Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1424330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989021

RESUMO

The transcription factor PsrA regulates fatty acid metabolism, the type III secretion system, and quinolone signaling quorum sensing system in Pseudomonas aeruginosa. To explore additional roles of PsrA in P. aeruginosa, this study engineered a P. aeruginosa PAO1 strain to carry a recombinant plasmid with the psrA gene (pMMBpsrA) and examined the impact of elevated psrA expression to the bacterium. Transcriptomic analysis revealed that PsrA significantly downregulated genes encoding the master quorum-sensing regulators, RhlR and LasR, and influenced many quorum-sensing-associated genes. The role of PsrA in quorum sensing was further corroborated by testing autoinducer synthesis in PAO1 [pMMBpsrA] using two reporter bacteria strains Chromobacterium violaceum CV026 and Escherichia coli [pSB1075], which respond to short- and long-chain acyl homoserine lactones, respectively. Phenotypic comparisons of isogenic ΔpsrA, ΔlasR, and ΔpsrAΔlasR mutants revealed that the reduced elastase, caseinase, and swarming activity in PAO1 [pMMBpsrA] were likely mediated through LasR. Additionally, electrophoretic mobility shift assays demonstrated that recombinant PsrA could bind to the lasR promoter at a 5'-AAACGTTTGCTT-3' sequence, which displays moderate similarity to the previously reported consensus PsrA binding motif. Furthermore, the PsrA effector molecule oleic acid inhibited PsrA binding to the lasR promoter and restored several quorum sensing-related phenotypes to wild-type levels. These findings suggest that PsrA regulates certain quorum-sensing phenotypes by negatively regulating lasR expression, with oleic acid acting as a crucial signaling molecule.

2.
Cureus ; 12(7): e9431, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32864256

RESUMO

Acute rheumatic fever (ARF) describes the non-suppurative and autoimmune inflammation of joint, muscle, and fibrous tissue that occurs after group A streptococcal (GAS) pharyngitis. This report describes a rare case of a 39-year-old male with migratory arthralgias as a presenting sign of ARF. Through this case, we review the current literature on ARF and highlight clinical and objective findings that differentiate ARF from similar presenting arthralgias, specifically post-streptococcal reactive arthritis (PSRA). With this report, we hope to increase clinical suspicion for ARF in patients with acute joint pain, as differentiating ARF from other arthritides, PSRA specifically, determines management strategy and need for secondary prophylaxis against rheumatic heart disease.

3.
Front Mol Biosci ; 7: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266289

RESUMO

Site-specific recombination is a DNA breaking and reconstructing process that plays important roles in various cellular pathways for both prokaryotes and eukaryotes. This process requires a site-specific recombinase and direct or inverted repeats. Some tyrosine site-specific recombinases catalyze DNA inversions and regulate subpopulation diversity and phase variation in many bacterial species. In Streptococcus pneumoniae, the PsrA tyrosine recombinase was shown to control DNA inversions in the three DNA methyltransferase hsdS genes of the type I restriction-modification cod locus. Such DNA inversions are mediated by three inverted repeats (IR1, IR2, and IR3). In this work, we purified an untagged form of the PsrA protein and studied its DNA-binding and catalytic features. Gel retardation assays showed that PsrA binds to linear and supercoiled DNAs, containing or not inverted repeats. Nevertheless, DNase I footprinting assays showed that, on linear DNAs, PsrA has a preference for sites that include an IR1 sequence (IR1.1 or IR1.2) and its boundary sequences. Furthermore, on supercoiled DNAs, PsrA was able to generate DNA inversions between specific inverted repeats (IR1, IR2, and IR3), which supports its ability to locate specific target sites. Unlike other site-specific recombinases, PsrA showed reliance on magnesium ions for efficient catalysis of IR1-mediated DNA inversions. We discuss that PsrA might find its specific binding sites on the bacterial genome by a mechanism that involves transitory non-specific interactions between protein and DNA.

4.
Int J Biol Macromol ; 71: 14-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24751507

RESUMO

Pseudomonas putida KT2440 is a Gram-negative bacterium capable of producing medium-chain-length-polyhydroxyalkanoates (mcl-PHA). When fatty acids are used as growth and polymer precursors, the biosynthesis is linked to fatty acid metabolism via ß-oxidation route. In the close-related Pseudomonas aeruginosa, the transcriptional repressor PsrA regulates the ß-oxidation, but little is known about the regulatory system in P. putida. To analyze the effect of the absence of psrA gene on the growth and PHA production in P. putida, a set of different carbon sources were assayed in the wild type strain and in a generated psrA deficient strain (KT40P). The growth rates were in all cases, lower for the mutant. The amount of PHA produced by the mutant strain is lower than the wild type. Moreover, the monomeric composition seems to be different among the strains, as there is enrichment in monomers with shorter carbon length in the mutant strain. To understand the role of the psrA gene on the metabolism of fatty acids, we have determined the expression profile of several genes related to fatty acid metabolism in the wild type and in the mutant strain. The results indicated that PsrA mostly negatively regulate genes related to fatty acid metabolism.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/química , Sequência de Bases , Proteínas de Ligação a DNA/deficiência , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , Dados de Sequência Molecular , Mutação , Fenótipo , Poli-Hidroxialcanoatos/química , Regiões Promotoras Genéticas , Pseudomonas putida/crescimento & desenvolvimento , Fatores de Transcrição/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA