycling and also influence TRPL transport. We localized Rab3 to the late endosome in Drosophila photoreceptors and observed disruption of TRPL transport to the ER in Rab3 knock-out mutants. TRPL transport from the ER to the rhabdomere ensues from the trans-Golgi where RabX2 is located. We observed accumulated TRPL at the trans-Golgi in RabX2 knock-out mutants. In summary, our study reveals the requirement of specific Rab proteins for different steps of TRPL transport in photoreceptor cells and provides evidence for a unique retrograde recycling pathway of TRPL from the ER via the trans-Golgi.

2.
PNAS Nexus ; 3(8): pgae305, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108303

RESUMO

Curvature-generating proteins that direct membrane trafficking assemble on the surface of lipid bilayers to bud transport intermediates, which move protein and lipid cargoes from one cellular compartment to another. However, it remains unclear what controls the overall shape of the membrane bud once curvature induction has begun. In vitro experiments showed that excessive concentrations of the COPII protein Sar1 promoted the formation of membrane tubules from synthetic vesicles, while COPII-coated transport intermediates in cells are generally more spherical or lobed in shape. To understand the origin of these morphological differences, we employ atomistic, coarse-grained (CG), and continuum mesoscopic simulations of membranes in the presence of multiple curvature-generating proteins. We first characterize the membrane-bending ability of amphipathic peptides derived from the amino terminus of Sar1, as a function of interpeptide angle and concentration using an atomistic bicelle simulation protocol. Then, we employ CG simulations to reveal that Sec23 and Sec24 control the relative spacing between Sar1 protomers and form the inner-coat unit through an attachment with Sar1. Finally, using dynamical triangulated surface simulations based on the Helfrich Hamiltonian, we demonstrate that the uniform distribution of spacer molecules among curvature-generating proteins is crucial to the spherical budding of the membrane. Overall, our analyses suggest a new role for Sec23, Sec24, and cargo proteins in COPII-mediated membrane budding process in which they act as spacers to preserve a dispersed arrangement of Sar1 protomers and help determine the overall shape of the membrane bud.

3.
Insect Mol Biol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961541

RESUMO

Animal silk is economically important, while silk secretion is a complex and subtle mechanism regulated by many genes. We identified the poly (ADP-ribose) polymerase (PARP1) gene of the silkworm and successfully cloned its coding sequence (CDS) sequence. Using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) technology, we screened single guide RNA (sgRNA) with high knockout efficiency by cellular experiments and obtained PARP1 mutants by knocking out the PARP1 gene of the silkworm at the individual level. We found that the mutants mainly exhibited phenotypes such as smaller cocoon size and reduced cocoon shell rate than the wild type. We also detected the expression of silk protein genes in the mutant by quantitative real-time PCR (qPCR) and found that the expression of some silk protein genes was slightly down-regulated. Meanwhile, together with the results of transcriptomic analysis, we hypothesized that PARP1 may affect the synthesis of silk proteins, resulting in their failure to function properly. Our study may provide an important reference for future in-depth refinement of the molecular mechanism of silk protein expression in silk-producing animals, as well as a potential idea for future development of molecular breeding lines of silkworms to improve silk production.

4.
Metab Eng ; 85: 84-93, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047895

RESUMO

Subcellular compartmentalization is a crucial evolution characteristic of eukaryotic cells, providing inherent advantages for the construction of artificial biological systems to efficiently produce natural products. The establishment of an artificial protein transport system represents a pivotal initial step towards developing efficient artificial biological systems. Peroxisome has been demonstrated as a suitable subcellular compartment for the biosynthesis of terpenes in yeast. In this study, an artificial protein transporter ScPEX5* was firstly constructed by fusing the N-terminal sequence of PEX5 from S. cerevisiae and the C-terminal sequence of PEX5. Subsequently, an artificial protein transport system including the artificial signaling peptide YQSYY and its enhancing upstream 9 amino acid (9AA) residues along with ScPEX5* was demonstrated to exhibit orthogonality to the internal transport system of peroxisomes in S. cerevisiae. Furthermore, a library of 9AA residues was constructed and selected using high throughput pigment screening system to obtain an optimized signaling peptide (oPTS1*). Finally, the ScPEX5*-oPTS1* system was employed to construct yeast cell factories capable of producing the sesquiterpene α-humulene, resulting in an impressive α-humulene titer of 17.33 g/L and a productivity of 0.22 g/L/h achieved through fed-batch fermentation in a 5 L bioreactor. This research presents a valuable tool for the construction of artificial peroxisome cell factories and effective strategies for synthesizing other natural products in yeast.


Assuntos
Peroxissomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sesquiterpenos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Peroxissomos/metabolismo , Peroxissomos/genética , Sesquiterpenos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Transporte Proteico
5.
J Exp Bot ; 75(18): 5734-5749, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38989593

RESUMO

In the chloroplast, the 54 kDa subunit of the signal recognition particle (cpSRP54) is involved in the post-translational transport of the light-harvesting chlorophyll a/b-binding proteins (LHCPs) and the co-translational transport of plastid-encoded subunits of the photosynthetic complexes to the thylakoid membrane. It forms a high-affinity complex with plastid-specific cpSRP43 for post-translational transport, while a ribosome-associated pool coordinates its co-translational function. CpSRP54 constitutes a conserved multidomain protein, comprising a GTPase (NG) and a methionine-rich (M) domain linked by a flexible region. It is further characterized by a plastid-specific C-terminal tail region containing the cpSRP43-binding motif. To characterize the physiological role of the various regions of cpSRP54 in thylakoid membrane protein transport, we generated Arabidopsis cpSRP54 knockout (ffc1-2) lines producing truncated cpSRP54 variants or a GTPase point mutation variant. Phenotypic characterization of the complementation lines demonstrated that the C-terminal tail region of cpSRP54 plays an important role exclusively in post-translational LHCP transport. Furthermore, we show that the GTPase activity of cpSRP54 plays an essential role in the transport pathways for both nuclear as well as plastid-encoded proteins. In addition, our data revealed that plants expressing cpSRP54 without the C-terminal region exhibit a strongly increased accumulation of a photosystem I assembly intermediate.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , GTP Fosfo-Hidrolases , Transporte Proteico , Partícula de Reconhecimento de Sinal , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP , Domínios Proteicos , Partícula de Reconhecimento de Sinal/metabolismo , Partícula de Reconhecimento de Sinal/genética , Tilacoides/metabolismo
6.
Molecules ; 29(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39064917

RESUMO

Signal transduction and homeostasis are regulated by complex protein interactions in the intracellular environment. Therefore, the transportation of impermeable macromolecules (nucleic acids, proteins, and drugs) that control protein interactions is essential for modulating cell functions and therapeutic applications. However, macromolecule transportation across the cell membrane is not easy because the cell membrane separates the intra/extracellular environments, and the types of molecular transportation are regulated by membrane proteins. Cell-penetrating peptides (CPPs) are expected to be carriers for molecular transport. CPPs can transport macromolecules into cells through endocytosis and direct translocation. The transport mechanism remains largely unclear owing to several possibilities. In this review, we describe the methods for investigating CPP conformation, translocation, and cargo transportation using artificial membranes. We also investigated biomolecular transport across living cell membranes via CPPs. Subsequently, we show not only the biochemical applications but also the synthetic biological applications of CPPs. Finally, recent progress in biomolecule and nanoparticle transportation via CPPs into specific tissues is described from the viewpoint of drug delivery. This review provides the opportunity to discuss the mechanism of biomolecule transportation through these two platforms.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Humanos , Transporte Biológico , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos , Endocitose , Animais , Lipídeos/química , Nanopartículas/química
7.
Front Plant Sci ; 15: 1425825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899152

RESUMO

[This corrects the article DOI: 10.3389/fpls.2024.1332459.].

8.
Annu Rev Biochem ; 93(1): 233-259, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38621235

RESUMO

Peroxisomes are organelles that play a central role in lipid metabolism and cellular redox homeostasis. The import of peroxisomal matrix proteins by peroxisomal targeting signal (PTS) receptors is an ATP-dependent mechanism. However, the energy-dependent steps do not occur early during the binding of the receptor-cargo complex to the membrane but late, because they are linked to the peroxisomal export complex for the release of the unloaded receptor. The first ATP-demanding step is the cysteine-dependent monoubiquitination of the PTS receptors, which is required for recognition by the AAA+ peroxins. They execute the second ATP-dependent step by extracting the ubiqitinated PTS receptors from the membrane for release back to the cytosol. After deubiquitination, the PTS receptors regain import competence and can facilitate further rounds of cargo import. Here, we give a general overview and discuss recent data regarding the ATP-dependent steps in peroxisome protein import.


Assuntos
Trifosfato de Adenosina , Peroxissomos , Transporte Proteico , Ubiquitinação , Peroxissomos/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Animais , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Sinais de Orientação para Peroxissomos , Peroxinas/metabolismo , Peroxinas/genética , Proteínas de Membrana
9.
FASEB J ; 38(6): e23539, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38498340

RESUMO

The endoplasmic reticulum (ER) is the largest membrane system in eukaryotic cells and is the primary site for the biosynthesis of lipids and carbohydrates, as well as for the folding, assembly, modification, and transport of secreted and integrated membrane proteins. The ER membrane complex (EMC) on the ER membrane is an ER multiprotein complex that affects the quality control of membrane proteins, which is abundant and widely preserved. Its disruption has been found to affect a wide range of processes, including protein and lipid synthesis, organelle communication, endoplasmic reticulum stress, and viral maturation, and may lead to neurodevelopmental disorders and cancer. Therefore, EMC has attracted the attention of many scholars and become a hot field. In this paper, we summarized the main contributions of the research of EMC in the past nearly 15 years, and reviewed the structure and function of EMC as well as its related diseases. We hope this review will promote further progress of research on EMC.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo
10.
J Mol Biol ; 436(6): 168492, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360088

RESUMO

Many insulin gene variants alter the protein sequence and result in monogenic diabetes due to insulin insufficiency. However, the molecular mechanisms of various disease-causing mutations are unknown. Insulin is synthesized as preproinsulin containing a signal peptide (SP). SPs of secreted proteins are recognized by the signal recognition particle (SRP) or by another factor in a SRP-independent pathway. If preproinsulin uses SRP-dependent or independent pathways is still debatable. We demonstrate by the use of site-specific photocrosslinking that the SRP subunit, SRP54, interacts with the preproinsulin SP. Moreover, SRP54 depletion leads to the decrease of insulin mRNA and protein expression, supporting the involvement of the RAPP protein quality control in insulin biogenesis. RAPP regulates the quality of secretory proteins through degradation of their mRNA. We tested five disease-causing mutations in the preproinsulin SP on recognition by SRP and on their effects on mRNA and protein levels. We demonstrate that the effects of mutations are associated with their position in the SP and their severity. The data support diverse molecular mechanisms involved in the pathogenesis of these mutations. We show for the first time the involvement of the RAPP protein quality control pathway in insulin biogenesis that is implicated in the development of neonatal diabetes caused by the Leu13Arg mutation.


Assuntos
Insulina , Precursores de Proteínas , Estabilidade de RNA , Partícula de Reconhecimento de Sinal , Humanos , Recém-Nascido , Diabetes Mellitus , Insulina/genética , Insulina/metabolismo , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
11.
Front Plant Sci ; 15: 1332459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410729

RESUMO

Boron (B) is an essential microelement for plants, and its deficiency can lead to impaired development and function. Around 50% of arable land in the world is acidic, and low pH in the soil solution decreases availability of several essential mineral elements, including B, magnesium (Mg), calcium (Ca), and potassium (K). Plants take up soil B in the form of boric acid (H3BO3) in acidic soil or tetrahydroxy borate [B(OH)4]- at neutral or alkaline pH. Boron can participate directly or indirectly in plant metabolism, including in the synthesis of the cell wall and plasma membrane, in carbohydrate and protein metabolism, and in the formation of ribonucleic acid (RNA). In addition, B interacts with other nutrients such as Ca, nitrogen (N), phosphorus (P), K, and zinc (Zn). In this review, we discuss the mechanisms of B uptake, absorption, and accumulation and its interactions with other elements, and how it contributes to the adaptation of plants to different environmental conditions. We also discuss potential B-mediated networks at the physiological and molecular levels involved in plant growth and development.

12.
Membranes (Basel) ; 14(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276317

RESUMO

The classic application of ultrafiltration (UF) is for the complete retention of proteins, and in that situation, the transport behavior is well established. More open membranes with fractional retention are used when separating different proteins. However, protein transport has not been well documented yet in the literature. The bovine serum albumin (∼69 kDa) observed rejection ranges from 0.65 to 1 using a 300 kDa molecular weight cut-off membrane at different pH, ionic strength, and pressure. We demonstrated that, especially with open UF, the transport of proteins through the membrane is dominated by advection, with insignificant diffusion effects (p value > 0.05). We showed that with open UF, retention is not only caused by size exclusion but also to a large extent by electrostatic interactions and oligomerization of the proteins. Mass transfer in the polarization layer was relatively independent of the pH and ionic strength. It was underestimated by common Sherwood relations due to a relatively large contribution of the reduction in the flow turbulence near the membrane by the removal of fluid through the membrane. We propose a model that allows relatively quick characterization of the rejection of proteins without prior knowledge of the pore sizes and charges based on just a limited set of experiments. Therefore, protein rejection with the open UF system can be targeted by tuning the processing conditions, which might be useful for designing protein fractionation processes.

13.
J Mol Biol ; 436(2): 168368, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977298

RESUMO

The cytoplasmic membrane compartmentalises the bacterial cell into cytoplasm and periplasm. Proteins located in this membrane have a defined topology that is established during their biogenesis. However, the accuracy of this fundamental biosynthetic process is unknown. We developed compartment-specific fluorescence labelling methods with up to single-molecule sensitivity. Application of these methods to the single and multi-spanning membrane proteins of the Tat protein transport system revealed rare topogenesis errors. This methodology also detected low level soluble protein mislocalization from the cytoplasm to the periplasm. This study shows that it is possible to uncover rare errors in protein localization by leveraging the high sensitivity of fluorescence methods.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Membrana Transportadoras , Imagem Individual de Molécula , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/análise , Fluorescência , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/química , Transporte Proteico , Imagem Individual de Molécula/métodos
14.
Biochem Cell Biol ; 102(2): 206-212, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048555

RESUMO

Profilin is a small protein that controls actin polymerization in yeast and higher eukaryotes. In addition, profilin has emerged as a multifunctional protein that contributes to other processes in multicellular organisms. This study focuses on profilin (Pfy1) in the budding yeast Saccharomyces cerevisiae. The primary sequences of yeast Pfy1 and its metazoan orthologs diverge vastly. However, structural elements of profilin are conserved among different species. To date, the full spectrum of Pfy1 functions has yet to be defined. The current work explores the possible involvement of yeast profilin in nuclear protein import. To this end, a panel of well-characterized yeast profilin mutants was evaluated. The experiments demonstrate that yeast profilin (i) regulates nuclear protein import, (ii) determines the subcellular localization of essential nuclear transport factors, and (iii) controls the relative abundance of actin and tubulin. Together, these results define yeast profilin as a moonlighting protein that engages in multiple essential cellular activities.


Assuntos
Actinas , Profilinas , Animais , Actinas/genética , Actinas/metabolismo , Profilinas/genética , Profilinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Nucleares/metabolismo
15.
Mol Cells ; 46(12): 757-763, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38052491

RESUMO

In this study, we examine whether a change in the protein levels for FOP in Ankyrin repeat and SAM domain-containing protein 1A (ANKS1A)-deficient ependymal cells affects the intraflagellar transport (IFT) protein transport system in the multicilia. Three distinct abnormalities are observed in the multicilia of ANKS1A-deficient ependymal cells. First, there were a greater number of IFT88-positive trains along the cilia from ANKS1A deficiency. The results are similar to each isolated cilium as well. Second, each isolated cilium contains a significant increase in the number of extracellular vesicles (ECVs) due to the lack of ANKS1A. Third, Van Gogh-like 2 (Vangl2), a ciliary membrane protein, is abundantly detected along the cilia and in the ECVs attached to them for ANKS1A-deficient cells. We also use primary ependymal culture systems to obtain the ECVs released from the multicilia. Consequently, we find that ECVs from ANKS1A-deficient cells contain more IFT machinery and Vangl2. These results indicate that ANKS1A deficiency increases the entry of the protein transport machinery into the multicilia and as a result of these abnormal protein transports, excessive ECVs form along the cilia. We conclude that ependymal cells make use of the ECV-based disposal system in order to eliminate excessively transported proteins from basal bodies.


Assuntos
Proteínas de Transporte , Cílios , Cílios/metabolismo , Transporte Proteico , Transporte Biológico , Proteínas de Transporte/metabolismo
17.
J Bacteriol ; 205(12): e0035723, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37971272

RESUMO

IMPORTANCE: Bacteria use weapons to deliver effectors into target cells. One of these weapons, the type VI secretion system (T6SS), assembles a contractile tail acting as a spring to propel a toxin-loaded needle. Due to its size and mechanism of action, the T6SS was intuitively thought to be energetically costly. Here, using a combination of mutants and growth measurements in liquid medium, on plates, and in competition experiments, we show that the T6SS does not entail a growth cost to enteroaggregative Escherichia coli.


Assuntos
Proteínas de Escherichia coli , Sistemas de Secreção Tipo VI , Escherichia coli/genética , Sistemas de Secreção Tipo VI/genética , Proteínas de Escherichia coli/genética , Proteínas de Bactérias
18.
Biochem Soc Trans ; 51(6): 2117-2126, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37987513

RESUMO

Mitochondria are vital to the functions of eukaryotic cells. Most mitochondrial proteins are transported into the organelle following their synthesis by cytoplasmic ribosomes. However, precise protein targeting is complex because the two diverse lipid membranes encase mitochondria. Efficient protein translocation across membranes and accurate sorting to specific sub-compartments require the cooperation of multiple factors. Any failure in mitochondrial protein import can disrupt organelle fitness. Proteins intended for mitochondria make up a significant portion of all proteins produced in the cytosol. Therefore, import defects causing their mislocalization can significantly stress cellular protein homeostasis. Recognition of this phenomenon has increased interest in molecular mechanisms that respond to import-related stress and restore proteostasis, which is the focus of this review. Significantly, disruptions in protein homeostasis link strongly to the pathology of several degenerative disorders highly relevant in ageing societies. A comprehensive understanding of protein import quality control will allow harnessing this machinery in therapeutic approaches.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Mitocôndrias/metabolismo , Transporte Proteico/fisiologia , Proteínas Mitocondriais/metabolismo , Transporte Biológico , Citosol/metabolismo
19.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014244

RESUMO

Dynein complexes are large, multi-unit assemblies involved in many biological processes including male fertility via their critical roles in protein transport and axoneme motility. Previously we identified a pathogenic variant in the dynein gene AXDND1 in an infertile man. Subsequently we identified an additional four potentially compound heterozygous variants of unknown significance in AXDND1 in two additional infertile men. We thus tested the role of AXDND1 in mammalian male fertility by generating a knockout mouse model. Axdnd1-/- males were sterile at all ages but could undergo one round of histologically complete spermatogenesis. Subsequently, a progressive imbalance of spermatogonial commitment to spermatogenesis over self-renewal occurred, ultimately leading to catastrophic germ cell loss, loss of blood-testis barrier patency and immune cell infiltration. Sperm produced during the first wave of spermatogenesis were immotile due to abnormal axoneme structure, including the presence of ectopic vesicles and abnormalities in outer dense fibres and microtubule doublet structures. Sperm output was additionally compromised by a severe spermiation defect and abnormal sperm individualisation. Collectively, our data highlight the essential roles of AXDND1 as a regulator of spermatogonial commitment to spermatogenesis and during the processes of spermiogenesis where it is essential for sperm tail development, release and motility.

20.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834241

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative disorders associated with age or inherited mutations. It is characterized by severe dementia in the late stages that affect memory, cognitive functions, and daily life overall. AD progression is linked to the accumulation of cytotoxic amyloid beta (Aß) and hyperphosphorylated tau protein combined with other pathological features such as synaptic loss, defective energy metabolism, imbalances in protein, and metal homeostasis. Several treatment options for AD are under investigation, including antibody-based therapy and stem cell transplantation. Amyloid precursor protein (APP) is a membrane protein considered to play a main role in AD pathology. It is known that APP in physiological conditions follows a non-amyloidogenic pathway; however, it can proceed to an amyloidogenic scenario, which leads to the generation of extracellular deleterious Aß plaques. Not all steps of APP biogenesis are clear so far, and these questions should be addressed in future studies. AD is a complex chronic disease with many factors that contribute to disease progression.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA