Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Biol Chem ; : 107877, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39395807

RESUMO

Protein O-GlcNAc modification, similar to phosphorylation, supports cell survival by regulating key processes like transcription, cell division, trafficking, signaling, and stress tolerance. However, its role in protein homeostasis, particularly in protein synthesis, folding, and degradation remains poorly understood. Our previous research shows that O-GlcNAc cycling enzymes associate with the translation machinery during protein synthesis and modify ribosomal proteins. Protein translation is closely linked to 26S proteasome activity, which recycles amino acids and clears misfolded proteins during stress, preventing aggregation and cell death. In this study, we demonstrate that pharmacological perturbation of the proteasome-like that used in cancer treatment- leads to the increased abundance of OGT and OGA in a ribosome-rich fraction, concurrent with O-GlcNAc modification of core translational and ribosome-associated proteins. This interaction is synchronous with eIF2α-dependent translational reprogramming. We also found that protein ubiquitination depends partly on O-GlcNAc metabolism in MEFs, as OGT-depleted cells show decreased ubiquitination under stress. Using an O-GlcNAc-peptide enrichment strategy followed by LC-MS/MS, we identified 84 unique O-GlcNAc sites across 55 proteins, including ribosomal proteins, nucleolar factors, and the 70-kDa heat shock protein family. Hsp70 and OGT colocalize with the translational machinery in an RNA-independent manner, aiding in partial protein translation recovery during sustained stress. O-GlcNAc cycling on ribosome-associated proteins collaborates with Hsp70 to restore protein synthesis during proteotoxicity, suggesting a role in tumor resistance to proteasome inhibitors.

2.
Nanomaterials (Basel) ; 14(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39404291

RESUMO

Metal nanoparticles have been tested for therapeutic and imaging applications in pre-clinical models of cancer, but fears of toxicity have limited their translation. An emerging concept in nanomedicine is to exploit the inherent drug-like properties of unmodified nanomaterials for cancer therapy. To be useful clinically, there must be a window between the toxicity of the nanomaterial to cancer and toxicity to normal cells. This necessitates identification of specific vulnerabilities in cancers that can be targeted using nanomaterials without inducing off-target toxicity. Previous studies point to proteotoxic stress as a driver of silver nanoparticle (AgNPs) toxicity. Two key cell stress responses involved in mitigating proteotoxicity are the heat shock response (HSR) and the integrated stress response (ISR). Here, we examine the role that these stress responses play in AgNP-induced cytotoxicity in triple-negative breast cancer (TNBC) and immortalized mammary epithelial cells. Furthermore, we investigate HSR and ISR inhibitors as potential drug partners to increase the anti-cancer efficacy of AgNPs without increasing off-target toxicity. We showed that AgNPs did not strongly induce the HSR at a transcriptional level, but instead decreased expression of heat shock proteins (HSPs) at the protein level, possibly due to degradation in AgNP-treated TNBC cells. We further showed that the HSR inhibitor, KRIBB11, synergized with AgNPs in TNBC cells, but also increased off-target toxicity in immortalized mammary epithelial cells. In contrast, we found that salubrinal, a drug that can sustain pro-death ISR signaling, enhanced AgNP-induced cell death in TNBC cells without increasing toxicity in immortalized mammary epithelial cells. Subsequent co-culture studies demonstrated that AgNPs in combination with salubrinal selectively eliminated TNBCs without affecting immortalized mammary epithelial cells grown in the same well. Our findings provide additional support for proteotoxic stress as a mechanism by which AgNPs selectively kill TNBCs and will help guide future efforts to identify drug partners that would be beneficial for use with AgNPs for cancer therapy.

3.
Free Radic Biol Med ; 224: 785-796, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39317269

RESUMO

Iron is critical for neuronal activity and metabolism, and iron dysregulation alters these functions in age-related neurodegenerative disorders, such as Alzheimer's disease (AD). AD is a chronic neurodegenerative disease characterized by progressive neuronal dysfunction, memory loss and decreased cognitive function. AD patients exhibit elevated iron levels in the brain compared to age-matched non-AD individuals. However, the degree to which iron overload contributes to AD pathogenesis is unclear. Here, we evaluated the involvement of ferroptosis, an iron-dependent cell death process, in mediating AD-like pathologies in C. elegans. Results showed that iron accumulation occurred prior to the loss of neuronal function as worms age. In addition, energetic imbalance was an early event in iron-induced loss of neuronal function. Furthermore, the loss of neuronal function was, in part, due to increased mitochondrial reactive oxygen species mediated oxidative damage, ultimately resulting in ferroptotic cell death. The mitochondrial redox environment and ferroptosis were modulated by pharmacologic processes that exacerbate or abolish iron accumulation both in wild-type worms and worms with increased levels of neuronal amyloid beta (Aß). However, neuronal Aß worms were more sensitive to ferroptosis-mediated neuronal loss, and this increased toxicity was ameliorated by limiting the uptake of ferrous iron through knockout of divalent metal transporter 1 (DMT1). In addition, DMT1 knockout completely suppressed phenotypic measures of Aß toxicity with age. Overall, our findings suggest that iron-induced ferroptosis alters the mitochondrial redox environment to drive oxidative damage when neuronal Aß is overexpressed. DMT1 knockout abolishes neuronal Aß-associated pathologies by reducing neuronal iron uptake.

4.
Antioxidants (Basel) ; 13(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39199177

RESUMO

Phytoene is a colourless carotenoid widely available from dietary sources and a precursor for the synthesis of other carotenoids. Although present at high concentrations across different tissues, phytoene is largely viewed as not having physiological activity. Here, we utilize the model organism C. elegans to show that phytoene is bioactive and has anti-ageing properties. Supplementation with phytoene protects against oxidative damage and amyloid-ß42 proteotoxicity (a major pathology of Alzheimer's disease), and extends lifespan. We also examine extracts from two microalgae, Chlorella sorokiniana and Dunaliella bardawil. We show that the extracts contain high levels of phytoene, and find that these phytoene-rich extracts have protective effects similar to pure phytoene. Our findings show that phytoene is a bioactive molecule with positive effects on ageing and longevity. Our work also suggests that phytoene-rich microalgae extracts can utilized to produce foods or supplements that promote healthy ageing and prevent the development of chronic age-related diseases.

5.
bioRxiv ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39149382

RESUMO

Iron is critical for neuronal activity and metabolism, and iron dysregulation alters these functions in age-related neurodegenerative disorders, such as Alzheimer's disease (AD). AD is a chronic neurodegenerative disease characterized by progressive neuronal dysfunction, memory loss and decreased cognitive function. AD patients exhibit elevated iron levels in the brain compared to age-matched non-AD individuals. However, the degree to which iron overload contributes to AD pathogenesis is unclear. Here, we evaluated the involvement of ferroptosis, an iron-dependent cell death process, in mediating AD-like pathologies in C. elegans. Results showed that iron accumulation occurred prior to the loss of neuronal function as worms age. In addition, energetic imbalance was an early event in iron-induced loss of neuronal function. Furthermore, the loss of neuronal function was, in part, due to increased mitochondrial reactive oxygen species mediated oxidative damage, ultimately resulting in ferroptotic cell death. The mitochondrial redox environment and ferroptosis were modulated by pharmacologic processes that exacerbate or abolish iron accumulation both in wild-type worms and worms with increased levels of neuronal amyloid beta (Aß). However, neuronal Aß worms were more sensitive to ferroptosis-mediated neuronal loss, and this increased toxicity was ameliorated by limiting the uptake of ferrous iron through knockout of divalent metal transporter 1 (DMT1). In addition, DMT1 knockout completely suppressed phenotypic measures of Aß toxicity with age. Overall, our findings suggest that iron-induced ferroptosis alters the mitochondrial redox environment to drive oxidative damage when neuronal Aß is overexpressed. DMT1 knockout abolishes neuronal Aß-associated pathologies by reducing neuronal iron uptake.

6.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38989890

RESUMO

Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently. The mechanisms behind this discrepancy are currently unknown. Here, we compare the transcriptional response of male and female flies to P→S mistranslation to identify genes and cellular processes that underlie sex-specific differences. Both males and females downregulate genes associated with various metabolic processes in response to P→S mistranslation. Males downregulate genes associated with extracellular matrix organization and response to negative stimuli such as wounding, whereas females downregulate aerobic respiration and ATP synthesis genes. Both sexes upregulate genes associated with gametogenesis, but females also upregulate cell cycle and DNA repair genes. These observed differences in the transcriptional response of male and female flies to P→S mistranslation have important implications for the sex-specific impact of mistranslation on disease and tRNA therapeutics.


Assuntos
Drosophila melanogaster , Prolina , Biossíntese de Proteínas , Serina , Transcriptoma , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Masculino , Feminino , Prolina/metabolismo , Serina/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , Regulação da Expressão Gênica
7.
Cell Rep ; 43(8): 114473, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39024102

RESUMO

Mitochondria require the constant import of nuclear-encoded proteins for proper functioning. Impaired protein import not only depletes mitochondria of essential factors but also leads to toxic accumulation of un-imported proteins outside the organelle. Here, we investigate the consequences of impaired mitochondrial protein import in human cells. We demonstrate that un-imported proteins can clog the mitochondrial translocase of the outer membrane (TOM). ATAD1, a mitochondrial ATPase, removes clogged proteins from TOM to clear the entry gate into the mitochondria. ATAD1 interacts with both TOM and stalled proteins, and its knockout results in extensive accumulation of mitochondrial precursors as well as decreased protein import. Increased ATAD1 expression contributes to improved fitness of cells with inefficient mitochondrial protein import. Overall, we demonstrate the importance of the ATAD1 quality control pathway in surveilling protein import and its contribution to cellular health.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Mitocôndrias , Proteínas Mitocondriais , Transporte Proteico , Humanos , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Células HEK293 , Células HeLa , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética
8.
Biomolecules ; 14(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786006

RESUMO

Age is the primary risk factor for neurodegenerative diseases such as Alzheimer's and Huntington's disease. Alzheimer's disease is the most common form of dementia and a leading cause of death in the elderly population of the United States. No effective treatments for these diseases currently exist. Identifying effective treatments for Alzheimer's, Huntington's, and other neurodegenerative diseases is a major current focus of national scientific resources, and there is a critical need for novel therapeutic strategies. Here, we investigate the potential for targeting the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) using Caenorhabditis elegans expressing amyloid-beta or a polyglutamine peptide in body wall muscle, modeling the proteotoxicity in Alzheimer's and Huntington's disease, respectively. We show that knocking down the enzyme that degrades 3HAA, 3HAA dioxygenase (HAAO), delays the age-associated paralysis in both models. This effect on paralysis was independent of the protein aggregation in the polyglutamine model. We also show that the mechanism of protection against proteotoxicity from HAAO knockdown is mimicked by 3HAA supplementation, supporting elevated 3HAA as the mediating event linking HAAO knockdown to delayed paralysis. This work demonstrates the potential for 3HAA as a targeted therapeutic in neurodegenerative disease, though the mechanism is yet to be explored.


Assuntos
Ácido 3-Hidroxiantranílico , Peptídeos beta-Amiloides , Caenorhabditis elegans , Paralisia , Peptídeos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Animais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos/farmacologia , Ácido 3-Hidroxiantranílico/metabolismo , Paralisia/induzido quimicamente , Paralisia/metabolismo , Paralisia/genética , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/tratamento farmacológico , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Doença de Huntington/metabolismo , Doença de Huntington/genética , Dioxigenases/metabolismo , Dioxigenases/genética
9.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766246

RESUMO

Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently. The mechanisms behind this discrepancy are currently unknown. Here, we compare the transcriptional response of male and female flies to P→S mistranslation to identify genes and cellular processes that underlie sex-specific differences. Both males and females downregulate genes associated with various metabolic processes in response to P→S mistranslation. Males downregulate genes associated with extracellular matrix organization and response to negative stimuli such as wounding, whereas females downregulate aerobic respiration and ATP synthesis genes. Both sexes upregulate genes associated with gametogenesis, but females also upregulate cell cycle and DNA repair genes. These observed differences in the transcriptional response of male and female flies to P→S mistranslation have important implications for the sex-specific impact of mistranslation on disease and tRNA therapeutics.

10.
ACS Chem Neurosci ; 15(10): 1967-1989, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657106

RESUMO

Disturbances in protein phase transitions promote protein aggregation─a neurodegeneration hallmark. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also regulate phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against phototoxicity by proteostatic regulations of neuroprotective substrates of Ranbp2 and by suppressing the buildup of polyubiquitylated substrates. Losses of peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 recapitulate molecular effects of Ranbp2 haploinsufficiency. These CY impairments also stimulate deubiquitylation activities and phase transitions of 19S cap subunits of the 26S proteasome that associates with Ranbp2. However, links between CY moonlighting activity, substrate ubiquitylation, and proteostasis remain incomplete. Here, we reveal the Ranbp2 regulation of small heat shock chaperones─crystallins in the chorioretina by proteomics of mice with total or selective modular deficits of Ranbp2. Specifically, loss of CY PPIase of Ranbp2 upregulates αA-Crystallin, which is repressed in adult nonlenticular tissues. Conversely, impairment of CY's chaperone activity opposite to the PPIase pocket downregulates a subset of αA-Crystallin's substrates, γ-crystallins. These CY-dependent effects cause age-dependent and chorioretinal-selective declines of ubiquitylated substrates without affecting the chorioretinal morphology. A model emerges whereby inhibition of Ranbp2's CY PPIase remodels crystallins' expressions, subdues molecular aging, and preordains the chorioretina to neuroprotection by augmenting the chaperone capacity and the degradation of polyubiquitylated substrates against proteostatic impairments. Further, the druggable Ranbp2 CY holds pan-therapeutic potential against proteotoxicity and neurodegeneration.


Assuntos
Ciclofilinas , Chaperonas Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares , Peptidilprolil Isomerase , Proteostase , Animais , Chaperonas Moleculares/metabolismo , Camundongos , Ciclofilinas/metabolismo , Proteostase/fisiologia , Peptidilprolil Isomerase/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Cristalinas/metabolismo
11.
J Hazard Mater ; 471: 134270, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640676

RESUMO

Alachlor, a widely used chloroacetanilide herbicide for controlling annual grasses in crops, has been reported to rapidly trigger protein denaturation and aggregation in the eukaryotic model organism Saccharomyces cerevisiae. Therefore, this study aimed to uncover cellular mechanisms involved in preventing alachlor-induced proteotoxicity. The findings reveal that the ubiquitin-proteasome system (UPS) plays a crucial role in eliminating alachlor-denatured proteins by tagging them with polyubiquitin for subsequent proteasomal degradation. Exposure to alachlor rapidly induced an inhibition of proteasome activity by 90 % within 30 min. The molecular docking analysis suggests that this inhibition likely results from the binding of alachlor to ß subunits within the catalytic core of the proteasome. Notably, our data suggest that nascent proteins in the endoplasmic reticulum (ER) are the primary targets of alachlor. Consequently, the unfolded protein response (UPR), responsible for coping with aberrant proteins in the ER, becomes activated within 1 h of alachlor treatment, leading to the splicing of HAC1 mRNA into the active transcription activator Hac1p and the upregulation of UPR gene expression. These findings underscore the critical roles of the protein quality control systems UPS and UPR in mitigating alachlor-induced proteotoxicity by degrading alachlor-denatured proteins and enhancing the protein folding capacity of the ER.


Assuntos
Acetamidas , Retículo Endoplasmático , Herbicidas , Complexo de Endopeptidases do Proteassoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Resposta a Proteínas não Dobradas , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Acetamidas/farmacologia , Acetamidas/toxicidade , Herbicidas/toxicidade , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Citosol/metabolismo , Citosol/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estresse Proteotóxico
12.
Aging Cell ; 23(2): e14046, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990605

RESUMO

A major goal of healthy aging is to prevent declining resilience and increasing frailty, which are associated with many chronic diseases and deterioration of stress response. Here, we propose a loss-or-gain survival model, represented by the ratio of cumulative stress span to life span, to quantify stress resilience at organismal level. As a proof of concept, this is demonstrated by reduced survival resilience in Caenorhabditis elegans exposed to exogenous oxidative stress induced by paraquat or with endogenous proteotoxic stress caused by polyglutamine or amyloid-ß aggregation. Based on this, we reveal that a hidden peptide ("cryptide")-AbaPep#07 (SETYELRK)-derived from abalone hemocyanin not only enhances survival resilience against paraquat-induced oxidative stress but also rescues proteotoxicity-mediated behavioral deficits in C. elegans, indicating its capacity against stress and neurodegeneration. Interestingly, AbaPep#07 is also found to increase cost-free longevity and age-related physical fitness in nematodes. We then demonstrate that AbaPep#07 can promote nuclear localization of SKN-1/Nrf, but not DAF-16/FOXO, transcription factor. In contrast to its effects in wild-type nematodes, AbaPep#07 cannot increase oxidative stress survival and physical motility in loss-of-function skn-1 mutant, suggesting an SKN-1/Nrf-dependent fashion of these effects. Further investigation reveals that AbaPep#07 can induce transcriptional activation of immune defense, lipid metabolism, and metabolic detoxification pathways, including many SKN-1/Nrf target genes. Together, our findings demonstrate that AbaPep#07 is able to boost stress resilience and reduce behavioral frailty via SKN-1/Nrf-governed transcriptional reprogramming, and provide an insight into the health-promoting potential of antioxidant cryptides as geroprotectors in aging and associated conditions.


Assuntos
Proteínas de Caenorhabditis elegans , Fragilidade , Resiliência Psicológica , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Longevidade/genética , Reprogramação Metabólica , Estresse Oxidativo/genética , Paraquat/toxicidade , Peptídeos/metabolismo
13.
Biophys Chem ; 304: 107130, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952497

RESUMO

Impeding or reducing human amylin aggregation and/or its toxicity can be key to preventing pancreatic islet amyloidosis and ß-cell loss in patients with Type 2 Diabetes Mellitus (T2DM). Here, Punica granatum (pomegranate) peel, Sideritis raeseri (ironwort) and Aronia melanocarpa (chokeberry) leaf extracts, were tested for their novel anti-aggregative and antitoxic properties in human amylin (hIAPP) treated rat pancreatic insulinoma (INS) cells. The protein aggregation (Th-T) assay revealed an inhibitory trend of all three plant extracts against amylin aggregates. In agreement with this finding, pomegranate peel and ironwort extracts effectively prevented the transition of hIAPP from disordered, random coil structures into aggregation prone ß-sheet enriched molecular assemblies, revealed by CD spectroscopy. Consistent with their anti-aggregative action, all three extracts prevented, to various degrees, reactive oxygen species (ROS) accumulation, mitochondrial stress, and, ultimately, apoptosis of INS cells. Collectively, the results from this study demonstrate effectiveness of natural products to halt hIAPP aggregation, redox stress, and toxicity, which could be exploited as novel therapeutics against amylin-derived islet amyloidosis and ß-cell stress in T2DM.


Assuntos
Amiloidose , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Punica granatum , Sideritis , Humanos , Ratos , Animais , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Diabetes Mellitus Tipo 2/metabolismo , Sideritis/metabolismo , Punica granatum/metabolismo , Amiloidose/metabolismo , Extratos Vegetais/farmacologia
14.
Front Microbiol ; 14: 1281058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075883

RESUMO

Metal(loid) salts were used to treat infectious diseases in the past due to their exceptional biocidal properties at low concentrations. However, the mechanism of their toxicity has yet to be fully elucidated. The production of reactive oxygen species (ROS) has been linked to the toxicity of soft metal(loid)s such as Ag(I), Au(III), As(III), Cd(II), Hg(II), and Te(IV). Nevertheless, few reports have described the direct, or ROS-independent, effects of some of these soft-metal(loid)s on bacteria, including the dismantling of iron-sulfur clusters [4Fe-4S] and the accumulation of porphyrin IX. Here, we used genome-wide genetic, proteomic, and biochemical approaches under anaerobic conditions to evaluate the direct mechanisms of toxicity of these metal(loid)s in Escherichia coli. We found that certain soft-metal(loid)s promote protein aggregation in a ROS-independent manner. This aggregation occurs during translation in the presence of Ag(I), Au(III), Hg(II), or Te(IV) and post-translationally in cells exposed to Cd(II) or As(III). We determined that aggregated proteins were involved in several essential biological processes that could lead to cell death. For instance, several enzymes involved in amino acid biosynthesis were aggregated after soft-metal(loid) exposure, disrupting intracellular amino acid concentration. We also propose a possible mechanism to explain how soft-metal(loid)s act as proteotoxic agents.

15.
Pharm Pat Anal ; 12(5): 213-218, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37982638

RESUMO

Aging and proteotoxicity go hand in hand. Inhibiting proteotoxicity has been proposed to extend lifespan. This invention describes a new strategy to limit proteotoxicity and to extend the lifespan. Loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase, elevates the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. The present invention provides a group of molecules for use in the prevention of aging-associated proteotoxicity caused by protein aggregation diseases and/or to increase the lifespan of a eukaryotic organism. These molecules are either steroid sulfatase inhibitors or sulfated C19 steroids, both of which reproduce the phenotype of sul-2 mutants. One particular representative example is STX-64. Potential applications of the claims have been demonstrated in animal models of Parkinson's disease, Huntington's disease and Alzheimer's disease.


Assuntos
Esteril-Sulfatase , Sulfatos , Animais , Esteril-Sulfatase/metabolismo , Sulfatos/metabolismo , Agregados Proteicos , Envelhecimento/metabolismo , Esteroides/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo
16.
FASEB Bioadv ; 5(11): 484-505, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37936921

RESUMO

ß2-microglobulin (ß2-m) is a plasma protein derived from physiological shedding of the class I major histocompatibility complex (MHCI), causing human systemic amyloidosis either due to persistently high concentrations of the wild-type (WT) protein in hemodialyzed patients, or in presence of mutations, such as D76N ß2-m, which favor protein deposition in the adulthood, despite normal plasma levels. Here we describe a new transgenic Caenorhabditis elegans (C. elegans) strain expressing human WT ß2-m at high concentrations, mimicking the condition that underlies dialysis-related amyloidosis (DRA) and we compare it to a previously established strain expressing the highly amyloidogenic D76N ß2-m at lower concentrations. Both strains exhibit behavioral defects, the severity of which correlates with ß2-m levels rather than with the presence of mutations, being more pronounced in WT ß2-m worms. ß2-m expression also has a deep impact on the nematodes' proteomic and metabolic profiles. Most significantly affected processes include protein degradation and stress response, amino acids metabolism, and bioenergetics. Molecular alterations are more pronounced in worms expressing WT ß2-m at high concentration compared to D76N ß2-m worms. Altogether, these data show that ß2-m is a proteotoxic protein in vivo also in its wild-type form, and that concentration plays a key role in modulating pathogenicity. Our transgenic nematodes recapitulate the distinctive features subtending DRA compared to hereditary ß2-m amyloidosis (high levels of non-mutated ß2-m vs. normal levels of variant ß2-m) and provide important clues on the molecular bases of these human diseases.

17.
Biochem Soc Trans ; 51(6): 2117-2126, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37987513

RESUMO

Mitochondria are vital to the functions of eukaryotic cells. Most mitochondrial proteins are transported into the organelle following their synthesis by cytoplasmic ribosomes. However, precise protein targeting is complex because the two diverse lipid membranes encase mitochondria. Efficient protein translocation across membranes and accurate sorting to specific sub-compartments require the cooperation of multiple factors. Any failure in mitochondrial protein import can disrupt organelle fitness. Proteins intended for mitochondria make up a significant portion of all proteins produced in the cytosol. Therefore, import defects causing their mislocalization can significantly stress cellular protein homeostasis. Recognition of this phenomenon has increased interest in molecular mechanisms that respond to import-related stress and restore proteostasis, which is the focus of this review. Significantly, disruptions in protein homeostasis link strongly to the pathology of several degenerative disorders highly relevant in ageing societies. A comprehensive understanding of protein import quality control will allow harnessing this machinery in therapeutic approaches.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Mitocôndrias/metabolismo , Transporte Proteico/fisiologia , Proteínas Mitocondriais/metabolismo , Transporte Biológico , Citosol/metabolismo
18.
Front Mol Biosci ; 10: 1290118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38016061

RESUMO

The protein homeostasis (proteostasis) network is a nexus of molecular mechanisms that act in concert to maintain the integrity of the proteome and ensure proper cellular and organismal functionality. Early in life the proteostasis network efficiently preserves the functionality of the proteome, however, as the organism ages, or due to mutations or environmental insults, subsets of inherently unstable proteins misfold and form insoluble aggregates that accrue within the cell. These aberrant protein aggregates jeopardize cellular viability and, in some cases, underlie the development of devastating illnesses. Hence, the accumulation of protein aggregates activates different nodes of the proteostasis network that refold aberrantly folded polypeptides, or direct them for degradation. The proteostasis network apparently functions within the cell, however, a myriad of studies indicate that this nexus of mechanisms is regulated at the organismal level by signaling pathways. It was also discovered that the proteostasis network differentially responds to dissimilar proteotoxic insults by tailoring its response according to the specific challenge that cells encounter. In this mini-review, we delineate the proteostasis-regulating neuronal mechanisms, describe the indications that the proteostasis network differentially responds to distinct proteotoxic challenges, and highlight possible future clinical prospects of these insights.

19.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808805

RESUMO

In mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Here we show that in budding yeast, Heat Shock Response (HSR) genes under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10 min and dissipate within 1 h, Hsf1 condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes and RNA expression are detectable only later in the response and peak much later (>1 h). This contrasts with the coordinate response of HSR genes to thermal stress where Pol II occupancy, transcription, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5-10 min and dissipate within 1 h). Collectively, our data suggest that different stimuli drive distinct transcription, topologic, and phase-separation phenomena dependent on the same transcription factor and that transcription factor-containing condensates represent only part of the ensemble required for gene activation.

20.
Cell Mol Life Sci ; 80(11): 342, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904059

RESUMO

Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.


Assuntos
Arsênio , Metaloides , Doenças Neurodegenerativas , Humanos , Arsênio/toxicidade , Antimônio/toxicidade , Doenças Neurodegenerativas/induzido quimicamente , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA