Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Yakugaku Zasshi ; 144(4): 381-385, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38556311

RESUMO

NMR is well known as one of the most important methods for elucidating the structure of organic compounds. Furthermore, it has recently been recognized as a powerful tool for quantitative analysis. The quantitative NMR (qNMR) has become an official analytical method described in detail in the Japanese Pharmacopoeia. And today, it is widely applied in drug development. The qNMR method offers many new advantages over traditional and conventional quantitative analysis methods. For example, this method requires only a few milligrams of the analyte and allows absolute quantitation of the analyte without using a qualified reference standard as a control sample. Then, it can be easily applied to most chemicals without expending significant time and resources on method development. In addition, residual solvent can be determined using qNMR methods. The peak area of an NMR spectrum is directly proportional to the number of protons contributing to the resonance. Based on this principle, the residual solvent can be determined by counting the signal corresponding to the residual solvent in the sample solution. We have applied qNMR as an alternative to GC. Thus, qNMR is an innovative and promising analytical technique that is expected to make significant progress in the future. Recently, the analytical research and quality control departments have been working together to expand this technology to a wide range of areas in the pharmaceutical industry.


Assuntos
Indústria Farmacêutica , Espectroscopia de Ressonância Magnética/métodos , Controle de Qualidade , Padrões de Referência , Solventes
2.
Yakugaku Zasshi ; 144(4): 353-357, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38556307

RESUMO

In Japan, quantitative NMR (qNMR) has already been recognized as a standard method for determining the purity of quantitative samples not only in the Japanese Pharmacopoeia and the Japanese Standards and Specifications for Food Additives but also in the Japanese Industrial Standard (JIS K 0138: 2018). However, since there was no consensus on the establishment of a standard method, the international standardization of qNMR was initiated based on a proposal from Japan. After three years of discussion among experts, International Organization for Standardization/Technical Committee on Food (ISO/TC34) published ISO 24583: 2022 "Quantitative nuclear magnetic resonance spectroscopy-Purity determination of organic compounds used for foods and food products-General requirements for 1H-NMR internal standard method." Publication of this standard has resulted in an internationally agreed upon set of requirements for purity determination using qNMR. New technologies emerge from the cycle of basic research, practical use, and standardization, and qNMR is no exception. A novel chromatographic quantification method based on relative molar sensitivity (RMS) is now being put into practical use. The RMS of an analyte with respect to a different reference substance can be determined by using qNMR to accurately determine the molar ratio and then introducing it into the chromatographic system. This method uses the RMS determined by combining qNMR and chromatography instead of the analyte's reference material to determine its content in sample. This method has been adopted in the Japanese Pharmacopoeia, and the development of a general rule in the Japanese Agricultural Standards (JAS) is also under consideration.


Assuntos
Aditivos Alimentares , Espectroscopia de Ressonância Magnética/métodos , Padrões de Referência , Cromatografia Líquida de Alta Pressão , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA