Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Med Entomol ; 61(5): 1190-1202, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39093689

RESUMO

In the last 2 decades, there has been an increase in the geographic range and frequency of vector-borne diseases. Management of mosquito populations has become challenging due to increasing rates of resistance to existing insecticidal products and formulations. Several alternative tools have emerged to suppress or replace mosquito populations. One of these tools is the In2Care Mosquito Station (In2Care station). This dual-action station contains the insect growth regulator pyriproxyfen which disrupts the development of immatures and the entomopathogenic fungus Beauveria bassiana (B. bassiana) strain GHA which kills exposed adult mosquitoes. The In2Care stations have previously been shown to effectively control Aedes aegypti in field settings at a density of 6 stations/acre rather than the label-recommended 10 stations/acre. To further test the efficacy of low station density deployment, we deployed In2Care stations in the Pleasant Street Historic District of Gainesville, Florida, at a density of 3 stations/acre over a period of 2 years in the presence or absence of ground larvicidal applications. The deployment of stations resulted in no measurable impact on Ae. aegypti and Culex quinquefasciatus adult or immature abundance suggesting that the low-density deployment of In2Care stations is insufficient to reduce Ae. aegypti and Cu. quinquefasciatus abundance within treatment areas.


Assuntos
Aedes , Beauveria , Culex , Controle de Mosquitos , Animais , Aedes/crescimento & desenvolvimento , Controle de Mosquitos/métodos , Culex/crescimento & desenvolvimento , Florida , Beauveria/fisiologia , Piridinas , Controle Biológico de Vetores/métodos , Hormônios Juvenis , Inseticidas , Larva/crescimento & desenvolvimento , Densidade Demográfica , Feminino
2.
J Hazard Mater ; 477: 135364, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39111178

RESUMO

The development of a fluorescent probe for pyriproxyfen (PPF) is crucial due to its potential threat to human health. However, the chemical inertness and low solubility of PPF present significant challenges for the detection of PPF in aqueous solutions using fluorescent probes. Herein, we have originally proposed a complex based on 2-(4-(dimethylamino)phenyl)-3-hydroxy-6,7-dimethoxy-4 H-chromen-4-one (HOF) and serum albumin (SA) as a dual-mode fluorescent probe, HOF@SA. This probe utilizes an indicator displacement assay (IDA) to release the dye HOF from the probe at low PPF concentrations (< 10 µM) and embeds the free dye HOF into the micelle of PPF at high concentrations (> 10 µM). This results in dual-mode fluorescent response characteristics for PPF: a turn-off response at low concentrations and a ratiometric response at high concentrations. An investigation of sensing behavior of HOF@SA for PPF detection exhibits rapid response (< 60 s), high sensitivity (LOD ∼4.7 ppb), high selectivity, and excellent visual detection capability (from cyan to yellow). Moreover, with the aid of a portable device, this method enables to analyze PPF in environmental and food samples. These results promote the advancement of a fluorescent probe approach for PPF analysis in environment and food.


Assuntos
Corantes Fluorescentes , Contaminação de Alimentos , Piridinas , Corantes Fluorescentes/química , Piridinas/química , Piridinas/análise , Contaminação de Alimentos/análise , Albumina Sérica/análise , Espectrometria de Fluorescência/métodos , Limite de Detecção , Monitoramento Ambiental/métodos
3.
Genes (Basel) ; 15(8)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39202406

RESUMO

Aedes aegypti and Aedes albopictus are responsible for transmitting major human arboviruses such as Dengue, Zika, and Chikungunya, posing a global threat to public health. The lack of etiological treatments and efficient vaccines makes vector control strategies essential for reducing vector population density and interrupting the pathogen transmission cycle. This study evaluated the impact of long-term pyriproxyfen exposure on the genetic structure and diversity of Ae. aegypti and Ae. albopictus mosquito populations. The study was conducted in Manaus, Amazonas, Brazil, where pyriproxyfen dissemination stations have been monitored since 2014 up to the present day. Double digest restriction-site associated DNA sequencing was performed, revealing that despite significant local population reductions by dissemination stations with pyriproxyfen in various locations in Brazil, focal intervention has no significant impact on the population stratification of these vectors in urban scenarios. The genetic structuring level of Ae. aegypti suggests it is more stratified and directly affected by pyriproxyfen intervention, while for Ae. albopictus exhibits a more homogeneous and less structured population. The results suggest that although slight differences are observed among mosquito subpopulations, intervention focused on neighborhoods in a capital city is not efficient in terms of genetic structuring, indicating that larger-scale pyriproxyfen interventions should be considered for more effective urban mosquito control.


Assuntos
Aedes , Mosquitos Vetores , Piridinas , Aedes/genética , Aedes/efeitos dos fármacos , Animais , Piridinas/farmacologia , Brasil , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Controle de Mosquitos/métodos , Inseticidas/farmacologia , Variação Genética , Humanos
4.
Pest Manag Sci ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39072896

RESUMO

BACKGROUND: The incompatible insect technique (IIT) has been used for Aedes mosquito population suppression to curb the transmission of dengue. However, its wide application is limited owing to the low output of male mosquitoes and the risk of population replacement from the release of fertile Wolbachia-infected females. This study aims to improve IIT efficiency for broader adoption. RESULTS: We assessed the impact of 10% pyriproxyfen (PPF) sticky powder exposure on Wolbachia (from Culex molestus)-transinfected Aedes albopictus Guangzhou line (GUA line) (GC) mosquitoes. We found that the exposure caused chronic toxicity in adult mosquitoes without affecting the cytoplasmic incompatibility (CI)-inducing capability of males. The PPF-contaminated GC females exhibited significant sterilization and the ability to disseminate lethal doses of PPF to breeding sites. Subsequently, we conducted a field trial combining PPF with IIT aiming to suppress the Ae. albopictus population. This combined approach, termed boosted IIT (BIIT), showed a notable enhancement in population suppression efficiency. The improved efficacy of BIIT was attributed to the dispersion of PPF particles in the field via the released PPF-contaminated male mosquitoes. During the BIIT field trial, no Wolbachia wPip-positive Ae. albopictus larvae were detected, indicating the effective elimination of the risk of Wolbachia-induced population replacement. Additionally, the field trial of BIIT against Ae. albopictus resulted in the suppression of the nontarget mosquito species Culex quinquefasciatus. CONCLUSION: Our results highlight the remarkable efficiency and feasibility of combining IIT with PPF in suppressing mosquito populations, facilitating the widespread implementation of IIT-based management of mosquito-borne diseases. © 2024 Society of Chemical Industry.

5.
Front Insect Sci ; 4: 1430422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015484

RESUMO

Introduction: Control of the mosquito Aedes albopictus is confounded by its behavior due to females preferring to oviposition in small natural and artificial containers that are often difficult to remove or treat with insecticides. Autodissemination strategies utilizing highly potent insect growth regulators (IGRs) have emerged as promising tools for the control of this container-inhabiting species. The intended goal of autodissemination approaches is to use mosquitoes to self-deliver an IGR to these cryptic oviposition locations. Previous studies have focused on the efficacy of these approaches to impact natural populations, but little focus has been placed on the impacts on mosquitoes when exposed to non-lethal doses of IGRs similar to the levels they would be exposed to with autodissemination approaches. Methods: In this study, the impact of non-lethal doses of pyriproxyfen (PPF) on the reproductive fitness of Ae. albopictus was investigated. Female and male Ae. albopictus mosquitoes were exposed to non-lethal doses of PPF and their fecundity and fertility were measured. To examine the impact of non-lethal doses of PPF, the expression of the ecdysone-regulated genes USP, HR3, and Vg, which are involved in vitellogenesis, was determined. Results: Our results demonstrated a significant reduction in female fecundity and in the blood feeding and egg hatching rates upon exposure to non-lethal doses of PPF. Oocyte development was also delayed in PPF-treated females. Furthermore, exposure to non-lethal doses of PPF altered the expression of the genes involved in vitellogenesis, indicating disruption of hormonal regulation. Interestingly, PPF exposure also reduced the sperm production in males, suggesting a potential semi-sterilization effect. Discussion: These findings suggest that non-lethal doses of PPF could enhance the efficacy of autodissemination approaches by impacting the reproductive fitness of both males and females. However, further research is needed to validate these laboratory findings in field settings and to assess their practical implications for vector control strategies.

6.
J Econ Entomol ; 117(4): 1493-1502, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38935064

RESUMO

Pyriproxyfen (PPF) has been shown to affect the pupal stage and ecdysone levels in holometabolous insects, such as silkworms and mealworms. It remains unknown whether it affects hemimetabolous insects with their hormone levels in insects lacking a pupal stage. In this laboratory study, bioassays were conducted to investigate the effects of varying doses of PPF on Aphis craccivora Koch (Hemiptera: Aphididae). Ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the types and titers of juvenile hormone (JH) and 20-hydroxyecdysone (20E). Additionally, the effects of PPF on A. craccivora reproduction and molting, as well as its influence on relevant gene expression, were examined. The results revealed LC50 and LC90 values of 3.84 and 7.49 mg/l for PPF, respectively, after 48 h of exposure. The results demonstrated a significant reduction in the titer of JH III and a significant increase in the titer of 20E following treatment with PPF. However, there was no significant decrease observed in the titer of JH III skipped bisepoxide (JH SB3). A sublethal concentration of PPF was found to inhibit Krüppel homolog 1 (kr-h1) gene expression and reduce aphid reproduction, but it did not significantly impact ecdysone receptor expression and aphid molting. The results of this study demonstrate that PPF exhibits a lethal effect on aphids, thereby providing an effective means of control. Additionally, sublethal concentrations of PPF have been found to inhibit the JH in aphids, resulting in a decline in their reproductive ability and achieving the desired control objectives.


Assuntos
Afídeos , Hormônios Juvenis , Piridinas , Animais , Afídeos/efeitos dos fármacos , Afídeos/crescimento & desenvolvimento , Hormônios Juvenis/farmacologia , Piridinas/farmacologia , Ecdisterona/farmacologia , Muda/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Feminino , Inseticidas/farmacologia
7.
Malar J ; 23(1): 164, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789998

RESUMO

BACKGROUND: Nets containing pyriproxyfen, an insect growth regulator that sterilizes adult mosquitoes, have become available for malaria control. Suitable methods for investigating vector susceptibility to pyriproxyfen and evaluating its efficacy on nets need to be identified. The sterilizing effects of pyriproxyfen on adult malaria vectors can be assessed by measuring oviposition or by dissecting mosquito ovaries to determine damage by pyriproxyfen (ovary dissection). METHOD: Laboratory bioassays were performed to compare the oviposition and ovary dissection methods for monitoring susceptibility to pyriproxyfen in wild malaria vectors using WHO bottle bioassays and for evaluating its efficacy on nets in cone bioassays. Blood-fed mosquitoes of susceptible and pyrethroid-resistant strains of Anopheles gambiae sensu lato were exposed to pyriproxyfen-treated bottles (100 µg and 200 µg) and to unwashed and washed pieces of a pyriproxyfen long-lasting net in cone bioassays. Survivors were assessed for the sterilizing effects of pyriproxyfen using both methods. The methods were compared in terms of their reliability, sensitivity, specificity, resources (cost and time) required and perceived difficulties by trained laboratory technicians. RESULTS: The total number of An. gambiae s.l. mosquitoes assessed for the sterilizing effects of pyriproxyfen were 1745 for the oviposition method and 1698 for the ovary dissection method. Fertility rates of control unexposed mosquitoes were significantly higher with ovary dissection compared to oviposition in both bottle bioassays (99-100% vs. 34-59%, P < 0.05) and cone bioassays (99-100% vs. 18-33%, P < 0.001). Oviposition rates of control unexposed mosquitoes were lower with wild pyrethroid-resistant An. gambiae s.l. Cové, compared to the laboratory-maintained reference susceptible An gambiae sensu stricto Kisumu (18-34% vs. 58-76%, P < 0.05). Sterilization rates of the Kisumu strain in bottle bioassays with the pyriproxyfen diagnostic dose (100 µg) were suboptimal with the oviposition method (90%) but showed full susceptibility with ovary dissection (99%). Wild pyrethroid-resistant Cové mosquitoes were fully susceptible to pyriproxyfen in bottle bioassays using ovary dissection (> 99%), but not with the oviposition method (69%). Both methods showed similar levels of sensitivity (89-98% vs. 89-100%). Specificity was substantially higher with ovary dissection compared to the oviposition method in both bottle bioassays (99-100% vs. 34-48%) and cone tests (100% vs.18-76%). Ovary dissection was also more sensitive for detecting the residual activity of pyriproxyfen in a washed net compared to oviposition. The oviposition method though cheaper, was less reliable and more time-consuming. Laboratory technicians preferred ovary dissection mostly due to its reliability. CONCLUSION: The ovary dissection method was more accurate, more reliable and more efficient compared to the oviposition method for evaluating the sterilizing effects of pyriproxyfen on adult malaria vectors in susceptibility bioassays and for evaluating the efficacy of pyriproxyfen-treated nets.


Assuntos
Anopheles , Inseticidas , Ovário , Oviposição , Piridinas , Animais , Piridinas/farmacologia , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Feminino , Oviposição/efeitos dos fármacos , Ovário/efeitos dos fármacos , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Bioensaio/métodos
8.
J Xenobiot ; 14(1): 214-226, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38390993

RESUMO

Pyriproxyfen is an insecticide currently employed in numerous countries for the management of agricultural and indoor pests. Several studies indicate that this insecticide has been detected in multiple rivers, with concentrations reaching as high as 99.59 ng/L in the Júcar River in Spain. Therefore, the determination of some biochemical and genetic effects of this insecticide on aquatic organisms could serve as an early warning mechanism to identify potential disruptions in various biomarkers. Based on this, Daphnia magna organisms were exposed to pyriproxyfen sublethal concentrations for 21 days. Some biochemical parameters, including cholesterol, triglycerides, glucose, lactate, and LDH activity, were determined. Additionally, some genetic biomarkers associated with oxidative stress, heat shock proteins, lipid metabolism, hemoglobin, metallothioneins, and vitellogenin synthesis were evaluated in daphnids exposed to the insecticide for 21 days. LDH activity increased significantly in those daphnids exposed to the highest insecticide concentration (14.02 µg/L), while cholesterol levels decreased significantly. In contrast, glucose, total proteins, and triglycerides remained unaffected in D. magna exposed to pyriproxyfen. On the other hand, exposure to the insecticide led to notable alterations in gene expression among individuals. Specifically, genes associated with lipid metabolism and reproduction exhibited a significant reduction in gene expression. Fabd expression was decreased by approximately 20% in exposed daphnids, while vtg expression was suppressed as much as 80% when compared to control values. Furthermore, it was observed that the hgb1 and hgb2 genes, associated with hemoglobin synthesis, exhibited significant overexpression. Notably, the dysfunction observed in both hemoglobin genes was linked to an increase in pigmentation in Daphnia magna during the course of the experiment. These alterations in gene expression could serve as effective indicators of early contamination even at low pesticide concentrations.

9.
Parasit Vectors ; 17(1): 88, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409019

RESUMO

BACKGROUND: Aedes aegypti is associated with dengue, Zika, and chikungunya transmission. These arboviruses are responsible for national outbreaks with severe public health implications. Vector control is one of the tools used to prevent mosquito proliferation, and SumiLarv® 2MR is an alternative commercial product based on pyriproxyfen for larval/pupal control. In this study, the residual effectiveness of SumiLarv® 2MR in different regions of Brazil was evaluated in simulated field conditions. METHODS: We conducted a multicenter study across four Brazilian states-Amapá, Pernambuco, Rio de Janeiro, and São Paulo-given the importance to the country's climatic variances in the north, northeast, and southeast regions and their influence on product efficiency. The populations of Ae. aegypti from each location were held in an insectary. Third-instar larvae (L3) were added every 2 weeks to water containers with SumiLarv® 2MR discs in 250-, 500- and 1000-l containers in Amapá and Rio de Janeiro, and 100-l containers in Pernambuco and São Paulo, using concentrations of 0.04, 0.08, and 0.16 mg/l. RESULTS: Adult emergence inhibition over 420 days was observed in all tests conducted at a concentration of 0.16 mg/l; inhibition for 308-420 days was observed for 0.08 mg/l, and 224-420 days for 0.04 mg/l. CONCLUSIONS: Sumilarv® 2MR residual activity demonstrated in this study suggests that this new pyriproxyfen formulation is a promising alternative for Aedes control, regardless of climatic variations and ideal concentration, since the SumiLarv® 2MR showed adult emergence inhibition of over 80% and residual activity greater than 6 months, a period longer than that recommended by the Ministry of Health of Brazil between product re-application in larval breeding sites.


Assuntos
Aedes , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Inseticidas/farmacologia , Controle de Mosquitos , Aedes/fisiologia , Brasil/epidemiologia , Larva , Mosquitos Vetores , Infecção por Zika virus/prevenção & controle
10.
J Econ Entomol ; 117(2): 377-387, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38289584

RESUMO

Division of labor within a honey bee colony creates a codependence between bees performing different tasks. The most obvious example of this is between the reproductive queen and worker bees. Queen bees lay 1,000 or more eggs a day, while young worker bees tend and feed queens. Young workers and queens can be exposed to pesticides when foragers return to the hive with contaminated resources. Previous research has found negative effects of larval exposure to insect-growth disruptors (IGD) methoxyfenozide and pyriproxyfen, on adult responsiveness to artificial queen pheromone. The present work investigates potential physiological and molecular mechanisms underpinning this behavioral change by examining the development of hypopharyngeal glands and ovaries as well as the expression of genes related to reproduction and worker endocrine signaling in the brain and hypopharyngeal gland tissues. Though hypopharyngeal gland and ovary development were not altered by developmental exposure to IGDs, gene expression differed. Specifically, in the brain tissue, ilp1 was downregulated in bees exposed to pyriproxyfen during development, and Kr-h1 was downregulated in both methoxyfenozide- and pyriproxyfen-exposed bees. In the hypopharyngeal glands, Kr-h1, EcR-A, EcR-B, and E75 were upregulated in honey bees exposed to methoxyfenozide compared to those in the pyriproxyfen or control treatments. Here we discuss these results and their potential implications for the health and performance of honey bee colonies.


Assuntos
Hidrazinas , Himenópteros , Feminino , Abelhas/genética , Animais , Comportamento Social , Hormônios Juvenis , Encéfalo/metabolismo
11.
J Agric Food Chem ; 72(3): 1462-1472, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197605

RESUMO

Insects' lipids, including fatty acids, as the second largest constituents in insects, play a variety of fundamental and vital functions. However, there is a lack of reports on the effects of insect growth regulators on fatty acid profiles and metabolic mechanisms. Therefore, in this study, a comparative study of three growth regulators, azadirachtin, pyriproxyfen, and tebufenozide, on fatty acids was carried out using a targeted metabolomics approach to fill this gap. The results showed that when exposed to azadirachtin, pyriproxyfen, and tebufenozide, there were 14, 17, and 11 differentially regulated fatty acids, respectively. The pathway of biosynthesis of unsaturated fatty acids was the common shared pathway, while fatty acid biosynthesis and linoleic acid metabolism were the specific pathways affected by the 3 insect growth regulators. Therefore, the results could be helpful to deepen the effects of azadirachtin and insect growth regulators on terrestrial insects.


Assuntos
Ácidos Graxos , Hidrazinas , Hormônios Juvenis , Limoninas , Piridinas , Tephritidae , Animais , Hormônios Juvenis/farmacologia , Larva , Ácidos Graxos/metabolismo , Insetos , Metaboloma
12.
Pest Manag Sci ; 80(2): 341-354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37688583

RESUMO

BACKGROUND: Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a major agricultural insect pest that causes severe economic losses worldwide. Several insecticides have been applied to effectively control this key pest. However, owing to the indiscriminate use of chemical insecticides, B. tabaci has developed resistance against these chemical compounds over the past several years. RESULTS: From 2019 to 2021, 23 field samples of B. tabaci were collected across China. Twenty species were identified as the Mediterranean 'Q' type (MED) and three were identified as MED/ Middle East-Asia Minor 1 mixtures. Subsequently, resistance of the selected populations to different insecticides was evaluated. The results showed that 13 populations developed low levels of resistance to abamectin. An overall upward trend in B. tabaci resistance toward spirotetramat, cyantraniliprole and pyriproxyfen was observed. In addition, resistance to thiamethoxam remained low-to-moderate in the 23 field populations. CONCLUSION: These findings suggest that the overall resistance of the field-collected B. tabaci populations has shown an upward trend over the years in China. We believe our study can provide basic data to support integrated pest management and insecticide resistance management of field B. tabaci in China. © 2023 Society of Chemical Industry.


Assuntos
Hemípteros , Inseticidas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas , China , Tiametoxam
13.
J Med Entomol ; 61(1): 166-174, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788073

RESUMO

Control of mosquito vector populations is primarily intended to reduce the transmission of pathogens they transmit. Use of chemical controls, such as larvicides, can have unforeseen consequences on adult traits if not applied properly. The consequences of under application of larvicides are little studied, specifically the impacts on pathogen infection and transmission by the vectors that survive exposure to larvicides. We compared vector susceptibility of Aedes aegypti (L.) for dengue virus, serotype 1 (DENV-1) previously exposed as larvae to an LC50 of different classes of insecticides as formulated larvicides. Larval exposure to insect growth regulators (methoprene and pyriproxyfen) significantly increased susceptibility to infection of DENV-1 in Ae. aegypti adults but did not alter disseminated infection or transmission. Larval exposure to temephos, spinosad, and Bti did not increase infection, disseminated infection, or transmission of DENV-1. Our findings describe a previously under observed phenomenon, the latent effects of select larvicides on mosquito vector susceptibility for arboviruses. These data suggest that there are unintended consequences of sublethal exposure to select larvicides that can influence susceptibility of Ae. aegypti to DENV infection, and indicates the need for further investigation of sublethal effects of insecticides on other aspects of mosquito biology, especially those parameters relevant to a mosquitoes ability to transmit arboviruses (life span, biting behavior, extrinsic incubation period).


Assuntos
Aedes , Vírus da Dengue , Dengue , Inseticidas , Animais , Dengue/prevenção & controle , Inseticidas/farmacologia , Larva , Mosquitos Vetores , Temefós/farmacologia
14.
Parasitol Res ; 123(1): 23, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072863

RESUMO

Using Pyriproxyfen in controlling Aedes aegypti shows great potential considering its high competence in low dosages. As an endocrine disruptor, temperature can interfere with its efficiency, related to a decrease in larval emergence inhibition in hotter environments. However, previous studies have been performed at constant temperatures in the laboratory, which may not precisely reflect the environmental conditions in the field. The aim of this study was to assess the effect of the fluctuating temperatures in Pyriproxyfen efficiency on controlling Aedes aegypti larvae. We selected maximum and minimum temperatures from the Brazilian Meteorological Institute database from September to April for cities grouped by five regions. Five fluctuating temperatures (17-26; 20-28.5; 23-32.5; 23-30.5; 19.5-31 °C) were applied to bioassays assessing Pyriproxyfen efficiency in preventing adult emergence in Aedes aegypti larvae in five concentrations. In the lowest temperatures, the most diluted Pyriproxyfen treatment (0.0025 mg/L) was efficient in preventing the emergence of almost thrice the larvae than in the hottest temperatures (61% and 21%, respectively, p value = 0.00015). The concentration that inhibits the emergence of 50% of the population was lower than that preconized by the World Health Organization (0.01 mg/L) in all treatments, except for the hottest temperatures, for which we estimated 0.010 mg/L. We concluded that fluctuating temperatures in laboratory bioassays can provide a more realistic result to integrate the strategies in vector surveillance. For a country with continental proportions such as Brazil, considering regionalities is crucial to the rational use of insecticides.


Assuntos
Aedes , Inseticidas , Animais , Larva , Temperatura , Controle de Mosquitos , Mosquitos Vetores , Inseticidas/farmacologia
15.
Malar J ; 22(1): 333, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924148

RESUMO

BACKGROUND: The efficacy of the autodissemination of pyriproxyfen to control malaria vectors has been demonstrated under semi field environment in Tanzania. However, the information on how best communities should be engaged for its routine and large-scale adoption are lacking. This study assessed the community's level of knowledge, perceptions, acceptability of the autodissemination of pyriproxyfen, and the perceived risks on the safety of pyriproxyfen on the environment. METHODS: This was a concurrent mixed methods study, comprised of a community-based survey of 400 household representatives and eight focus group discussions (FGDs). The study was conducted in two villages in Mlimba district in south-eastern Tanzania between June and August 2022. For the quantitative data analysis, descriptive statistics were applied using R software, while inductive approach was used for qualitative data analysis, using NVivo software. RESULTS: Knowledge on autodissemination of pyriproxyfen approach was found to be relatively low among both the FGD respondents and surveyed community members (36%, n = 144). Nevertheless, when it was explained to them, the envisioned community support for the autodissemination approach was relatively high (97%, n = 388). One of the major perceived benefits of the autodissemination of pyriproxyfen was the reduction of malaria-transmitting mosquitoes and associated malaria transmission. Environmental impact of pyriproxyfen on non-target organisms and health risk to children were among the major concerns. When provided with information on the safety and its utilization particularly through autodissemination approach, 93.5% (n = 374) of the survey respondents said that they would allow the PPF-contaminated pots to be placed around their homes. Similarly, FGD respondents were receptive towards the autodissemination of pyriproxyfen, but emphasized on the need for raising awareness among community members before related field trials. CONCLUSION: This study indicates a low knowledge but high support for scaling up of the autodissemination of pyriproxyfen as a complementary tool for malaria control in rural Tanzania. The Findings of this study suggest that community sensitization activities are required to improve the community's acceptability and trust of the approach before respective field trials.


Assuntos
Anopheles , Malária , Animais , Criança , Humanos , Mosquitos Vetores , Tanzânia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Percepção
16.
Pestic Biochem Physiol ; 196: 105586, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945223

RESUMO

Pyriproxyfen is a juvenile hormone analogue. The physiological effects of its low-concentration drift during the process of controlling agricultural and forestry pests on non-target organisms in the ecological environment are unpredictable, especially the effects on organs that play a key role in biological function are worthy of attention. The silk gland is an important organ for silk-secreting insects. Herein, we studied the effects of trace pyriproxyfen on autophagy and apoptosis of the silk gland in the lepidopteran model insect, Bombyx mori (silkworm). After treating fifth instar silkworm larvae with pyriproxyfen for 24 h, we found significant shrinkage, vacuolization, and fragmentation in the posterior silk gland (PSG). In addition, the results of autophagy-related genes of ATG8 and TUNEL assay also demonstrated that autophagy and apoptosis in the PSG of the silkworm was induced by pyriproxyfen. RNA-Seq results showed that pyriproxyfen treatment resulted in the activation of juvenile hormone signaling pathway genes and inhibition of 20-hydroxyecdysone (20E) signaling pathway genes. Among the 1808 significantly differentially expressed genes, 796 were upregulated and 1012 were downregulated. Among them, 30 genes were identified for autophagy-related signaling pathways, such as NOD-like receptor signaling pathway and mTOR signaling pathway, and 30 genes were identified for apoptosis-related signaling pathways, such as P53 signaling pathway and TNF signaling pathway. Further qRT-PCR and in vitro gland culture studies showed that the autophagy-related genes Atg5, Atg6, Atg12, Atg16 and the apoptosis-related genes Aif, Dronc, Dredd, and Caspase1 were responsive to the treatment of pyriproxyfen, with transcription levels up-regulated from 24 to 72 h. In addition, ATG5, ATG6, and Dronc genes had a more direct response to pyriproxyfen treatment. These results suggested that pyriproxyfen treatment could disrupt the hormone regulation in silkworms, promoting autophagy and apoptosis in the PSG. This study provides more evidence for the research on the damage of juvenile hormone analogues to non-target organisms or organs in the environment, and provides reference information for the scientific and rational use of juvenile hormone pesticides.


Assuntos
Bombyx , Animais , Bombyx/fisiologia , Seda/genética , Seda/metabolismo , Seda/farmacologia , Apoptose , Larva/metabolismo , Autofagia , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
17.
J Am Mosq Control Assoc ; 39(3): 173-182, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796736

RESUMO

Mosquito control plays a crucial role in the mitigation of mosquito-borne diseases. Larviciding that targets one of the aquatic stages is among the routine practices in mosquito control operations. One of the most extensive and challenging mosquito production sources in urban environments is underground storm drain systems. Along with the research and development of biorational larvicides in recent decades, numerous products based on microbial and insect growth regulators have become available. However, the performance of these products often varies because of product design and challenges associated with urban storm drain systems. This paper validates the comparative bioactivity and semifield efficacy of 2 control release products based on pyriproxyfen and S-methoprene. In laboratory bioassays, pyriproxyfen was significantly more active than S-methoprene against the test species, Culex quinquefasciatus Say and Aedes aegypti (L.). Culex quinquefasciatus was less susceptible than Ae. aegypti to both test materials. During a 26-wk-long semifield evaluation using the cast concrete simulated catch basins, the inhibition of emergence pretreatment and posttreatment in untreated control was negligible. The Sumilarv 0.5G applied at 75 g per catch basin provided 100% IE, whereas the Altosid XR briquet applied at 1 per catch basin yielded only partial control fluctuating from 12.7% to 82.7% (average 40.7%) of Cx. quinquefasciatus and 8.0% to 78.8% (average 37.4%) of Ae. aegypti. The Altosid XR briquet had an average residual weight of 59.9% at the end of semifield evaluation. Results are discussed in relation to field mosquito control operations in urban storm drain systems.


Assuntos
Aedes , Culex , Animais , Metoprene , Hormônios Juvenis , Controle de Mosquitos/métodos , Larva
18.
Malar J ; 22(1): 276, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716970

RESUMO

BACKGROUND: Following the World Health Organization (WHO) endorsement of dual active ingredient (AI) nets, an increased uptake of pyrethroid-chlorfenapyr and pyrethroid-pyriproxyfen nets is expected. Studies evaluating their physical and insecticidal durability are essential for making programmatic and procurement decisions. This paper describes the methodology for a prospective study to evaluate the attrition, fabric integrity, insecticidal durability of Interceptor® G2 (alpha-cypermethrin-chlorfenapyr) and Royal Guard® (alpha-cypermethrin-pyriproxyfen), compared to Interceptor® (alpha-cypermethrin), embedded in a 3-arm cluster randomized controlled trial (cRCT) in the Zou Department of Benin. METHODS: Ten clusters randomly selected from each arm of the cRCT will be used for the study. A total of 750 ITNs per type will be followed in 5 study clusters per arm to assess ITN attrition and fabric integrity at 6-, 12-, 24- and 36-months post distribution, using standard WHO procedures. A second cohort of 1800 nets per type will be withdrawn every 6 months from all 10 clusters per arm and assessed for chemical content and biological activity in laboratory bioassays at each time point. Alpha-cypermethrin bioefficacy in Interceptor® and Royal Guard® will be monitored in WHO cone bioassays and tunnel tests using the susceptible Anopheles gambiae Kisumu strain. The bioefficacy of the non-pyrethroid insecticides (chlorfenapyr in Interceptor® G2 and pyriproxyfen in Royal Guard®) will be monitored using the pyrethroid-resistant Anopheles coluzzii Akron strain. Chlorfenapyr activity will be assessed in tunnel tests while pyriproxyfen activity will be assessed in cone bioassays in terms of the reduction in fertility of blood-fed survivors observed by dissecting mosquito ovaries. Nets withdrawn at 12, 24 and 36 months will be tested in experimental hut trials within the cRCT study area against wild free-flying pyrethroid resistant An. gambiae sensu lato to investigate their superiority to Interceptor® and to compare them to ITNs washed 20 times for experimental hut evaluation studies. Mechanistic models will also be used to investigate whether entomological outcomes with each dual ITN type in experimental hut trials can predict their epidemiological performance in the cRCT. CONCLUSION: This study will provide information on the durability of two dual AI nets (Interceptor® G2 and Royal Guard®) in Benin and will help identify suitable methods for monitoring the durability of their insecticidal activity under operational conditions. The modelling component will determine the capacity of experimental hut trials to predict the epidemiological performance of dual AI nets across their lifespan.


Assuntos
Anopheles , Inseticidas , Animais , Humanos , Inseticidas/farmacologia , Estudos Prospectivos , Benin
19.
Malar J ; 22(1): 280, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735680

RESUMO

BACKGROUND: Anopheles funestus, the main malaria vector, prefer to oviposit in permanent and/or semi-permanent breeding habitats located far from human dwellings. Difficulties in identifying and accessing these habitats jeopardize the feasibility of conventional larviciding. In this way, a semi-field study was conducted to assess the potential of autodissemination of pyriproxyfen (PPF) by An. funestus for its control. METHODS: The study was conducted inside a semi-field system (SFS). Therein, two identical separate chambers, the treatment chamber with a PPF-treated clay pot (0.25 g AI), and the control chamber with an untreated clay pot. In both chambers, one artificial breeding habitat made of a plastic basin with one litre of water was provided. Three hundred blood-fed female An. funestus aged 5-9 days were held inside untreated and treated clay pots for 30 min and 48 h before being released for oviposition. The impact of PPF on adult emergence, fecundity, and fertility through autodissemination and sterilization effects were assessed by comparing the treatment with its appropriate control group. RESULTS: Mean (95% CI) percentage of adult emergence was 15.5% (14.9-16.1%) and 70.3% (69-71%) in the PPF and control chamber for females exposed for 30 min (p < 0.001); and 19% (12-28%) and 95% (88-98%) in the PPF and control chamber for females exposed for 48 h (p < 0.001) respectively. Eggs laid by exposed mosquitoes and their hatch rate were significantly reduced compared to unexposed mosquitoes (p < 0.001). Approximately, 90% of females exposed for 48 h retained abnormal ovarian follicles and only 42% in females exposed for 30 min. CONCLUSION: The study demonstrated sterilization and adult emergence inhibition via autodissemination of PPF by An. funestus. Also, it offers proof that sterilized An. funestus can transfer PPF to prevent adult emergence at breeding habitats. These findings warrant further assessment of the autodissemination of PPF in controlling wild population of An. funestus, and highlights its potential for complementing long-lasting insecticidal nets.


Assuntos
Anopheles , Malária , Adulto , Humanos , Animais , Feminino , Argila , Mosquitos Vetores
20.
Life (Basel) ; 13(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37763278

RESUMO

BACKGROUND: Lately, the high incidence of pesticide usage has attracted everyone's interest due to the serious effects produced. Fipronil (FIP) is a phenylpyrazole compound that acts on the insect's GABA neurotransmitter by inhibiting its activity. Moreover, the literature reports highlight its implication in neurodevelopmental abnormalities and oxidative stress production in different organisms. Similarly, pyriproxyfen (PYR) is known to affect insect activity by mimicking the natural hormones involved in the maturation of the young insects. The aim of the present study was to investigate the impact of the mixture of these pesticides on the tissues and behavior of zebrafish. METHODS: To assess the influence of this cocktail on zebrafish, three groups of animals were randomly selected and exposed to 0, 0.05, and 0.1 mg L-1 FIP and PYR mixture for five days. The fish were evaluated daily by the T-maze tests for locomotor activity and the light-dark test and recordings lasted four min. The data were quantified using the EthoVision software. RESULTS: Our results indicated significant changes in locomotor activity parameters that showed increased levels following exposure to the mixture of FIP and PYR. On the other hand, the mixture also triggered anxiety in the zebrafish, which spent more time in the light area than in the dark area. In addition, mixture-induced histological changes were observed in the form of numerous hemosiderin deposits found in various zebrafish tissues. CONCLUSIONS: The current findings indicate that the mixture of FIP and PYR can have considerable consequences on adult zebrafish and may promote or cause functional neurological changes in addition to histological ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA