Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 132024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230574

RESUMO

Proteasomes are essential molecular machines responsible for the degradation of proteins in eukaryotic cells. Altered proteasome activity has been linked to neurodegeneration, auto-immune disorders and cancer. Despite the relevance for human disease and drug development, no method currently exists to monitor proteasome composition and interactions in vivo in animal models. To fill this gap, we developed a strategy based on tagging of proteasomes with promiscuous biotin ligases and generated a new mouse model enabling the quantification of proteasome interactions by mass spectrometry. We show that biotin ligases can be incorporated in fully assembled proteasomes without negative impact on their activity. We demonstrate the utility of our method by identifying novel proteasome-interacting proteins, charting interactomes across mouse organs, and showing that proximity-labeling enables the identification of both endogenous and small-molecule-induced proteasome substrates.


Assuntos
Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Camundongos , Humanos , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas
2.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119815, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151475

RESUMO

The Ku heterodimer (Ku70/Ku80) is central to the non-homologous end-joining (NHEJ) pathway. Ku binds to the broken DNA ends and promotes the assembly of the DNA repair complex. The N-terminal Ku70 von Willebrand A (vWA) domain is known to mediate protein-protein interactions important for the repair process. In particular, the D192 and D195 residues within helix 5 of the Ku70 vWA domain were shown to be essential for NHEJ function, although the precise role of these residues was not identified. Here, we set up a miniTurbo screening system to identify Ku70 D192/D195 residue-specific interactors in a conditional, human Ku70-knockout cell line in response to DNA damage. Using fusion protein constructs of Ku70 wild-type and mutant (D192A/D195R) with miniTurbo, we identified a number of candidate proximal interactors in response to DNA damage treatment, including DNA Ligase IV (LigIV), a known and essential NHEJ complex member. Interestingly, LigIV was enriched in our wildtype screen but not the Ku70 D192A/D195R screen, suggesting its interaction is disrupted by the mutation. Validation experiments demonstrated that the DNA damage-induced interaction between Ku70 and LigIV was disrupted by the Ku70 D192A/D195R mutations. Our findings provide greater detail about the interaction surface between the Ku70 vWA domain and LigIV and offer strong evidence that the D192 and D195 residues are important for NHEJ completion through an interaction with LigIV. Altogether, this work reveals novel potential proximal interactors of Ku in response to DNA damage and identifies Ku70 D192/D195 residues as essential for LigIV interaction with Ku during NHEJ.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP , Proteínas de Ligação a DNA , Autoantígeno Ku , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Humanos , Reparo do DNA por Junção de Extremidades/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Ligase Dependente de ATP/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Dano ao DNA , Ligação Proteica , Domínios Proteicos , Fator de von Willebrand/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/química
3.
Angew Chem Int Ed Engl ; 62(43): e202304838, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37650228

RESUMO

Monitoring the highly dynamic and complex immune response remains a great challenge owing to the lack of reliable and specific approaches. Here, we develop a strategy to monitor the cascade of tumor immune response through the cooperation of pore-forming alginate gel with chemoenzymatic proximity-labeling. A macroporous gel containing tumor-associated antigens, adjuvants, and pro-inflammatory cytokines is utilized to recruit endogenous DCs and enhance their maturation in vivo. The mature DCs are then modified with GDP-fucose-fucosyltransferase (GDP-Fuc-Fuct) via the self-catalysis of fucosyltransferase (Fuct). Following the migration of the obtained Fuct-DCs to the draining lymph nodes (dLNs), the molecular recognition mediated interaction of DCs and T cells leads to the successful decoration of T cells with GDP-Fuc-azide through the Fuct catalyzed proximity-labeling. Therefore, the activated tumor-specific T cells in dLNs and tumors can be identified through bioorthogonal labeling, opening up a new avenue for studying the immune mechanism of tumors in situ.

4.
Biochem J ; 479(17): 1857-1875, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36111979

RESUMO

Membrane contact sites (MCSs) mediate crucial physiological processes in eukaryotic cells, including ion signaling, lipid metabolism, and autophagy. Dysregulation of MCSs is closely related to various diseases, such as type 2 diabetes mellitus (T2DM), neurodegenerative diseases, and cancers. Visualization, proteomic mapping and manipulation of MCSs may help the dissection of the physiology and pathology MCSs. Recent technical advances have enabled better understanding of the dynamics and functions of MCSs. Here we present a summary of currently known functions of MCSs, with a focus on optical approaches to visualize and manipulate MCSs, as well as proteomic mapping within MCSs.


Assuntos
Diabetes Mellitus Tipo 2 , Retículo Endoplasmático , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Optogenética , Proteômica
5.
Open Biol ; 12(8): 220149, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35946312

RESUMO

Organ functions are highly specialized and interdependent. Secreted factors regulate organ development and mediate homeostasis through serum trafficking and inter-organ communication. Enzyme-catalysed proximity labelling enables the identification of proteins within a specific cellular compartment. Here, we report a BirA*G3 mouse strain that enables CRE-dependent promiscuous biotinylation of proteins trafficking through the endoplasmic reticulum. When broadly activated throughout the mouse, widespread labelling of proteins was observed within the secretory pathway. Streptavidin affinity purification and peptide mapping by quantitative mass spectrometry (MS) proteomics revealed organ-specific secretory profiles and serum trafficking. As expected, secretory proteomes were highly enriched for signal peptide-containing proteins, highlighting both conventional and non-conventional secretory processes, and ectodomain shedding. Lower-abundance proteins with hormone-like properties were recovered and validated using orthogonal approaches. Hepatocyte-specific activation of BirA*G3 highlighted liver-specific biotinylated secretome profiles. The BirA*G3 mouse model demonstrates enhanced labelling efficiency and tissue specificity over viral transduction approaches and will facilitate a deeper understanding of secretory protein interplay in development, and in healthy and diseased adult states.


Assuntos
Modelos Genéticos , Secretoma , Animais , Biotinilação , Mamíferos , Espectrometria de Massas/métodos , Camundongos , Proteômica/métodos
6.
EMBO J ; 41(18): e10242, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993331

RESUMO

Microtubule-associated protein tau is a central factor in Alzheimer's disease and other tauopathies. However, the physiological functions of tau are unclear. Here, we used proximity-labelling proteomics to chart tau interactomes in primary neurons and mouse brains in vivo. Tau interactors map onto pathways of cytoskeletal, synaptic vesicle and postsynaptic receptor regulation and show significant enrichment for Parkinson's, Alzheimer's and prion disease. We find that tau interacts with and dose-dependently reduces the activity of N-ethylmaleimide sensitive fusion protein (NSF), a vesicular ATPase essential for AMPA-type glutamate receptor (AMPAR) trafficking. Tau-deficient (tau-/- ) neurons showed mislocalised expression of NSF and enhanced synaptic AMPAR surface levels, reversible through the expression of human tau or inhibition of NSF. Consequently, enhanced AMPAR-mediated associative and object recognition memory in tau-/- mice is suppressed by both hippocampal tau and infusion with an NSF-inhibiting peptide. Pathologic mutant tau from mouse models or Alzheimer's disease significantly enhances NSF inhibition. Our results map neuronal tau interactomes and delineate a functional link of tau with NSF in plasticity-associated AMPAR-trafficking and memory.


Assuntos
Doença de Alzheimer , Receptores de AMPA , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Hipocampo/metabolismo , Humanos , Memória , Camundongos , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Neurônios/metabolismo , Transporte Proteico , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
7.
FEBS Lett ; 596(18): 2382-2399, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35789482

RESUMO

The small G protein Arl5b is localised on the trans-Golgi network (TGN) and regulates endosomes-to-TGN transport. Here, we combined in vivo and in vitro techniques to map the interactive partners and near neighbours of Arl5b at the TGN, using constitutively active, membrane-bound Arl5b(Q70L)-GFP in stably expressing HeLa cells, and the proximity labelling techniques BioID and APEX2 in parallel with GFP-Trap pull down. From MS analysis, 22 Golgi proteins were identified; 50% were TGN-localised Rabs, Arfs and Arls. The scaffold/tethering factors ACBD3 (GCP60) and PIST (GOPC) were also identified, and we show that Arl5b is required for TGN recruitment of ACBD3. Overall, the combination of in vivo labelling and direct pull downs indicates a highly organised complex of small G proteins on TGN membranes.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transporte Proteico/fisiologia , Rede trans-Golgi/metabolismo
8.
J Extracell Vesicles ; 11(6): e12239, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35716063

RESUMO

The extracellular vesicle exosome mediates intercellular communication by transporting macromolecules such as proteins and ribonucleic acids (RNAs). Determining cargo contents with high accuracy will help decipher the biological processes that exosomes mediate in various contexts. Existing methods for probing exosome cargo molecules rely on a prior exosome isolation procedure. Here we report an in situ labelling approach for exosome cargo identification, which bypasses the exosome isolation steps. In this methodology, a variant of the engineered ascorbate peroxidase APEX, fused to an exosome cargo protein such as CD63, is expressed specifically in exosome-generating vesicles in live cells or in secreted exosomes in the conditioned medium, to induce biotinylation of the proteins in the vicinity of the APEX variant for a short period of time. Mass spectrometry analysis of the proteins biotinylated by this approach in exosomes secreted by kidney proximal tubule-derived cells reveals that oxidative stress can cause ribosomal proteins to accumulate in an exosome subpopulation that contains the CD63-fused APEX variant.


Assuntos
Exossomos , Ascorbato Peroxidases/análise , Transporte Biológico , Comunicação Celular , Exossomos/química , Proteínas/análise
9.
New Phytol ; 235(2): 786-800, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396742

RESUMO

Marchantia polymorpha is a model liverwort and its overall low genetic redundancy is advantageous for dissecting complex pathways. Proximity-dependent in vivo biotin-labelling methods have emerged as powerful interactomics tools in recent years. However, interactomics studies applying proximity labelling are currently limited to angiosperm species in plants. Here, we established and evaluated a miniTurbo-based interactomics method in M. polymorpha using MpSYP12A and MpSYP13B, two plasma membrane-localized SNARE proteins, as baits. We show that our method yields a manifold of potential interactors of MpSYP12A and MpSYP13B compared to a coimmunoprecipitation approach. Our method could capture specific candidates for each SNARE. We conclude that a miniTurbo-based method is a feasible tool for interactomics in M. polymorpha and potentially applicable to other model bryophytes. Our interactome dataset on MpSYP12A and MpSYP13B will be a useful resource to elucidate the evolution of SNARE functions.


Assuntos
Marchantia , Membrana Celular/metabolismo , Marchantia/genética , Marchantia/metabolismo , Proteínas SNARE/metabolismo
10.
Mol Cell ; 82(5): 1035-1052.e9, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182477

RESUMO

The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes. In contrast to the lamina-proximal introns, retained introns associated with speckles are relatively short, GC-rich, and enriched for functional sites of RNA-binding proteins that are concentrated in these domains. They are also highly differentially regulated across diverse cellular contexts, including the cell cycle. Thus, our study provides a resource of nuclear domain-associated transcripts and further reveals speckles and lamina as hubs of distinct populations of retained introns linked to gene regulation and cell cycle progression.


Assuntos
Núcleo Celular , Proteínas de Ligação a RNA , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos , Íntrons/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética
11.
Acta Biochim Biophys Sin (Shanghai) ; 54(12): 1841-1853, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36789692

RESUMO

TurboID, a proximity labelling method based on mutant biotin ligase, is an efficient new technique for recognizing protein-protein interactions and has been successfully applied to living cells. Sialic acid is typically the terminal monosaccharide attached to many glycoproteins and plays many important roles in many biological processes. However, the lack of enrichment methods for terminal sialic acid glycosylation in vivo hinders the identification and analysis of this glycosylation. Here, we introduce TurboID to identify terminal sialic acid glycosylation in living cells. SpCBM, the carbohydrate-binding domain of sialidase from Streptococcus pneumoniae, is fused with TurboID and overexpressed in HeLa cells. After streptavidin-based purification and detection by mass spectrometry, 31 terminal sialic acid N-glycosylated sites and 1359 putative terminal sialic acid glycosylated proteins are identified, many of which are located in the cytoplasm and nucleus.


Assuntos
Ácido N-Acetilneuramínico , Humanos , Glicosilação , Ácido N-Acetilneuramínico/metabolismo , Células HeLa
12.
J Biochem ; 170(5): 569-576, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34752609

RESUMO

Recent advances in biotinylation-based proximity labelling (PL) have opened up new avenues for mapping the protein composition of cellular compartments and protein complexes in living cells at high spatiotemporal resolution. In particular, PL combined with mass spectrometry-based proteomics has been successfully applied to defining protein-protein interactions, protein-nucleic acid interactions, (membraneless) organelle proteomes and secretomes in various systems ranging from cultured cells to whole animals. In this review, we first summarize the basics and recent biological applications of PL proteomics and then highlight recent developments in enrichment techniques for biotinylated proteins and peptides, focusing on the advantages of PL and technical considerations.


Assuntos
Proteoma/metabolismo , Proteômica/métodos , Animais , Biotinilação , Humanos , Espectrometria de Massas/métodos , Organelas/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Proteoma/análise , Secretoma
13.
Expert Rev Proteomics ; 18(11): 925-938, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34812694

RESUMO

INTRODUCTION: The outbreak of the newly discovered human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has disrupted the normal life of almost every civilization worldwide. Studies have shown that the coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 can affect multiple human organs and physiological systems, but the respiratory system remains the primary location for viral infection. AREAS COVERED: We summarize how omics technologies are used in SARS-CoV-2 research and specifically review the current knowledge of COVID-19 from the aspect of human bronchial-pulmonary proteomics. Also, knowledge gaps in COVID-19 that can be fulfilled by proteomics are discussed. EXPERT OPINION: Overall, human bronchial-pulmonary proteomics plays an important role in revealing the dynamics, functions, tropism, and pathogenicity of SARS-CoV-2, which is crucial for COVID-19 biomarker and therapeutic target discoveries. To more fully understand the impact of COVID-19, research from various angles using multi-omics approaches should also be conducted on the lungs as well as other organs.


Assuntos
Brônquios/metabolismo , COVID-19/metabolismo , Pulmão/metabolismo , Pandemias , Proteômica , SARS-CoV-2/patogenicidade , Animais , COVID-19/virologia , Humanos , Terapia de Alvo Molecular
14.
Redox Biol ; 46: 102066, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34340028

RESUMO

Hydrogen peroxide (H2O2) acts as a signalling molecule by oxidising cysteine thiols in proteins. Recent evidence has established a role for cytosolic peroxiredoxins in transmitting H2O2-based oxidation to a multitude of target proteins. Moreover, it is becoming clear that peroxiredoxins fulfil their function in organised microdomains, where not all interactors are covalently bound. However, most studies aimed at identifying peroxiredoxin interactors were based on methods that only detect covalently linked partners. Here, we explore the applicability of two thiol-disulphide independent in-cell trapping methodological approaches in combination with mass spectrometry for the identification of interaction partners of peroxiredoxin 2 (Prdx2). The first is biotin-dependent proximity-labelling (BioID) with a biotin ligase A (BirA*)-fused Prdx2, which has never been applied on redox-active proteins. The second is crosslinker co-immunoprecipitation with an N-terminally His-tagged Prdx2. During the initial characterisation of the tagged Prdx2 constructs, we found that the His-tag, but not BirA*, compromises the peroxidase and signalling activities of Prdx2. Further, the Prdx2 interactors identified with each approach showed little overlap. We therefore concluded that BioID is a more reliable method than crosslinker co-immunoprecipitation. After a stringent mass spec data filtering, BioID identified 13 interactors under elevated H2O2 conditions, including subunit five of the COP9 signalosome complex (CSN5). The Prdx2:CSN5 interaction was further confirmed in a proximity ligation assay. Taken together, our results demonstrate that BioID can be used as a method for the identification of interactors of Prdxs, and that caution should be exercised when interpreting protein-protein interaction results using tagged Prdxs.


Assuntos
Peroxirredoxinas , Compostos de Sulfidrila , Dissulfetos , Peróxido de Hidrogênio , Oxirredução , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
15.
RNA Biol ; 18(12): 2203-2217, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34006179

RESUMO

RNA molecules function as messenger RNAs (mRNAs) that encode proteins and noncoding transcripts that serve as adaptor molecules, structural components, and regulators of genome organization and gene expression. Their function and regulation are largely mediated by RNA binding proteins (RBPs). Here we present RNA proximity labelling (RPL), an RNA-centric method comprising the endonuclease-deficient Type VI CRISPR-Cas protein dCas13b fused to engineered ascorbate peroxidase APEX2. RPL discovers target RNA proximal proteins in vivo via proximity-based biotinylation. RPL applied to U1 identified proteins involved in both U1 canonical and noncanonical functions. Profiling of poly(A) tail proximal proteins uncovered expected categories of RBPs and provided additional evidence for 5'-3' proximity and unexplored subcellular localizations of poly(A)+ RNA. Our results suggest that RPL allows rapid identification of target RNA binding proteins in native cellular contexts, and is expected to pave the way for discovery of novel RNA-protein interactions important for health and disease.


Assuntos
Ascorbato Peroxidases/genética , Proteínas Associadas a CRISPR/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Biotinilação , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Poli A , RNA/química , RNA Guia de Cinetoplastídeos/genética , RNA Nuclear Pequeno/genética , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem
16.
J Biochem ; 169(2): 187-194, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33313879

RESUMO

Receptor protein tyrosine phosphatases (RPTPs) are type-I transmembrane proteins and involved in various biological and pathological processes. Their functions are supposed to be exerted through tyrosine dephosphorylation of their specific substrates. However, our comprehensive understanding of specific substrates or interacting proteins for RPTPs is poor. PTPRσ belongs to class 2a RPTP family, dephosphorylates cortactin, and leads to autophagy flux disruption and axonal regeneration inhibition in response to its ligand chondroitin sulphate. Here, we applied proximity-dependent biotin identification (BioID) assay, a proximity-labelling assay, to PTPRσ and reproducibly identified the 99 candidates as interactors for PTPRσ including already-known interactors such as Liprin-α and Trio. Of note, cortactin was also listed up in our assay. Our results suggest that the BioID assay is a powerful and reliable tool to identify RPTP-interacting proteins including its specific substrate.


Assuntos
Sulfatos de Condroitina/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Autofagia/fisiologia , Biotinilação/métodos , Linhagem Celular , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteômica/métodos , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Proteínas Recombinantes de Fusão/genética
17.
Cell Syst ; 11(1): 102-108.e3, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32673562

RESUMO

SARS-CoV-2 genomic and subgenomic RNA (sgRNA) transcripts hijack the host cell's machinery. Subcellular localization of its viral RNA could, thus, play important roles in viral replication and host antiviral immune response. We perform computational modeling of SARS-CoV-2 viral RNA subcellular residency across eight subcellular neighborhoods. We compare hundreds of SARS-CoV-2 genomes with the human transcriptome and other coronaviruses. We predict the SARS-CoV-2 RNA genome and sgRNAs to be enriched toward the host mitochondrial matrix and nucleolus, and that the 5' and 3' viral untranslated regions contain the strongest, most distinct localization signals. We interpret the mitochondrial residency signal as an indicator of intracellular RNA trafficking with respect to double-membrane vesicles, a critical stage in the coronavirus life cycle. Our computational analysis serves as a hypothesis generation tool to suggest models for SARS-CoV-2 biology and inform experimental efforts to combat the virus. A record of this paper's Transparent Peer Review process is included in the Supplemental Information.


Assuntos
Betacoronavirus/genética , Nucléolo Celular/virologia , Infecções por Coronavirus/virologia , Mitocôndrias/virologia , Pneumonia Viral/virologia , RNA Viral/metabolismo , Betacoronavirus/metabolismo , COVID-19 , Nucléolo Celular/metabolismo , Bases de Dados Genéticas , Genoma Viral , Humanos , Aprendizado de Máquina , Mitocôndrias/metabolismo , Modelos Genéticos , Pandemias , RNA Viral/genética , SARS-CoV-2
18.
Cells ; 9(6)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526908

RESUMO

Since their discovery, Rho GTPases have emerged as key regulators of cytoskeletal dynamics. In humans, there are 20 Rho GTPases and more than 150 regulators that belong to the RhoGEF, RhoGAP, and RhoGDI families. Throughout development, Rho GTPases choregraph a plethora of cellular processes essential for cellular migration, cell-cell junctions, and cell polarity assembly. Rho GTPases are also significant mediators of cancer cell invasion. Nevertheless, to date only a few molecules from these intricate signaling networks have been studied in depth, which has prevented appreciation for the full scope of Rho GTPases' biological functions. Given the large complexity involved, system level studies are required to fully grasp the extent of their biological roles and regulation. Recently, several groups have tackled this challenge by using proteomic approaches to map the full repertoire of Rho GTPases and Rho regulators protein interactions. These studies have provided in-depth understanding of Rho regulators specificity and have contributed to expand Rho GTPases' effector portfolio. Additionally, new roles for understudied family members were unraveled using high throughput screening strategies using cell culture models and mouse embryos. In this review, we highlight theses latest large-scale efforts, and we discuss the emerging opportunities that may lead to the next wave of discoveries.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas rho de Ligação ao GTP/metabolismo , Células HEK293 , Células HeLa , Humanos , Transdução de Sinais
19.
Int J Oncol ; 57(1): 87-99, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319587

RESUMO

The immune checkpoint protein B7­H4 plays an important role in the positive as well as the negative regulation of immune T­cell responses. When expressed on cancer cells, B7­H4 inhibits T­cell activity, and numerous types of cancer cells use upregulation of B7­H4 as a survival strategy. Thus, B7­H4 is a potential target for anticancer drug therapy. Unfortunately, the cell biology of this molecule has yet to be fully elucidated. Even basic properties, such as the nature of B7­H4 interactors, are controversial. In particular, the cis­interactors of B7­H4 on cancer cell plasma membranes have not been investigated to date. The present study used a proteomic proximity­labelling assay to investigate the molecular neighbours of B7­H4 on the surface of the human breast cancer cells SK­BR­3. By comparison to a comprehensive proteome analysis of SK­BR­3 cells, the proximity method detected a relatively small number of low abundance plasma membrane proteins highly enriched for proteins known to modulate cell adhesion and immune recognition. It may be inferred that these molecules contribute to the immunosuppressive behaviour that is characteristic of B7­H4 on cancer cells.


Assuntos
Neoplasias da Mama/imunologia , Mapeamento de Interação de Proteínas , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/imunologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/imunologia , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/imunologia , Proteômica/métodos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/antagonistas & inibidores , Inibidor 1 da Ativação de Células T com Domínio V-Set/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA