Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928288

RESUMO

Abscisic acid (ABA) plays a crucial role in plant defense mechanisms under adverse environmental conditions, but its metabolism and perception in response to heavy metals are largely unknown. In Pisum sativum exposed to CdCl2, an accumulation of free ABA was detected in leaves at different developmental stages (A, youngest, unexpanded; B1, youngest, fully expanded; B2, mature; C, old), with the highest content found in A and B1 leaves. In turn, the content of ABA conjugates, which was highest in B2 and C leaves under control conditions, increased only in A leaves and decreased in leaves of later developmental stages after Cd treatment. Based on the expression of PsNCED2, PsNCED3 (9-cis-epoxycarotenoid dioxygenase), PsAO3 (aldehyde oxidase) and PsABAUGT1 (ABA-UDP-glucosyltransferase), and the activity of PsAOγ, B2 and C leaves were found to be the main sites of Cd-induced de novo synthesis of ABA from carotenoids and ABA conjugation with glucose. In turn, ß-glucosidase activity and the expression of genes encoding ABA receptors (PsPYL2, PsPYL4, PsPYL8, PsPYL9) suggest that in A and B1 leaves, Cd-induced release of ABA from inactive ABA-glucosyl esters and enhanced ABA perception comes to the forefront when dealing with Cd toxicity. The distinct role of leaves at different developmental stages in defense against the harmful effects of Cd is discussed.


Assuntos
Ácido Abscísico , Cádmio , Regulação da Expressão Gênica de Plantas , Pisum sativum , Folhas de Planta , Proteínas de Plantas , Ácido Abscísico/metabolismo , Pisum sativum/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Cádmio/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Dioxigenases/metabolismo , Dioxigenases/genética , beta-Glucosidase/metabolismo , beta-Glucosidase/genética
2.
Front Plant Sci ; 13: 849467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548282

RESUMO

Brassinosteroid-Insensitive 1-Associated Receptor Kinase 1 (BAK1) is a versatile kinase involved in many different plant developmental responses. Previously, we showed that BAK1 interacts with open stomata 1 (OST1), a cytoplasmic kinase, to promote abscisic acid (ABA)-induced stomatal closure. ABA is a plant hormone that primarily regulates stress responses and is recognized by the PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENT OF ABA RECEPTORS (RCAR), which activates ABA signaling. Here, we demonstrated that BAK1 interacts with PYR1 and phosphorylates PYR1 in response to ABA in plants. We identified T137 and S142 of PYR1 as the phosphosites targeted by BAK1. Using phosphomimetic (PYR1DD) and phospho-dead (PYR1AA) PYR1 compared with wild-type PYR1, we showed that transgenic plants overexpressing a phosphomimetic PYR1 exhibited hypersensitivity to the inhibition of ABA-induced root growth and seed germination and increased ABA-induced stomatal closure and ABA-inducible gene expression. As underlying reasons for these phenomena, we further demonstrated that phosphorylated PYR1 existed in a monomeric form, in which ABA binding was increased, and the degree of complex formation with ABI1 was also increased. These results suggest that BAK1 positively modulates ABA signaling through interaction with PYR1, in addition to OST1.

3.
Front Plant Sci ; 11: 934, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754170

RESUMO

We hereby review the perception and responses to the stress hormone Abscisic acid (ABA), along the trajectory of 500M years of plant evolution, whose understanding may resolve how plants acquired this signaling pathway essential for the colonization of land. ABA levels rise in response to abiotic stresses, coordinating physiological and metabolic responses, helping plants survive stressful environments. In land plants, ABA signaling cascade leads to growth arrest and large-scale changes in transcript levels, required for coping with environmental stressors. This response is regulated by a PYRABACTIN RESISTANCE 1-like (PYL)-PROTEIN PHOSPHATASE 2C (PP2C)-SNF1-RELATED PROTEIN KINASE 2 (SnRK2) module, that initiates phosphor-activation of transcription factors and ion channels. The enzymatic portions of this module (phosphatase and kinase) are functionally conserved from streptophyte algae to angiosperms, whereas the regulatory component -the PYL receptors, putatively evolved in the common ancestor of Zygnematophyceae and embryophyte as a constitutive, ABA-independent protein, further evolving into a ligand-activated receptor at the embryophyta. This evolutionary process peaked with the appearance of the strictly ABA-dependent subfamily III stress-triggered angiosperms' dimeric PYL receptors. The emerging picture is that the ancestor of land plants and its predecessors synthesized ABA, as its biosynthetic pathway is conserved between ancestral and current day algae. Despite this ability, it was only the common ancestor of land plants which acquired the hormonal-modulation of PYL activity by ABA. This raises several questions regarding both ABA's function in ABA-non-responsive organisms, and the evolutionary aspects of the ABA signal transduction pathway.

4.
Chin J Nat Med ; 18(8): 606-611, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768167

RESUMO

As abscisic acid (ABA) receptor, the pyrabactin resistance 1-like (PYR/PYL) protein (named PYL for simplicity) plays an important part to unveil the signal transduction of ABA and its regulatory mechanisms. Glycyrrhiza uralensis, a drought-tolerant medicinal plant, is a good model for the mechanism analysis of ABA response and active compound biosynthesis. However, knowledge about PYL family in G. uralensis remains largely unknown. Here, 10 PYLs were identified in G. uralensis genome. Characterization analysis indicated that PYLs in G. uralensis (GuPYLs) are relatively conserved. Phylogenetic analysis showed that GuPYL1-3 belongs to subfamily I, GuPYL4-6 and GuPYL10 belong to subfamily II and GuPYL7-9 belongs to subfamily III. In addition, transcriptome data presented various expression levels of GuPYLs under different exogenous ABA stresses. The expression pattern of GuPYLs was verified by Quantitative real-time polymerase chain reaction (qRT-PCR). The study proved that GuPYL4, GuPYL5, GuPYL8 and GuPYL9 genes are significantly up-regulated by ABA stress and the response process is dynamic. This study paves the way for elucidating the regulation mechanism of ABA signal to secondary metabolites and improving the cultivation and quality of G. uralensis using agricultural strategies.


Assuntos
Ácido Abscísico/metabolismo , Glycyrrhiza uralensis/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Plantas Medicinais/genética
5.
Front Chem ; 8: 425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582630

RESUMO

The abscisic acid (ABA), as a pivotal plant hormone, plays a key role in controlling the life cycle and adapting to the environmental stresses. The receptors of ABA are the Pyrabactin resistance/Pyrabactin resistance-like/regulatory component of ABA receptors (PYR/PYL/RCAR, PYLs for simplicity), which regulate the protein phosphatase 2Cs (PP2Cs) in the signal pathway. As an important ABA-mimicking ligand, Pyrabactin shows the activation function to parts of members of PYLs, such as PYR1 and PYL1. Due to the antagonism of Pyrabactin to PYL2, it was used as a probe to discover a part of ABA receptors. Since then, many researchers have been trying to find out the determinants of the selective regulation of PYLs and PP2Cs interaction. However, the roles of residues on the selective regulation of PYR1/PYL2 and PP2Cs interaction induced by Pyrabactin are still ambiguous. This research investigated the selective activation mechanism of Pyrabactin through the sequence alignment, molecular docking, molecular dynamics simulation, and binding free energy calculation. Furthermore, the electrostatic and hydrophobic interaction differences induced by Pyrabactin and agonists were compared. The results indicate that Leu137/Val114, Ser85/Ser89, and Gly86/Gly90 from the pocket and gate of PYR1/PYL2 are the vital residues for the selective activation of Pyrabactin. Meanwhile, the electrostatic interaction between PP2Cs and PYLs complexed with agonists was improved. This mechanism provides strong support for the design of selective agonists and antagonists.

6.
Plant Physiol Biochem ; 148: 10-25, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923734

RESUMO

Abscisic acid (ABA) is a ubiquitous phytohormone, plays important roles in several physiological processes, including stress adaptation, flowering, seed germination, fruit ripening, and leaf senescence etc. ABA binds with START domain proteins called Pyrabactin Resistance1 (PYR1)/PYR1-like (PYL)/Regulatory Components of ABA Receptors (RCARs) and controls the activity of PP2C phosphatase proteins and in turn the ABA-dependent signaling pathway. Fourteen ABA receptors have been identified in the model plant Arabidopsis thaliana and have shown to be involved in various biological functions. Under field conditions, exogenous application of ABA produces inadequate physiological response due to its rapid conversion into the biologically inactive metabolites. ABA shows selective binding preferences to PYL receptor subtypes and hence produces pleiotropic physiological and phenotypic effects which limit the usage of ABA in agriculture. An agrochemical meant for ameliorating the undesirable physiological effect of the plant should ideally have positive biological attributes without affecting the normal growth, development, and yield. Therefore, to overcome the limitations of ABA for its usage in various agricultural applications, several types of ABA-mimicking agents have been developed. Many compounds have been identified as having significant ABA-agonist/antagonist activity and can be employed to reverse the excessive/moderate ABA action. The present review highlights the potential usage of ABA signaling modulators for managing agronomic and postharvest traits. Besides, designing, development and versatile usage of ABA-mimicking compounds displaying ABA agonists and antagonist activities are discussed in detail.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Agricultura , Proteínas de Arabidopsis/agonistas , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Transdução de Sinais
7.
J Exp Bot ; 71(4): 1322-1336, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31740933

RESUMO

The plant hormone abscisic acid (ABA) plays a crucial role during the plant life cycle as well as in adaptive responses to environmental stresses. The core regulatory components of ABA signaling in plants are the pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor family (PYLs), which comprise the largest plant hormone receptor family known. They act as negative regulators of members of the protein phosphatase type 2C family. Due to the biological importance of PYLs, many researchers have focused on their genetic redundancy and consequent functional divergence. However, little is understood of their evolution and its impact on the generation of regulatory diversity. In this study, we identify positive selection and functional divergence in PYLs through phylogenetic reconstruction, gene structure and expression pattern analysis, positive selection analysis, functional divergence analysis, and structure comparison. We found the correlation of desensitization of PYLs under specific modifications in the molecular recognition domain with functional diversification. Hence, an interesting antagonistic co-evolutionary mechanism is proposed for the functional diversification of ABA receptor family proteins. We believe a compensatory evolutionary pathway may have occurred.


Assuntos
Ácido Abscísico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Família Multigênica , Plantas , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia
8.
Plant Mol Biol ; 100(3): 319-333, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30941543

RESUMO

KEY MESSAGE: We determined the structure of OsPYL/RCAR3:OsPP2C50 complex with pyrabactin. Our results suggest that a less-conserved phenylalanine of OsPYL/RCAR subfamily I is one of considerations of ABA agonist development for Oryza sativa. Pyrabactin is a synthetic chemical mimicking abscisic acid (ABA), a naturally occurring phytohormone orchestrating abiotic stress responses. ABA and pyrabactin share the same pocket in the ABA receptors but pyrabactin modulates ABA signaling differently, exhibiting both agonistic and antagonistic effects. To explore structural determinants of differential functionality of pyrabactin, we determined the crystal structure of OsPYL/RCAR3:pyrabactin:OsPP2C50, the first rice ABA receptor:co-receptor complex structure with a synthetic ABA mimicry. The water-mediated interaction between the wedging Trp-259 of OsPP2C50 and pyrabactin is lost, undermining the structural integrity of the ABA receptor:co-receptor. The loss of the interaction of the wedging tryptophan of OsPP2C with pyrabactin appears to contribute to the weaker functionality of pyrabactin. Pyrabactin in the OsPYL/RCAR3:OsPP2C50 complex adopts a conformation different from that in ABA receptors from Arabidopsis. Phe125, specific to the subfamily I of OsPYL/RCARs in the ABA binding pocket, appears to be the culprit for the differential conformation of pyrabactin. Although the gate closure essential for the integrity of ABA receptor:co-receptor is preserved in the presence of pyrabactin, Phe125 apparently restricts accessibility of pyrabactin, leading to decreased affinity for OsPYL/RCAR3 evidenced by phosphatase assay. However, Phe125 does not affect conformation and accessibility of ABA. Yeast two-hybrid, germination and gene transcription analyses in rice also support that pyrabactin imposes a weak effect on the control of ABA signaling. Taken together, our results suggest that phenylalanine substitution of OsPYL/RCARs subfamily I may be one of considerations for ABA synthetic agonist development.


Assuntos
Ácido Abscísico/metabolismo , Naftalenos/agonistas , Naftalenos/química , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sulfonamidas/agonistas , Sulfonamidas/química , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , Germinação , Modelos Moleculares , Fosfoproteínas Fosfatases/química , Reguladores de Crescimento de Plantas/metabolismo , Conformação Proteica , Sementes/metabolismo , Transdução de Sinais , Estresse Fisiológico
9.
Plant Biotechnol J ; 16(2): 530-544, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28703416

RESUMO

Postharvest senescence and associated stresses limit the shelf life and nutritional value of vegetables. Improved understanding of these processes creates options for better management. After harvest, controlled exposure to abiotic stresses and/or exogenous phytohormones can enhance nutraceutical, organoleptic and commercial longevity traits. With leaf senescence, abscisic acid (ABA) contents progressively rise, but the actual biological functions of this hormone through senescence still need to be clarified. Postharvest senescence of detached green cabbage leaves (Brassica oleracea var. capitata) was characterized under cold (4 °C) and room temperature (25 °C) storage conditions. Hormonal profiling of regions of the leaf blade (apical, medial, basal) revealed a decrease in cytokinins contents during the first days under both conditions, while ABA only increased at 25 °C. Treatments with ABA and a partial agonist of ABA (pyrabactin) for 8 days did not lead to significant effects on water and pigment contents, but increased cell integrity and altered 1-aminocyclopropane-1-carboxylic acid (ACC) and cytokinins contents. Transcriptome analysis showed transcriptional regulation of ABA, cytokinin and ethylene metabolism and signalling; proteasome components; senescence regulation; protection of chloroplast functionality and cell homeostasis; and suppression of defence responses (including glucosinolates and phenylpropanoids metabolism). It is concluded that increasing the concentration of ABA (or its partial agonist pyrabactin) from the start of postharvest suppresses senescence of stored leaves, changes the transcriptional regulation of glucosinolates metabolism and down-regulates biotic stress defence mechanisms. These results suggest a potential for manipulating ABA signalling for improving postharvest quality of leafy vegetables stored at ambient temperature.


Assuntos
Ácido Abscísico/metabolismo , Verduras/metabolismo , Regulação da Expressão Gênica de Plantas , Naftalenos/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Sulfonamidas/metabolismo , Temperatura , Ubiquitina-Proteína Ligases/metabolismo
10.
Food Chem ; 203: 216-223, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26948608

RESUMO

Abscisic acid (ABA) is a plant growth regulator with roles in senescence, fruit ripening and environmental stress responses. ABA and pyrabactin (a non-photosensitive ABA agonist) effects on red raspberry (Rubus idaeus L.) fruit development (including ripening) were studied, with a focus on vitamin and antioxidant composition. Application of ABA and/or pyrabactin just after fruit set did not affect the temporal pattern of fruit development and ripening; neither provitamin A (carotenoids) nor vitamin E contents were modified. In contrast, ABA and pyrabactin altered the vitamin C redox state at early stages of fruit development and more than doubled vitamin C contents at the end of fruit ripening. These were partially explained by changes in ascorbate oxidation and recycling. Therefore, ABA and pyrabactin applications may be used to increase vitamin C content of ripe fruits, increasing fruit quality and value. However, treatments containing pyrabactin-combined with ABA or alone-diminished protein content, thus partially limiting its potential applicability.


Assuntos
Ácido Abscísico/química , Antioxidantes/análise , Ácido Ascórbico/análise , Naftalenos/química , Reguladores de Crescimento de Plantas/química , Rubus/química , Sulfonamidas/química , Carotenoides/análise , Frutas/química , Frutas/crescimento & desenvolvimento , Rubus/crescimento & desenvolvimento
11.
Plant Physiol Biochem ; 94: 28-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26000467

RESUMO

Pyrabactin, an agonist of abscisic acid (ABA), has led to the isolation and characterization of pyrabactin resistance 1/pyrabactin resistance 1-like (PYR1/PYLs) ABA receptors in Arabidopsis, which has well explained ABA-mediated stomatal movement and stress-related gene expression. In addition to inducing stomatal closure and inhibiting transpiration, ABA can also enhance root hydraulic conductivity (Lpr), thus maintaining water balance under water deficiency-related stress, but its molecular mechanism remains unclear. In the present study, the root hydraulic properties of maize seedlings in response to pyrabactin were compared to those caused by ABA. Similar to ABA, lower concentration of pyrabactin induced a remarkable increase in Lpr as well as in the gene expression of the plasma membrane intrinsic protein (ZmPIP) aquaporin and in the ZmPIP2; 1/2; 2 protein abundance. The pyrabactin-induced enhancement of Lpr was abolished by H2O2 application, indicating that pyrabactin regulates Lpr by modulating ZmPIP at transcriptional, translational and post-translational (activity) level. Pyrabactin-mediated water transport and ZmPIP gene expression were phosphorylation-dependent, suggesting that ABA-PYR1-(PP2C)-protein kinase-AQP signaling pathway may be involved in this process. As we know this is the first established ABA signaling transduction pathway that mediated water transport in roots. This observation further addressed the importance of PYR1/PYLs ABA receptor in regulating plant water use efficiency from the under ground level. Except inhibiting transpiration in leaves, our result introduces the exciting possibility of application ABA agonists for regulating roots water uptake in field, with a species- and dose dependent manner.


Assuntos
Aquaporinas/metabolismo , Naftalenos/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Sulfonamidas/farmacologia , Zea mays/metabolismo
12.
Plant Cell Physiol ; 56(6): 1043-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25917608

RESUMO

ABA is a plant hormone that plays crucial roles in controlling cellular and physiological responses to osmotic stress and in developmental processes. Endogenous ABA levels are increased in response to a decrease in water availability in cells, and ABA sensing and signaling are thought to be mediated according to the current model established in Arabidopsis thaliana, which involves pyrabactin resistance 1 (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor (RCAR), protein phosphatase 2C (PP2C) and sucrose non-fermenting-1 (SNF1)-related protein kinase 2 (SnRK2). These core components of ABA signaling have a pivotal role in stress-responsive gene expression and stomatal regulation. However, because a limited number of their upstream and downstream factors have been characterized, it is still difficult to define the comprehensive network of ABA signaling in plants. This review focuses on current progress in the study of PYR/PYL/RCARs, PP2Cs and SnRK2s, with particular emphasis on omics approaches, such as interactome and phosphoproteome studies. Moreover, the role of ABA in plant growth and development is discussed based on recent metabolomic profiling studies.


Assuntos
Ácido Abscísico/metabolismo , Fosfoproteínas/metabolismo , Plantas/metabolismo , Proteômica/métodos , Transdução de Sinais , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C
13.
Plant Signal Behav ; 10(3): e991577, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25757363

RESUMO

As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses.


Assuntos
Adaptação Fisiológica , Cynodon/efeitos dos fármacos , Secas , Cloreto de Sódio/efeitos adversos , Estresse Fisiológico/efeitos dos fármacos , Temperatura , Ácido Abscísico/farmacologia , Antioxidantes/metabolismo , Cloreto de Cálcio/farmacologia , Metabolismo dos Carboidratos , Cynodon/metabolismo , Sulfeto de Hidrogênio/farmacologia , Melatonina/farmacologia , Ácido Nítrico/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Poliaminas/farmacologia , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Água
14.
FEBS Open Bio ; 4: 496-509, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24944884

RESUMO

Pyrabactin receptors (PYR) play a central role in abscisic acid (ABA) signal transduction; they are ABA receptors that inhibit type 2C protein phosphatases (PP2C). Molecular aspects contributing to increased basal activity of PYR against PP2C are studied by molecular dynamics (MD) simulations. An extensive series of MD simulations of the apo-form of mutagenized PYR1 as a homodimer and in complex with homology to ABA-insensitive 1 (HAB1) phosphatase are reported. In order to investigate the detailed molecular mechanisms mediating PYR1 activity, the MD data was analyzed by essential collective dynamics (ECD), a novel approach that allows the identification, with atomic resolution, of persistent dynamic correlations based on relatively short MD trajectories. Employing the ECD method, the effects of select mutations on the structure and dynamics of the PYR1 complexes were investigated and considered in the context of experimentally determined constitutive activities against HAB1. Approaches to rationally design constitutively active PYR1 constructs to increase PP2C inhibition are discussed.

15.
Biophysics (Nagoya-shi) ; 7: 123-128, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-27857600

RESUMO

Abscisic acid (ABA) is a major phytohormone that mediates the adaptation of plants to environmental stresses such as drought and regulates developmental signals such as seed maturation. Studies on ABA signaling have progressed rapidly since the recent discovery of PYR/PYL receptor proteins as soluble ABA receptors. In plant cells, the receptor receives ABA to inhibit the phosphatase activity of type 2C protein phosphatase (PP2C), which is the major negative regulator in ABA signaling. SNF1-related protein kinase 2 (SnRK2) is then released from negative regulation by PP2C, turning on ABA signals by the phosphorylation of downstream factors. Insights into the regulation of PYR/PYL receptor proteins is therefore required in order to control drought-stress tolerance in plants. This article reviews the regulatory mechanism of the ABA receptor by ABA and its selective agonist. Structural analyses of PYR/PYL receptors have clearly elucidated the mechanism of ABA perception of the receptor or the mechanism of interaction with PP2C that leads to inhibition of its phosphatase activity. Moreover, the structures of PYR/PYL receptors complexed with pyrabactin, a selective ABA agonist, have provided the structural basis of ABA agonism and antagonism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA