Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Dev Dyn ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166841

RESUMO

BACKGROUND: Uveal coloboma, a developmental eye defect, is caused by failed development of the optic fissure, a ventral structure in the optic stalk and cup where axons exit the eye and vasculature enters. The Hedgehog (Hh) signaling pathway regulates optic fissure development: loss-of-function mutations in the Hh receptor ptch2 produce overactive Hh signaling and can result in coloboma. We previously proposed a model where overactive Hh signaling disrupts optic fissure formation by upregulating transcriptional targets acting both cell- and non-cell-autonomously. Here, we examine the Netrin family of secreted ligands as candidate Hh target genes. RESULTS: We find multiple Netrin ligands upregulated in the zebrafish ptch2 mutant during optic fissure development. Using a gain-of-function approach to overexpress Netrin in a spatiotemporally specific manner, we find that netrin1a or netrin1b overexpression is sufficient to cause coloboma and disrupt wild-type optic fissure formation. We used loss-of-function alleles, CRISPR/Cas9 mutagenesis, and morpholino knockdown to test if loss of Netrin can rescue coloboma in the ptch2 mutant: loss of netrin genes does not rescue the ptch2 mutant phenotype. CONCLUSION: These results suggest that Netrin is sufficient but not required to disrupt optic fissure formation downstream of overactive Hh signaling in the ptch2 mutant.

2.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948711

RESUMO

Background: Uveal coloboma, a developmental eye defect, is caused by failed development of the optic fissure, a ventral structure in the optic stalk and cup where axons exit the eye and vasculature enters. The Hedgehog (Hh) signaling pathway regulates optic fissure development: loss-of-function mutations in the Hh receptor ptch2 produce overactive Hh signaling and can result in coloboma. We previously proposed a model where overactive Hh signaling disrupts optic fissure formation by upregulating transcriptional targets acting both cell- and non-cell-autonomously. Here, we examine the Netrin family of secreted ligands as candidate Hh target genes. Results: We find multiple Netrin ligands upregulated in the zebrafish ptch2 mutant during optic fissure development. Using a gain-of-function approach to overexpress Netrin in a spatiotemporally specific manner, we find that netrin1a or netrin1b overexpression is sufficient to cause coloboma and disrupt wild-type optic fissure formation. We used loss-of-function alleles, CRISPR/Cas9 mutagenesis, and morpholino knockdown to test if loss of Netrin can rescue coloboma in the ptch2 mutant: loss of netrin genes does not rescue the ptch2 mutant phenotype. Conclusion: These results suggest that Netrin is sufficient but not required to disrupt optic fissure formation downstream of overactive Hh signaling in the ptch2 mutant.

3.
Dev Dyn ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003620

RESUMO

BACKGROUND: The gene cAMP-Responsive Element Binding protein 3-like-1 (CREB3L1) has been implicated in bone development in mice, with CREB3L1 knock-out mice exhibiting fragile bones, and in humans, with CREB3L1 mutations linked to osteogenesis imperfecta. However, the mechanism through which Creb3l1 regulates bone development is not fully understood. RESULTS: To probe the role of Creb3l1 in organismal physiology, we used CRISPR-Cas9 genome editing to generate a Danio rerio (zebrafish) model of Creb3l1 deficiency. In contrast to mammalian phenotypes, the Creb3l1 deficient fish do not display abnormalities in osteogenesis, except for a decrease in the bifurcation pattern of caudal fin. Both, skeletal morphology and overall bone density appear normal in the mutant fish. However, the regeneration of caudal fin postamputation is significantly affected, with decreased overall regenerate and mineralized bone area. Moreover, the mutant fish exhibit a severe patterning defect during regeneration, with a significant decrease in bifurcation complexity of the fin rays and distalization of the bifurcation sites. Analysis of genes implicated in bone development showed aberrant patterning of shha and ptch2 in Creb3l1 deficient fish, linking Creb3l1 with Sonic Hedgehog signaling during fin regeneration. CONCLUSIONS: Our results uncover a novel role for Creb3l1 in regulating tissue growth and patterning during regeneration.

4.
Gene ; 907: 148280, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38360123

RESUMO

Orofacial clefts (OFCs) represent the most prevalent congenital craniofacial anomalies, significantly impacting patients' appearance, oral function, and psychological well-being. Among these, non-syndromic OFCs (NSOFCs) are the most predominant type, with the etiology attributed to a combination of genetic and environmental factors. Rare variants of key genes involved in craniofacial development-related signaling pathway are crucial in the occurrence of NSOFCs, and our recent studies have identified PTCH1, a receptor-coding gene in the Hedgehog signaling pathway, as a causative gene for NSOFCs. However, the role of PTCH2, the paralog of PTCH1, in pathogenesis of NSOFCs remains unclear. Here, we perform whole-exome sequencing to explore the genetic basis of 144 sporadic NSOFC patients. We identify five heterozygous variants of PTCH2 in four patients: p.L104P, p.A131G, p.R557H, p.I927S, and p.V978D, with the latter two co-occurring in a single patient. These variants, all proven to be rare through multiple genomic databases, with p.I927S and p.V978D being novel variants and previously unreported. Sequence alignment suggests that these affected amino acids are evolutionarily conserved across vertebrates. Utilizing predictive structural modeling tools such as AlphaFold and SWISS-MODEL, we propose that these variants may disrupt the protein's structure and function. In summary, our findings suggest that PTCH2 may be a novel candidate gene predicted to be associated with NSOFCs, thereby broadening the spectrum of causative genes implicated in the craniofacial anomalies.


Assuntos
Fenda Labial , Fissura Palatina , Receptor Patched-2 , Animais , Humanos , Encéfalo/anormalidades , Fenda Labial/genética , Fissura Palatina/genética , Proteínas Hedgehog/genética , Receptor Patched-2/genética , Transdução de Sinais
5.
Biochem Biophys Res Commun ; 627: 76-83, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36027694

RESUMO

Mutations in the human protein patched homolog (PTCH) gene have been demonstrated to be associated with cancer development in several types of malignancy. However, the underlying mechanism of PTCH-associated cancer development remains poorly understood, to the best of our knowledge. In the present study, the expression of PTCH2 in glioma tumor tissues from The Cancer Genome Atlas (TCGA) database and clinical patients with glioma were measured. Reduced expression levels of PTCH2 were observed in patients with glioma with poor prognose. In vitro, overexpression of PTCH2 significantly suppressed the proliferation and invasion of the glioma cell lines, LN229 and U87-MG. Mechanistically, PTCH2 upregulated the expression of tumor suppressor PTEN, thereby leading to the suppression of pro-survival AKT signals in glioma. Reduced expression of PTEN and enhanced expression of AKT promoted glioma development in vitro and in vivo. Blockade of PTCH2/AKT signals efficiently strengthened the anticancer effects of chemotherapy and prolonged the survival time in tumor-bearing mice, which provided a novel insight into potential treatment strategies for glioma in the clinic.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Receptor Patched-2/genética , Receptor Patched-2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
6.
Front Physiol ; 13: 877565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574464

RESUMO

Ptch receptors 1 and 2 mediate Hedgehog signaling pivotal for organ development and homeostasis. In contrast to embryonic lethal Ptch1 -/- phenotype, Ptch2 -/- mice display no effect on gross phenotype. In this brief report, we provide evidence of changes in the putative incisor mesenchymal stem cell (MSC) niches that contribute to accelerated incisor growth, as well as intriguing changes in the bones and skin which suggest a role for Ptch2 in the regulation of MSCs and their regenerative potential. We employed histological, immunostaining, and computed tomography (µCT) analyses to analyze morphological differences between Ptch2 -/- and wild-type incisors, long bones, and skins. In vitro CFU and differentiation assays were used to demonstrate the MSC content and differentiation potential of Ptch2 -/- bone marrow stromal cells. Wound healing assay was performed in vivo and in vitro on 8-week-old mice to assess the effect of Ptch2 on the wound closure. Loss of Ptch2 causes increases in the number of putative MSCs in the continuously growing incisor, associated with increased vascularization observed in the tooth mesenchyme and the neurovascular bundle. Increased length and volume of Ptch2 -/- bones is linked with the increased number and augmented in vitro differentiation potential of MSCs in the bone marrow. Dynamic changes in the Ptch2 -/- skin thickness relate to changes in the mesenchymal compartment and impact the wound closure potential. The effects of Ptch2 abrogation on the postnatal MSCs suggest a crucial role for Ptch2 in Hedgehog signaling regulation of the organ regenerative potential.

7.
Acta Histochem ; 124(1): 151835, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34979374

RESUMO

Embryogenesis is modulated by numerous complex signaling cascades, which are essential for normal development. The Hedgehog (Hh) signaling pathway is part of these central cascades. As a homolog of Patched (Ptch)-1, Ptch2 initially did not appear to be as important as Ptch1. Recent reports have revealed that Ptch2 plays a crucial role in ligand-dependent feedback inhibition of Hh signaling in vertebrates. The role of Ptch2 in facial development remains unclear. Here, we investigated the detailed expression pattern of Ptch2 during craniofacial development in murine embryos based on in situ hybridization (ISH) studies of whole-mounts and sections, immunohistochemistry (IHC), and quantitative real-time PCR. We found that both Ptch2 mRNA and protein expression increased in a dynamic pattern in the facial development at mouse embryonic days 11-14.5. Moreover, distinct expression of Ptch2 was observed in the structures of the facial region, such as the tooth germ, Meckel's cartilage, and the follicles of vibrissae. These data, combined with our work in the macrostomia family, suggest that Ptch2 may play a critical role in facial development.


Assuntos
Proteínas Hedgehog , Desenvolvimento Maxilofacial , Receptor Patched-2 , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Receptores Patched/metabolismo , Receptor Patched-2/genética , Receptor Patched-2/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
8.
Fam Cancer ; 21(3): 343-346, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34170463

RESUMO

A number of case/family reports have proposed PTCH2 as a putative Gorlin Syndrome (GS) gene, but evidence to support this is lacking. We assessed our cohort of 21 PTCH1/SUFU negative GS families for PTCH2 variants and assessed current evidence from reported cases/families and population data. In our PTCH1/SUFU variant negative GS cohort (25% of total), no pathogenic or likely pathogenic PTCH2 variants were identified. In addition, none of the previously published PTCH2 variants in GS families/cases could be considered pathogenic or likely pathogenic using current guidelines. The absence of clear pathogenic variants in GS families and the high frequency of Loss-of-function (LoF) variants in the general population, including the presence of homozygous LoF variants without a clinical phenotype, mean that it is untenable that PTCH2 is a GS gene. PTCH2 should not be included in panels for genetic diagnosis of GS.


Assuntos
Síndrome do Nevo Basocelular , Receptor Patched-2 , Síndrome do Nevo Basocelular/genética , Genótipo , Humanos , Receptor Patched-1/genética , Receptor Patched-2/genética , Fenótipo
9.
Bioengineered ; 12(2): 12123-12134, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34873972

RESUMO

The molecular mechanism that triggers polycystic ovary syndrome (PCOS) is mysterious. Abnormal development of ovarian granulosa cells (GCs) is one of the causes of PCOS. Herein, our study was carried out using RNA-seq to detect the different gene expression levels in ovarian GCs between three patients with PCOS and four normal controls. To verify the RNA-seq data, GCs from 22 patients with PCOS and 21 controls with normal ovulation were collected to perform the RT-PCR analysis. Hedgehog signaling pathway (Hh) members, Ihh and Ptch2 were abnormally highly expressed in the PCOS tissue (PT). The qPCR also indicated that the expression levels of Hh signaling pathway downstream members, Ptch1, Gli1, and Gli2 in the PT were significantly higher than those in the normal tissue (NT). Besides, the expression of TNF-α mRNA in PCOS patients was higher than that in the control group. Through the chromatin immunoprecipitation assay (ChIP), we found that the Gli1-IP-DNA enriched from the granular cells of PCOS patients was higher than that of the control group. Finally, the Hh signaling pathway inhibitor, cyclopamine, can decrease the apoptosis of PCOS ovarian granulosa cells. These results suggest that abnormal activation of Hh signaling pathway, especially Ihh signal, may have a profound influence on PCOS.


Assuntos
Células da Granulosa/metabolismo , Proteínas Hedgehog/metabolismo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Transdução de Sinais , Adulto , Apoptose/genética , Sequência de Bases , Estudos de Casos e Controles , Células Cultivadas , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas Hedgehog/genética , Humanos , Receptor Patched-2/genética , Receptor Patched-2/metabolismo , Síndrome do Ovário Policístico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resultado do Tratamento , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
10.
Eur J Med Genet ; 63(4): 103842, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31945512

RESUMO

Gorlin syndrome, also known as Nevoid Basal-Cell Carcinoma Syndrome (NBCCS), is an autosomal dominant tumor predisposition syndrome that presents early in life with characteristic congenital malformations and tumors. This syndrome most commonly results from germline mutations of the PTCH1 tumor suppressor gene, which shows high penetrance and great intra and interfamilial phenotypic variability, as well as the SUFU tumor suppressor gene. Recently, the PTCH2 gene has also been implicated as a cause of Gorlin syndrome. Notably, these patients displayed milder phenotypes of Gorlin syndrome when considered against PTCH1 and SUFU-related disease. We report a patient with a novel PTCH2 mutation inherited from his father. The proband displays several minor diagnostic features of Gorlin syndrome, supporting the pathogenic role of this gene. Features in the proband include macrocephaly, a wide face, prominent forehead, hypertelorism/telecanthus, large eyes, cleft lip and palate, thin vertical palmar creases, penoscrotal inversion, and a hyperpigmented spot on his penis. His father displays macrocephaly, several nevi on his back and shoulders, and a single palmar pit on his left hand, raising suspicion for Gorlin syndrome. Whole exome sequence (trio) found that the proband and father are heterozygous for NM_003738.4:c.3347C>T;p.(Pro1116Leu) in exon 21 of PTCH2, found also in his mildly affected brother. This semi-conservative amino acid substitution has been reported in the literature, but its significance is unclear. Notably, the proband, brother, and father do not meet clinical criteria for Gorlin syndrome. However, the clinical findings described in this family support the association between PTCH2 mutations and Gorlin-like phenotypes.


Assuntos
Síndrome do Nevo Basocelular/genética , Receptor Patched-2/genética , Criança , Humanos , Masculino , Mutação , Fenótipo
11.
Cancer Lett ; 460: 65-74, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31233836

RESUMO

Pds5b (precocious dissociation of sisters 5B) is involved in both tumorigenesis and cancer progression; however, the functions and molecular mechanisms of Pds5b in pancreatic cancer (PC) are unknown. Several approaches were conducted to investigate the molecular basis of Pds5b-related PC progression, including transfection, MTT, FACS, western blotting, wound healing assay, transwell chamber invasion assay, and immunohistochemical methods. Pds5b overexpression inhibited cell growth and induced apoptosis, whereas the inhibition of Pds5b promoted growth of PC cells. Moreover, Pds5b overexpression inhibited cell migration and invasion, while the downregulation of Pds5b enhanced cell motility. Furthermore, reduced Pds5b expression was associated with survival in PC patients. Mechanistically, Pds5b positively regulated the expression of Ptch2 to influence the Sonic hedgehog signaling pathway. Consistently, Ptch2 downregulation enhanced cell growth, migration, and invasion, while inhibiting cell apoptosis. Notably, the downregulation of Ptch2 abolished Pds5b-mediated anti-tumor activity in PC cells. Strikingly, Pds5b expression was positively associated with levels of Ptch2 in PC patient samples, suggesting that the Pds5b/Ptch2 axis regulates cell proliferation and invasion in PC cells. Our findings indicate that targeting Pds5b and Ptch2 may represent a novel therapeutic approach for PC.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor Patched-2/metabolismo , Fatores de Transcrição/metabolismo , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptor Patched-2/genética , Transdução de Sinais , Fatores de Transcrição/genética , Regulação para Cima
12.
Development ; 145(22)2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30333214

RESUMO

Establishment of precise three-dimensional tissue structure is vital for organ function. In the visual system, optic fissure and stalk morphogenesis is a crucial yet poorly understood process, disruptions of which can lead to coloboma, a birth defect causing visual impairment. Here, we use four-dimensional imaging, cell tracking, and molecular genetics in zebrafish to define the cell movements underlying normal optic fissure and stalk formation. We determine how these events are disrupted in a coloboma model in which the Hedgehog (Hh) receptor ptch2 is lost, resulting in overactive Hh signaling. In the ptch2 mutant, cells exhibit defective motile behaviors and morphology. Cells that should contribute to the fissure do not arrive at their correct position, and instead contribute to an ectopically large optic stalk. Our results suggest that overactive Hh signaling, through overexpression of downstream transcriptional targets, impairs cell motility underlying optic fissure and stalk formation, via non-cell-autonomous and cell-autonomous mechanisms. More broadly, our cell motility and morphology analyses provide a new framework for studying other coloboma-causing mutations that disrupt optic fissure or stalk formation.


Assuntos
Movimento Celular , Olho/citologia , Olho/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Morfogênese , Transdução de Sinais , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Animais , Olho/anatomia & histologia , Modelos Biológicos , Mutação/genética , Transcrição Gênica , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA