Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
ACS Appl Mater Interfaces ; 16(36): 47854-47865, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39223079

RESUMO

Correlated transparent conducting oxides (TCOs) have gained great attention, because of their unique combination of transparency and metallic character. SrVO3 (SVO) was identified as a high-performance TCO in the visible range. Few studies have investigated band structure engineering through chemical doping to enhance the optical properties of SVO. Here, we use two different strategies by exploiting the band-filling and width of the bands derived from Vanadium to tune the screened plasma frequency ωp* and the interband transition Ep-d energy, corresponding to the optical transparency window edges. For control of the band-filling strategy, it is found that Titanium doped SVO has a wide transparency window, but such a composition does not maintain the high electrical conductivity required for TCO applications. Concerning the bandwidth strategy, the doping of SrVO3 by Calcium shows that ωp* remains located in the IR range (1.12 eV), while Ep-d is blue-shifted into the UV region (3.43 eV) due to reinforced electronic correlations. By an appropriate choice of dopant, we successfully increased the size of the transparency window by around 11% from 1.94 eV (SVO) to 2.30 eV (Calcium-doped SVO), while retaining high conductivity of around 2.30 × 104 (S·cm-1) and high charge carrier density of 2.93 × 1022 cm-3.

2.
J Phys Condens Matter ; 36(50)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39250929

RESUMO

Intrinsic exchange bias is known as the unidirectional exchange anisotropy that emerges in a nominally single-component ferro-(ferri-)magnetic system. In this work, with magnetic and structural characterizations, we demonstrate that intrinsic exchange bias is a general phenomenon in (Ni, Co, Fe)-based spinel oxide films deposited onα-Al2O3(0001) substrates, due to the emergence of a rock-salt interfacial layer consisting of antiferromagnetic CoO from interfacial reconstruction. We show that in NixCoyFe3-x-yO4(111)/α-Al2O3(0001) films, intrinsic exchange bias and interfacial reconstruction have consistent dependences on Co concentrationy, while the Ni and Fe concentration appears to be less important. This work establishes a family of intrinsic exchange bias materials with great tunability by stoichiometry and highlights the strategy of interface engineering in controlling material functionalities.

3.
Small Methods ; : e2400722, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118585

RESUMO

Piezoelectric and ferroelectric wurtzite are promising to reshape modern microelectronics because they can be easily integrated with mainstream semiconductor technology. Sc doped AlN (Al1- xScxN) has attracted much attention for its enhanced piezoelectric and emerging ferroelectric properties, yet the commonly used sputtering results in polycrystalline Al1- xScxN films with high leakage current. Here, the pulsed laser deposition of single crystalline epitaxial Al1- xScxN thin films on sapphire and 4H-SiC substrates is reported. Pure wurtzite phase is maintained up to x = 0.3 with ≤0.1 at% oxygen contamination. Polarization is estimated to be 140 µC cm-2 via atomic scale microscopy imaging and found to be switchable via a scanning probe. The piezoelectric coefficient is found to be five times of the undoped one when x = 0.3, making it desirable for high-frequency radiofrequency (RF) filters and 3D nonvolatile memories.

4.
Small ; : e2405229, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206602

RESUMO

An electron transport layer (ETL) for highly efficient perovskite solar cells (PSCs) should exhibit superior electrical transport properties and have its band levels aligned with interfacing layers to ensure efficient extraction of photo-generated carriers. Nitrogen-doped TiO2 (TiO2:N) is considered a promising ETL because it offers higher electrical conductivity compared to conventional ETLs made from spray-pyrolyzed TiO2. However, the application of highly doped TiO2:N in PSCs is often limited by the misalignment of energy band levels with adjacent layers and reduced optical transparency. In this study, a novel approach is introduced to enhance the charge transport characteristics and accurately align the electronic band alignment of TiO2:N layer through nanoscale doping level grading, achieved through the pulsed laser deposition (PLD) technique. The TiO2:N ETL with a graded doping profile can combine characteristics of both highly doped and lightly doped phases on each side. Furthermore, a nanoscale doping gradation, employing an ultrathin sub-layer structure with graded doping levels, creates a smoothly cascading band-level alignment that bridges the adjacent layers, enhancing the transport of photo-generated carriers. Consequently, this method leads to a substantial increase in the power conversion efficiency (PCE), exceeding 22%, which represents a relative improvement of 11% compared to traditional spray-pyrolyzed TiO2-based PSCs.

5.
Micromachines (Basel) ; 15(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39203596

RESUMO

This article aims to explore the most optimal pulsed laser energy density when using the pulsed laser deposition (PLD) process to prepare the MoS2 films. We gradually increased the pulsed laser energy density from 70 mJ·cm-2 to 110 mJ·cm-2 and finally determined that 100 mJ·cm-2 was the best-pulsed laser energy density for MoS2 films by PLD. The surface morphology and crystallization of the MoS2 films prepared under this condition are the best. The films consist of a high-crystallized 2H-MoS2 phase with strong (002) preferential orientation, and their direct optical band gap (Eg) is 1.614 eV. At the same time, the Si/MoS2 heterojunction prepared under the optimal pulsed laser energy density shows an opening voltage of 0.61 V and a rectification ratio of 457.0.

6.
Exploration (Beijing) ; 4(4): 20230082, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39175892

RESUMO

Designing a high-performance cathode is essential for the development of proton-conducting solid oxide fuel cells (H-SOFCs), and nanocomposite cathodes have proven to be an effective means of achieving this. However, the mechanism behind the nanocomposite cathodes' remarkable performance remains unknown. Doping the Co element into BaZrO3 can result in the development of BaCoO3 and BaZr0.7Co0.3O3 nanocomposites when the doping concentration exceeds 30%, according to the present study. The construction of the BaCoO3/BaZr0.7Co0.3O3 interface is essential for the enhancement of the cathode catalytic activity, as demonstrated by thin-film studies using pulsed laser deposition to simulate the interface of the BCO and BZCO individual particles and first-principles calculations to predict the oxygen reduction reaction steps. Eventually, the H-SOFC with a BaZr0.4Co0.6O3 cathode produces a record-breaking power density of 2253 mW cm-2 at 700°C.

7.
ChemSusChem ; : e202400755, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972851

RESUMO

In pulsed laser deposition, along the traditionally exploited deposition on the front-side of the plasma-plume, a coating forms on the surface of the target as well. For reproducibility, this residue is usually cleaned and discarded. Here we instead investigate the target-side coated materials and employ them as a binder-free supercapacitor electrode. The ballistic-aggregated, target-side nanofoam is compact and features a larger fraction of sp2-carbon, higher nitrogen content with higher graphitic-N and lower oxygen content with fewer COOH groups than that of diffusive-aggregated conventional nanofoams. They are highly hydrogenated graphite-like amorphous carbon and superhydrophilic. The resulting symmetric micro-supercapacitor delivers higher volumetric capacitance of 522 mF/cm3 at 100 mV/s and 104% retention after 10000 charge-discharge cycles over conventional nanofoam (215 mF/cm3 and 85% retention) with an areal capacitance of 134 µF/cm2 at 120 Hz and ultrafast frequency response. Utilizing the normally discarded target-side material can therefore enable high performing devices while reducing waste, cost and energy input per usable product. leading towards a greater sustainability on nanomaterials synthesis and deposition techniques.

8.
Sci Rep ; 14(1): 17758, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39085345

RESUMO

The structural, surface, and upconversion (UC) luminescence properties of Y2O3:Ho3+,Yb3+ films grown by pulsed laser deposition, for different numbers of laser pulses, were studied. The crystallinity, surface, and UC luminescence properties of the thin films were found to be highly dependent on the number of laser pulses. The X-ray powder diffraction analysis revealed that Y2O3:Ho3+,Yb3+ films were formed in a cubic structure phase with an Ia 3 ¯ space group. The thicknesses of the films were estimated by using cross-sectional scanning electron microscopy, depth profiles using X-ray photoelectron spectroscopy (XPS), and the Swanepoel method. The high-resolution XPS was used to determine the chemical composition and oxidation states of the prepared films. The UC emissions were observed at 538, 550, 666, and 756 nm, assigned to the 5F4 → 5I8, 5S2 → 5I8, 5F5 → 5I8, and 5S2 → 5I7 transitions of the Ho3+ ions. The power dependence measurements confirmed the involvement of a two-photon process in the UC process. The color purity estimated from the Commission International de I'Eclairage coordinates confirmed strong green UC emission. The results suggested that the Y2O3:Ho3+,Yb3+ UC transparent films are good candidates for various applications, including solar cell applications.

9.
Sci Rep ; 14(1): 12841, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834703

RESUMO

Organic-inorganic hybrid light-emitting devices have garnered significant attention in the last few years due to their potential. These devices integrate the superior electron mobility of inorganic semiconductors with the remarkable optoelectronic characteristics of organic semiconductors. The inquiry focused on analyzing the optical and electrical properties of a light-emitting heterojunction that combines p-type GaN with organic materials (PEDOT, PSS, and PMMA). This heterojunction is an organic-inorganic hybrid. The procedure entailed utilizing a spin-coating technique to apply a layer of either poly(methyl methacrylate) (PMMA) or a mixture of PMMA and poly(3,4ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) onto an indium tin oxide (ITO) substrate. Subsequently, different Nd:YAG laser pulses (200, 250, and 300 pulses) were used to administer a GaN inorganic layer onto the prepared organic layer using a pulsed laser deposition approach. Subsequently, the thermal evaporation technique was employed to deposit an aluminum electrode on the top of the organic and inorganic layers, while laser pulses were fine-tuned for optimal performance. The Hall effect investigation verifies the p-type conductivity of the GaN material. The electroluminescence studies confirmed the production of blue light by the GaN-based devices throughout a range of voltage situations, spanning from 45 to 72 V.

10.
Nano Lett ; 24(25): 7601-7608, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870328

RESUMO

Metallic ferromagnetic transition metal dichalcogenides have emerged as important building blocks for scalable magnetic and memory applications. Downscaling such systems to the ultrathin limit is critical to integrate them into technology. Here, we achieved layer-by-layer control over the transition metal dichalcogenide Cr1.6Te2 by using pulsed laser deposition, and we uncovered the minimum critical thickness above which room-temperature magnetic order is maintained. The electronic and magnetic structures are explored experimentally and theoretically, and it is shown that the films exhibit strong in-plane magnetic anisotropy as a consequence of large spin-orbit effects. Our study elucidates both magnetic and electronic properties of Cr1.6Te2 and corroborates the importance of intercalation to tune the magnetic properties of nanoscale materials' architectures.

11.
Quantum Front ; 3(1): 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855163

RESUMO

FeSe is one of the most enigmatic superconductors. Among the family of iron-based compounds, it has the simplest chemical makeup and structure, and yet it displays superconducting transition temperature ( T c ) spanning 0 to 15 K for thin films, while it is typically 8 K for single crystals. This large variation of T c within one family underscores a key challenge associated with understanding superconductivity in iron chalcogenides. Here, using a dual-beam pulsed laser deposition (PLD) approach, we have fabricated a unique lattice-constant gradient thin film of FeSe which has revealed a clear relationship between the atomic structure and the superconducting transition temperature for the first time. The dual-beam PLD that generates laser fluence gradient inside the plasma plume has resulted in a continuous variation in distribution of edge dislocations within a single film, and a precise correlation between the lattice constant and T c has been observed here, namely, T c ∝ c - c 0 , where c is the c-axis lattice constant (and c 0 is a constant). This explicit relation in conjunction with a theoretical investigation indicates that it is the shifting of the d xy orbital of Fe which plays a governing role in the interplay between nematicity and superconductivity in FeSe. Supplementary Information: The online version contains supplementary material available at 10.1007/s44214-024-00058-0.

12.
ACS Appl Mater Interfaces ; 16(27): 35686-35696, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935746

RESUMO

The control of local heterogeneities in metallic glasses (MGs) represents an emerging field to improve their plasticity, preventing the propagation of catastrophic shear bands (SBs) responsible for the macroscopically brittle failure. To date, a nanoengineered approach aimed at finely tuning local heterogeneities controlling SB nucleation and propagation is still missing, hindering the potential to develop MGs with large and tunable strength/ductility balance and controlled deformation behavior. In this work, we exploited the potential of pulsed laser deposition (PLD) to synthesize a novel class of crystal/glass ultrafine nanolaminates (U-NLs) in which a ∼4 nm thick crystalline Al separates 6 and 9 nm thick Zr50Cu50 glass nanolayers, while reporting a high density of sharp interfaces and large chemical intermixing. In addition, we tune the morphology by synthesizing compact and nanogranular U-NLs, exploiting, respectively, atom-by-atom or cluster-assembled growth regimes. For compact U-NLs, we report high mass density (∼8.35 g/cm3) and enhanced and tunable mechanical behavior, reaching maximum values of hardness and yield strength of up to 9.3 and 3.6 GPa, respectively. In addition, we show up to 3.6% homogeneous elastoplastic deformation in compression as a result of SB blocking by the Al-rich sublayers. On the other hand, nanogranular U-NLs exhibit slightly lower yield strength (3.4 GPa) in combination with enhanced elastoplastic deformation (∼6%) followed by the formation of superficial SBs, which are not percolative even at deformations exceeding 15%, as a result of the larger free volume content within the cluster-assembled structure and the presence of crystal/glass nanointerfaces, enabling to accommodate SB events. Overall, we show how PLD enables the synthesis of crystal/glass U-NLs with ultimate control of local heterogeneities down to the atomic scale, providing new nanoengineered strategies capable of deep control of the deformation behavior, surpassing traditional trade-off between strength and ductility. Our approach can be extended to other combinations of metallic materials with clear interest for industrial applications such as structural coatings and microelectronics (MEMS and NEMS).

13.
ACS Nano ; 18(23): 14968-14977, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38818542

RESUMO

We employ analytical transmission electron microscopy (TEM) to correlate the structural and chemical environment variations within a stacked epitaxial thin film of the high entropy oxide (HEO) Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O (J14), with two layers grown at different substrate temperatures (500 and 200 °C) using pulsed laser deposition (PLD). Electron diffraction and atomically resolved STEM imaging reveal the difference in out-of-plane lattice parameters in the stacked thin film, which is further quantified on a larger scale using four-dimensional STEM (4D-STEM). In the layer deposited at a lower temperature, electron energy loss spectroscopy (EELS) mapping indicates drastic changes in the oxidation states and bonding environment for Co ions, and energy-dispersive X-ray spectroscopy (EDX) mapping detects more significant cation deficiency. Ab initio density functional theory (DFT) calculations validate that vacancies on the cation sublattice of J14 result in significant electronic and structural changes. The experimental and computational analyses indicate that low temperatures during film growth result in cation deficiency, an altered chemical environment, and reduced lattice parameters while maintaining a single phase. Our results demonstrate that the complex correlation of configurational entropy, kinetics, and thermodynamics can be utilized for accessing a range of metastable configurations in HEO materials without altering cation proportions, enabling further engineering of functional properties of HEO materials.

14.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668205

RESUMO

The structure and the chemical composition of individual layers as well as of interfaces belonging to the two heterostructures M1 (BaFe12O19/YbFeO3/YSZ) and M2 (YbFeO3/BaFe12O19/YSZ) grown by pulsed laser deposition on yttria-stabilized zirconia (YSZ) substrates are deeply characterized by using a combination of methods such as high-resolution X-ray diffraction, transmission electron microscopy (TEM), and atomic-resolution scanning TEM with energy-dispersive X-ray spectroscopy. The temperature-dependent magnetic properties demonstrate two distinct heterostructures with different coercivity, anisotropy fields, and first anisotropy constants, which are related to the defect concentrations within the individual layers and to the degree of intermixing at the interface. The heterostructure with the stacking order BaFe12O19/YbFeO3, i.e., M1, exhibits a distinctive interface without any chemical intermixture, while an Fe-rich crystalline phase is observed in M2 both in atomic-resolution EDX maps and in mass density profiles. Additionally, M1 shows high c-axis orientation, which induces a higher anisotropy constant K1 as well as a larger coercivity due to a high number of phase boundaries. Despite the existence of a canted antiferromagnetic/ferromagnetic combination (T < 140 K), both heterostructures M1 and M2 do not reveal any detectable exchange bias at T = 50 K. Additionally, compressive residual strain on the BaM layer is found to be suppressing the ferromagnetism, thus reducing the Curie temperature (Tc) in the case of M1. These findings suggest that M1 (BaFe12O19/YbFeO3/YSZ) is suitable for magnetic storage applications.

15.
Small Methods ; : e2301763, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678523

RESUMO

Autonomous systems that combine synthesis, characterization, and artificial intelligence can greatly accelerate the discovery and optimization of materials, however platforms for growth of macroscale thin films by physical vapor deposition techniques have lagged far behind others. Here this study demonstrates autonomous synthesis by pulsed laser deposition (PLD), a highly versatile synthesis technique, in the growth of ultrathin WSe2 films. By combing the automation of PLD synthesis and in situ diagnostic feedback with a high-throughput methodology, this study demonstrates a workflow and platform which uses Gaussian process regression and Bayesian optimization to autonomously identify growth regimes for WSe2 films based on Raman spectral criteria by efficiently sampling 0.25% of the chosen 4D parameter space. With throughputs at least 10x faster than traditional PLD workflows, this platform and workflow enables the accelerated discovery and autonomous optimization of the vast number of materials that can be synthesized by PLD.

16.
ACS Appl Mater Interfaces ; 16(15): 19225-19234, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579143

RESUMO

Innovations in resistive switching devices constitute a core objective for the development of ultralow-power computing devices. Forming-free resistive switching is a type of resistive switching that eliminates the need for an initial high voltage for the formation of conductive filaments and offers promising opportunities to overcome the limitations of traditional resistive switching devices. Here, we demonstrate mixed charge state oxygen vacancy-engineered electroforming-free resistive switching in NiFe2O4 (NFO) thin films, fabricated as asymmetric Ti/NFO/Pt heterostructures, for the first time. Using pulsed laser deposition in a controlled oxygen atmosphere, we tune the oxygen vacancies together with the cationic valence state in the nickel ferrite phase, with the latter directly affecting the charge state of the oxygen vacancies. The structural integrity and chemical composition of the films are confirmed by X-ray diffraction and hard X-ray photoelectron spectroscopy, respectively. Electrical transport studies reveal that resistive switching characteristics in the films can be significantly altered by tuning the amount and charge state of the oxygen vacancy concentration during the deposition of the films. The resistive switching mechanism is seen to depend upon the migration of both singly and doubly charged oxygen vacancies formed as a result of changes in the nickel valence state and the consequent formation/rupture of conducting filaments in the switching layer. This is supported by the existence of an optimum oxygen vacancy concentration for efficient low-voltage resistive switching, below or above which the switching process is inhibited. Along with the filamentary switching mechanism, the Ti top electrode also enhances the resistive switching performance due to interfacial effects. Time-resolved measurements on the devices display both long- and short-term potentiation in the optimized vacancy-engineered NFO resistive switches, ideal for solid-state synapses achieved in a single system. Our work on correlated oxide forming-free resistive switches holds significant potential for CMOS-compatible low-power, nonvolatile resistive memory and neuromorphic circuits.

17.
Nanomaterials (Basel) ; 14(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38470747

RESUMO

UV sensors hold significant promise for various applications in both military and civilian domains. However, achieving exceptional detectivity, responsivity, and rapid rise/decay times remains a notable challenge. In this study, we address this challenge by investigating the photodetection properties of CdS thin films and the influence of surface-deposited gold nanoparticles (AuNPs) on their performance. CdS thin films were produced using the pulsed laser deposition (PLD) technique on glass substrates, with CdS layers at a 100, 150, and 200 nm thickness. Extensive characterization was performed to evaluate the thin films' structural, morphological, and optical properties. Photodetector devices based on CdS and AuNPs/CdS films were fabricated, and their performance parameters were evaluated under 365 nm light illumination. Our findings demonstrated that reducing CdS layer thickness enhanced performance concerning detectivity, responsivity, external quantum efficiency (EQE), and photocurrent gain. Furthermore, AuNP deposition on the surface of CdS films exhibited a substantial influence, especially on devices with thinner CdS layers. Among the configurations, AuNPs/CdS(100 nm) demonstrated the highest values in all evaluated parameters, including detectivity (1.1×1012 Jones), responsivity (13.86 A/W), EQE (47.2%), and photocurrent gain (9.2).

18.
ACS Appl Mater Interfaces ; 16(13): 16145-16151, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38515379

RESUMO

Artificial superlattice films made of Pb(Zr0.4Ti0.6)O3 and Pb(Zr0.6Ti0.4)O3 were investigated for their polarization states and piezoelectric properties theoretically and experimentally in this study. The developed theory predicts nontrivial polarization along neither [001] nor [111] directions in (111)-epitaxial monodomain superlattice films with uniform compressive strain. Such films were achieved via pulsed laser deposition. When the layer thickness is reduced to 3 nm, d33 becomes 128 ± 3.8 pm/V at 100 kV/cm and 71.3 ± 2.83 pm/V at 600 kV/cm, comparable to that of (111)-oriented Pb(Zr0.4Ti0.6)O3 or Pb(Zr0.6Ti0.4)O3 bulks and clearly exceeding that of the typical clamped films. The measurement agrees with the theoretical analysis, which reveals that the enhanced piezoelectricity is due to rotation of the nontrivial polarization. Furthermore, the theoretical study predicts an even larger d33 exceeding 300 pm/V for specific parameters in superlattice films with uniform tensile strain, which is promising for applications of microelectromechanical systems.

19.
Materials (Basel) ; 17(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473633

RESUMO

The structure, composition and corrosion properties of thin films synthesized using the Pulsed Laser Deposition (PLD) technique starting from a three high entropy alloy (HEA) AlCoCrFeNix produced by vacuum arc remelting (VAR) method were investigated. The depositions were performed at room temperature on Si and mirror-like polished Ti substrates either under residual vacuum (low 10-7 mbar, films denoted HEA2, HEA6, and HEA10, which were grown from targets with Ni concentration molar ratio, x, equal to 0.4, 1.2, and 2.0, respectively) or under N2 (10-4 mbar, films denoted HEN2, HEN6, and HEN10 for the same Ni concentration molar ratios). The deposited films' structures, investigated using Grazing Incidence X-ray Diffraction, showed the presence of face-centered cubic and body-centered cubic phases, while their surface morphology, investigated using scanning electron microscopy, exhibited a smooth surface with micrometer size droplets. The mass density and thickness were obtained from simulations of acquired X-ray reflectivity curves. The films' elemental composition, estimated using the energy dispersion X-ray spectroscopy, was quite close to that of the targets used. X-ray Photoelectron Spectroscopy investigation showed that films deposited under a N2 atmosphere contained several percentages of N atoms in metallic nitride compounds. The electrochemical behavior of films under simulated body fluid (SBF) conditions was investigated by Open Circuit Potential (OCP) and Electrochemical Impedance Spectroscopy measurements. The measured OCP values increased over time, implying that a passive layer was formed on the surface of the films. It was observed that all films started to passivate in SBF solution, with the HEN6 film exhibiting the highest increase. The highest repassivation potential was exhibited by the same film, implying that it had the highest stability range of all analyzed films. Impedance measurements indicated high corrosion resistance values for HEA2, HEA6, and HEN6 samples. Much lower resistances were found for HEN10 and HEN2. Overall, HEN6 films exhibited the best corrosion behavior among the investigated films. It was noticed that for 24 h of immersion in SBF solution, this film was also a physical barrier to the corrosion process, not only a chemical one.

20.
Heliyon ; 10(5): e27247, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463876

RESUMO

Thin films of Bi3+ doped LaOCl and LaOF phosphors prepared via the pulsed laser deposition (PLD) technique in vacuum and different argon (Ar) pressures were compared in order to assess their luminescence properties. All peaks of the X-ray diffraction patterns of the films were consistent with the tetragonal structure of the LaOCl and LaOF, but in the case of LaOF the signal was weaker and not all peaks were present, suggesting some preferred orientation. Photoluminescence measurements revealed that the films exhibited emission around 344 nm for LaOCl:Bi and 518 nm for LaOF:Bi under excitations of 266 nm and 263 nm, respectively. The luminescence from the LaOF:Bi sample was less intense compared to the LaOCl:Bi sample prepared under the same conditions, which was also the case for the powder samples. The amount of ablated material present on the substrate was much less for LaOF:Bi compared to LaOCl:Bi, which is attributed to the greater bandgap and hence weaker absorption of the laser pulses for LaOF:Bi. Therefore phosphors based on LaOCl as the host material were found to be preferable over LaOF under the PLD conditions used in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA