RESUMO
Diet-induced obesity (DIO) promotes pancreatic ductal adenocarcinoma (PDAC) in mice expressing KRasG12D in the pancreas (KC mice), but the precise mechanisms remain unclear. Here, we performed multiplex quantitative proteomic and phosphoproteomic analysis by liquid chromatography-tandem mass spectrometry and further bioinformatic and spatial analysis of pancreas tissues from control-fed versus DIO KC mice after 3, 6, and 9 months. Normal pancreatic parenchyma and associated proteins were steadily eliminated and the novel proteins, phosphoproteins, and signaling pathways associated with PDAC tumorigenesis increased until 6 months, when most males exhibited cancer, but females did not. Differentially expressed proteins and phosphoproteins induced by DIO revealed the crucial functional role of matrisomal proteins, which implies the roles of upstream regulation by TGFß, extracellular matrix-receptor signaling to downstream PI3K-Akt-mTOR-, MAPK-, and Yap/Taz activation, and crucial effects in the tumor microenvironment such as metabolic alterations and signaling crosstalk between immune cells, cancer-associated fibroblasts (CAFs), and tumor cells. Staining tissues from KC mice localized the expression of several prognostic PDAC biomarkers and elucidated tumorigenic features, such as robust macrophage infiltration, acinar-ductal metaplasia, mucinous PanIN, distinct nonmucinous atypical flat lesions (AFLs) surrounded by smooth muscle actin-positive CAFs, invasive tumors with epithelial-mesenchymal transition arising close to AFLs, and expanding deserted areas by 9 months. We next used Nanostring GeoMX to characterize the early spatial distribution of specific immune cell subtypes in distinct normal, stromal, and PanIN areas. Taken together, these data richly contextualize DIO promotion of Kras-driven PDAC tumorigenesis and provide many novel insights into the signaling pathways and processes involved.
RESUMO
[This corrects the article DOI: 10.3389/fnins.2022.1035444.].
RESUMO
Background: Premature ovarian failure (POF) is defined as the cessation of ovarian function before the age of 40 years, imposing a significant health burden on patients. However, effective etiological therapy for POF is scarce. Thus, we aimed to explore the protective role and targets of hydrogen-rich water (HRW) in POF. Methods: Based on cyclophosphamide (CTX)-induced POF rat models, the protective role of HRW treatment was mainly determined through serum 17-ß-estradiol (E2), follicle-stimulating hormone (FSH), anti-mullerian hormone (AMH) levels, ovarian histomorphological analysis, and TUNEL assay. Tandem mass tag (TMT)-based quantitative proteomic analysis was then conducted on ovarian tissues, and the targets of HRW in POF were identified integrating differential expression analysis, functional enrichment analysis, and interaction analysis. Results: In HRW treatment of POF rats, the serum AMH and E2 levels significantly increased, and FSH level significantly reduced, indicating the protective role of HRW. After TMT quantitative proteomic analysis, a total of 16 candidate differentially expressed proteins (DEPs) were identified after the cross analysis of DEPs from POF vs. control and POF+HRW vs. POF groups, which were found to be significantly enriched in 296 GO terms and 36 KEGG pathways. The crucial targets, RT1-Db1 and RT1-Bb, were finally identified based on both protein-protein interaction network and GeneMANIA network. Conclusions: The HRW treatment could significantly alleviate the ovarian injury of POF rats; RT1-Db1 and RT1-Bb are identified as two crucial targets of HRW treatment in POF rats.
Assuntos
Óxido de Deutério , Menopausa Precoce , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Ratos , Hormônio Antimülleriano , Hormônio Foliculoestimulante , Hidrogênio/farmacologia , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia , Proteômica , Óxido de Deutério/uso terapêuticoRESUMO
The activity of four typical organotin benzohydroxamate compounds (OTBH) with the different electronegativity of fluorine and chlorine atoms was assessed both in vitro and in vivo, revealing that they all exhibited notable antitumor effects. Furthermore, it was discovered that the biochemical capacity against cancer was influenced by their substituents' electronegativity and structural symmetry. For instance, benzohydroxamate derivatives with single chlorine at the fourth site on the benzene ring, two normalbutyl organic ligands, a symmetrical structure, and so on ([n-Bu2Sn[{4-ClC6H4C(O)NHO}2] (OTBH-1)) had stronger antitumor activity than others. Furthermore, the quantitative proteomic analysis discovered 203 proteins in HepG2 cells and 146 proteins in rat liver tissues that were differently identified before and after administration. Simultaneously, bioinformatics analysis of differentially expressed proteins demonstrated that the antiproliferative effects involved in the microtubule-based process, tight junction and its downstream apoptosis pathways. As predicted analytically, molecular docking indicated that ''-O-'' were the target docking atoms for the colchicine-binding site; meanwhile, this site was additionally verified by the EBI competition experiment and the microtubule assembly inhibition test. In conclusion, these derivatives promising for developing microtubule-targeting agents (MTAs) were shown to target the colchicine-binding site, impair cancer cell microtubule networks, and then halt mitosis and trigger apoptosis.
Assuntos
Antineoplásicos , Colchicina , Colchicina/metabolismo , Antineoplásicos/química , Simulação de Acoplamento Molecular , Cloro/farmacologia , Proteômica , Tubulina (Proteína)/metabolismo , Sítios de Ligação , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Linhagem Celular Tumoral , Moduladores de Tubulina/farmacologiaRESUMO
Introduction: Histomonas meleagridis can cause histomonosis in poultry. Due to the prohibition of effective drugs, the prevention and treatment of the disease requires new strategies. Questions about its pathogenic mechanisms and virulence factors remain puzzling. Methods: To address these issues, a tandem mass tag (TMT) comparative proteomic analysis of a virulent strain and its attenuated strain of Chinese chicken-origin was performed. Results: A total of 3,494 proteins were identified in the experiment, of which 745 proteins were differentially expressed (fold change ≥1.2 or ≤0.83 and p < 0.05), with 192 up-regulated proteins and 553 down-regulated proteins in the virulent strain relative to the attenuated strain. Discussion: Surface protein BspA like, digestive cysteine proteinase, actin, and GH family 25 lysozyme were noted among the proteins up regulated in virulent strains, and these several proteins may be directly related to the pathogenic capacity of the histomonad. Ferredoxin, 60S ribosomal protein L6, 40S ribosomal protein S3, and NADP-dependent malic enzyme which associated with biosynthesis and metabolism were also noted, which have the potential to be new drug targets. The up-regulation of alpha-amylase, ras-like protein 1, ras-like protein 2, and involucrin in attenuated strains helps to understand how it is adapted to the long-term in vitro culture environment. The above results provide some candidate protein-coding genes for further functional verification, which will help to understand the molecular mechanism of pathogenicity and attenuation of H. meleagridis more comprehensively.
RESUMO
INTRODUCTION: Mesenchymal stromal cells (MSCs) release extracellular vesicles (MSC-EVs) containing various cargoes. Although MSC-EVs show significant therapeutic effects, the low production of EVs in MSCs hinders MSC-EV-mediated therapeutic development. OBJECTIVES: Here, we developed an advanced three-dimensional (a3D) dynamic culture technique with exogenous transforming growth factor beta-3 (TGF-ß3) treatment (T-a3D) to produce potent MSC-EVs. METHODS: Our system enabled preparation of a highly concentrated EV-containing medium for efficient EV isolation and purification with higher yield and efficacy. RESULTS: MSC spheroids in T-a3D system (T-a3D spheroids) showed high expression of CD9 and TGF-ß3, which was dependent on TGF-ß signaling. Treatment with EVs produced under T-a3D conditions (T-a3D-EVs) led to significantly improved migration of dermal fibroblasts and wound closure in an excisional wound model. The relative total efficacy (relative yield of single-batch EVs (10-11-fold) × relative regeneration effect of EVs (2-3-fold)) of T-a3D-EVs was approximately up to 33-fold higher than that of 2D-EVs. Importantly the quantitative proteomic analyses of the T-a3D spheroids and T-a3D-EVs supported the improved EV production as well as the therapeutic potency of T-a3D-EVs. CONCLUSION: TGF-ß signalling differentially regulated by fluid shear stress produced in our system and exogenous TGF-ß3 addition was confirmed to play an important role in the enhanced production of EVs with modified protein cargoes. We suggest that the T-a3D system leads to the efficient production of MSC-EVs with high potential in therapies and clinical development.
Assuntos
Vesículas Extracelulares , Fator de Crescimento Transformador beta3 , Fator de Crescimento Transformador beta3/farmacologia , Fator de Crescimento Transformador beta3/metabolismo , Regulação para Cima , Proteômica , Vesículas Extracelulares/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologiaRESUMO
Chemical proteomics has been widely applied in the identification and quantification of targeted proteins. Here we describe a chemoproteomic method, in combination with stable isotope labeling by amino acids in cell culture (SILAC), for the proteome-wide profiling of geranyl pyrophosphate (GPP)-binding proteins. After labeling using a desthiobiotin-GPP acyl phosphate probe, desthiobiotin-conjugated peptides of GPP-binding proteins could be enriched from the tryptic digestion products of complex protein mixtures and subsequently identified with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. To exclude nonspecific binding proteins, we applied SILAC, together with competitive labeling experiments, including high vs. low concentrations of GPP probe, GPP vs. ATP probes, and GPP probe labeling with or without the presence of GPP. Several known or candidate GPP-binding proteins were identified with this method, suggesting the potential application of this method in the study of isoprenoid-interacting proteins and biological functions of isoprenoids.
Assuntos
Proteínas de Transporte , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Proteínas , Terpenos , Marcação por Isótopo/métodos , Proteoma/análiseRESUMO
Saccharomyces cerevisiae var. diastaticus (S. diastaticus) is a major spoilage yeast in brewing. In the present research, the antifungal properties of nerol and the proteome response of S. diastaticus were studied. Results showed nerol can inhibit cell budding and delay yeast fermentation in a dose-depended manner. After 3 d of treatment with 0.25 mg·mL-1 nerol, intracellular ROS levels increased 1.66-fold (P < 0.01), and the cells with damaged membrane increased to 23.2 %. Quantitative proteomic profiles utilizing a capillary-HPLC-MS/MS technology revealed that proteins involved in the metabolism of fermentable sugars were up-regulated in S. diastaticus cells treated with nerol, indicating nerol treatment altered the metabolite pattern of fermentable sugars. Proteins associated with the cell membrane biogenesis, heat shock proteins, amino acid biosynthesis, and glutathione metabolism were similarly up-regulated. These findings revealed the mechanism of nerol-induced yeast cell damage as well as the detoxification response of yeast cells.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteoma/análise , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentação , Açúcares/metabolismoRESUMO
Introduction: Sevoflurane is the most commonly used general anesthetic in pediatric surgery, but it has the potential to be neurotoxic. Previous research found that long-term or multiple sevoflurane exposures could cause cognitive deficits in newborn mice but not adult mice, whereas short-term or single inhalations had little effect on cognitive function at both ages. The mechanisms behind these effects, however, are unclear. Methods: In the current study, 6- and 60-day-old C57bl mice in the sevoflurane groups were given 3% sevoflurane plus 60% oxygen for three consecutive days, each lasting 2 hours, while those in the control group only got 60% oxygen. The cortex tissues were harvested on the 8th or 62nd day. The tandem mass tags (TMT)pro-based quantitative proteomics combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, Golgi staining, and western blotting analysis were applied to analyze the influences of multiple sevoflurane anesthesia on the cerebral cortex in mice with various ages. The Morris water maze (MWM) test was performed from postnatal day (P)30 to P36 or P84 to P90 after control or multiple sevoflurane treatment. Sevoflurane anesthesia affected spatial learning and memory and diminished dendritic spines primarily in newborn mice, whereas mature animals exhibited no significant alterations. Results: A total of 6247 proteins were measured using the combined quantitative proteomics methods of TMTpro-labeled and LC-MS/MS, 443 of which were associated to the age-dependent neurotoxic mechanism of repeated sevoflurane anesthesia. Furthermore, western blotting research revealed that sevoflurane-induced brain damage in newborn mice may be mediated by increasing the levels of protein expression of CHGB, PTEN, MAP2c, or decreasing the level of SOD2 protein expression. Conclusion: Our findings would help to further the mechanistic study of age-dependent anesthetic neurotoxicity and contribute to seek for effective protection in the developing brain under general anesthesia.
RESUMO
Pathophysiology associated with Huntington's disease (HD) has been studied extensively in various cell and animal models since the 1993 discovery of the mutant huntingtin (mHtt) with abnormally expanded polyglutamine (polyQ) tracts as the causative factor. However, the sequence of early pathophysiological events leading to HD still remains elusive. To gain new insights into the early polyQ-induced pathogenic events, we expressed Htt exon1 (Httex1) with a normal (21), or an extended (42 or 63) number of polyQ in tobacco plants. Here, we show that transgenic plants accumulated Httex1 proteins with corresponding polyQ tracts, and mHttex1 induced protein aggregation and affected plant growth, especially root and root hair development, in a polyQ length-dependent manner. Quantitative proteomic analysis of young roots from severely affected Httex1Q63 and unaffected Httex1Q21 plants showed that the most reduced protein by polyQ63 is a GTP cyclohydrolase I (GTPCH) along with many of its related one-carbon (C1) metabolic pathway enzymes. GTPCH is a key enzyme involved in folate biosynthesis in plants and tetrahydrobiopterin (BH4) biosynthesis in mammals. Validating studies in 4-week-old R6/2 HD mice expressing a mHttex1 showed reduced levels of GTPCH and dihydrofolate reductase (DHFR, a key folate utilization/alternate BH4 biosynthesis enzyme), and impaired C1 and BH4 metabolism. Our findings from mHttex1 plants and mice reveal impaired expressions of GTPCH and DHFR and may contribute to a better understanding of mHtt-altered C1 and BH4 metabolism, and their roles in the pathogenesis of HD.
Assuntos
GTP Cicloidrolase , Doença de Huntington , Plantas Geneticamente Modificadas , Animais , Camundongos , Carbono , Ácido Fólico , GTP Cicloidrolase/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Agregados Proteicos , Proteômica , Tetra-Hidrofolato Desidrogenase/metabolismoRESUMO
BACKGROUND: Targeting the HGF/MET signaling pathway has been a viable therapeutic strategy for various cancer types due to hyperactivation of HGF/MET axis occurs frequently that leads to detrimental cancer progression and recurrence. Deciphering novel molecule mechanisms underlying complex HGF/MET signaling network is therefore critical to development of effective therapeutics for treating MET-dependent malignancies. RESULTS: Using isobaric mass tag-based quantitative proteomics approach, we identified IFITM3, an interferon-induced transmembrane protein that was highly expressed in micro-dissected gastric cancer (GC) tumor regions relative to adjacent non-tumor epithelia. Analyses of GC clinical specimens revealed that expression IFITM3 was closely correlated to advanced pathological stages. IFITM3 has been reported as a PIP3 scaffold protein that promotes PI3K signaling. In present study, we unprecedentedly unraveled that IFITM3 associated with MET and AKT to facilitate HGF/MET mediated AKT signaling crosstalk in suppressing FOXO3, consequently leading to c-MYC mediated GC progression. In addition, gene ontology analyses of the clinical GC cohort revealed significant correlation between IFITM3-associated genes and targets of c-MYC, which is a crucial downstream effector of HGF/MET pathway in cancer progression. Moreover, we demonstrated ectopic expression of IFITM3 suppressed FOXO3 expression, consequently led to c-MYC induction to promote tumor growth, cell metastasis, cancer stemness as well as chemoresistance. Conversely, depletion of IFITM3 resulted in suppression of HGF triggered cellular growth and migration via inhibition of AKT/c-MYC signaling in GC. CONCLUSIONS: In summary, our present study unveiled a novel regulatory mechanism for c-MYC-driven oncogenesis underlined by IFITM3-mediated signaling crosstalk between MET associated AKT signaling cascade.
RESUMO
The disparity in fatty acids (FA) composition exhibits a significant impact on meat quality, however, the molecular regulatory mechanisms underlying this trait in chicken are far from clear. In this study, a total of 45 female Beijing-You chicken (BYC) hens, fed on the same diet, were collected at the slaughter age of 150, 300, or 450 days (D150, D300, and D450) from sexual maturation stage to culling stage (15 birds per age). Gas chromatography-mass spectrometry (GC-MS) and tandem mass tag labeling technology based on liquid chromatography mass spectrometry (TMT-LC-MS/MS) analysis strategies were applied to profile FA compositions and to compare differential expressed proteins (DEPs) between these different slaughter ages, respectively. The FA profiling showed that increasing hen ages resulted in increased contents of both saturated and unsaturated fatty acids. Proteomic analyses showed a total of 4,935 proteins in chicken breast muscle with the false discovery rate (FDR) < 1% and 664 of them were differentially expressed (fold change > 1.50 or < 0.67 and P < 0.01). There were 410 up- and 116 down-regulated proteins in D150 vs. D300 group, 32 up- and 20 down-regulated in D150 vs. D450 group, and 72 up- and 241 down-regulated in D300 vs. D450 group. A total of 57 DEPs related to FA/lipid-related metabolisms were obtained according to the enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). These DEPs were involved in 21 significantly enriched (P < 0.05) pathways, including well-known pathways for FA synthesis (metabolism, desaturation, and elongation) and the signaling pathways for lipid metabolism (PPAR, adipocytokine, calcium, VEGF, MAPK, and Wnt). In addition, there existed several representative DEPs (FABP, FABP3, apoA-I, apoA-IV, apoC-III, apoB, VTG1, and VTG2) involved in the regulation of FA/lipid transportation. The construction of the interaction networks indicated that HADH, ACAA2, HADHA, ACSL1, CD36, CPT1A, PPP3R1, and SPHK1 were the key core nodes. Finally, eight DEPs were quantified using parallel reaction monitoring (PRM) to validate the results from TMT analysis. These results expanded our understanding of how the laying age affects the FA compositions and metabolism in hen breast meat.
RESUMO
BACKGROUND: Oxidative stress plays an important role in the pathology of ischemic stroke. Studies have confirmedthat scutellarin has antioxidant effects against ischemic injury, and we also reported that the involvement of Aldose reductase (AR) in oxidative stress and cerebral ischemic injury, in this study we furtherly explicit whether the antioxidant effect of scutellarin on cerebral ischemia injury is related to AR gene regulation and its specific mechanism. METHODS: C57BL/6N mice (Wild-type, WT) and AR knockout (AR-/-) mice suffered from transient middle cerebral artery occlusion (tMCAO) injury (1 h occlusion followed by 3 days reperfusion), and scutellarin was administered from 2 h before surgery to 3 days after surgery. Subsequently, neurological function was assessed by the modified Longa score method, the histopathological morphology observed with 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (Elisa) was used to detect the levels of ROS, 4-hydroxynonenal (4-HNE), 8-hydroxydeoxyguanosine (8-OHDG), Neurotrophin-3 (NT-3), poly ADP-ribose polymerase-1 (PARP1) and 3-nitrotyrosine (3-NT) in the ischemic penumbra regions. Quantitative proteomics profiling using quantitative nano-HPLC-MS/MS were performed to compare the protein expression difference between AR-/- and WT mice with or without tMCAO injury. The expression of AR, nicotinamide adenine dinucleotide phosphate oxidases (NOX1, NOX2 and NOX4) in the ipsilateral side of ischemic brain were detected by qRT-PCR, Western blot and immunofluorescence co-staining with NeuN. RESULTS: Scutellarin treatment alleviated brain damage in tMCAO stroke model such as improved neurological function deficit, brain infarct area and neuronal injury and reduced the expression of oxidation-related products, moreover, also down-regulated tMCAO induced AR mRNA and protein expression. In addition, the therapeutic effect of scutellarin on the reduction of cerebral infarction area and neurological function deficits abolished in AR-/- mice under ischemia cerebral injury, which indicated that the effect of scutellarin treatment on tMCAO injury is through regulating AR gene. Proteomic analysis of AR-/- and WT mice indicated AR knockout would affect oxidation reaction even as NADPH related process and activity in mice under cerebral ischemia conditions. Moreover, NOX isoforms (NOX1, NOX2 and NOX4) mRNA and protein expression were significant decreased in neurons of penumbra region in AR-/- mice compared with that in WT mice at 3d after tMCAO injury, which indicated that AR should be the upstream protein regulating NOX after cerebral ischemia. CONCLUSIONS: We first reported that AR directly regulates NOX subtypes (not only NOX2 but also NOX1 and NOX4) after cerebral ischaemic injury. Scutellarin specifically targets the AR-NOX axis and has antioxidant effects in mice with cerebral ischaemic injury, providing a theoretical basis and accurate molecular targets for the clinical application of scutellarin.
Assuntos
Aldeído Redutase , Apigenina , Isquemia Encefálica , Glucuronatos , Infarto da Artéria Cerebral Média , NADPH Oxidase 1 , Estresse Oxidativo , Traumatismo por Reperfusão , Aldeído Redutase/metabolismo , Animais , Antioxidantes/metabolismo , Apigenina/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Glucuronatos/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteômica , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Espectrometria de Massas em TandemRESUMO
BACKGROUND: Neuroblastoma (NB) is the most common extracranial tumor in central nervous system threatening children's health with limited therapeutic options. Arsenic trioxide (ATO) has been identified the cytotoxicity in NB cells but the potential mechanism remains unclear. In this study, we attempted to obtain some insight into the mechanisms of cell death induced by ATO in NB cells. METHODS AND RESULTS: Proteomic analyses found that ATO can affect the signaling pathway associated with ferroptosis, including the upregulation of iron absorption (FTL, FTH1, HO-1), ferritinophagy (LC3, P62, ATG7, NCOA4) and modifier of glutathione synthesis (GCLM); downregulation of glutamine synthetase (GS) and GPX4, which was the critical inhibitor of ferroptosis. Western blot analysis revealing GPX4 expression in SK-N-BE (2) cells decreased after treatment with ATO (7.3 µM), resulting in a loss of GPX4 activity. Furthermore, Ferroptosis inhibitor ferrostatin-1 partially blocked ATO-induced cell death. CONCLUSIONS: Our study revealed that ATO may induce ferroptosis in neuroblastoma cell SK-N-BE (2) by facilitating the downregulation of GPX4, ultimately resulting in iron-dependent oxidative death.
Assuntos
Ferroptose , Neuroblastoma , Apoptose , Trióxido de Arsênio/farmacologia , Criança , Humanos , Ferro/metabolismo , Neuroblastoma/tratamento farmacológico , ProteômicaRESUMO
Introduction: Parkinson's disease (PD), as a common neurodegenerative disease, currently has no effective therapeutic approaches to delay or stop its progression. There is an urgent need to further define its pathogenesis and develop new therapeutic targets. An increasing number of studies have shown that members of the sirtuin (SIRT) family are differentially involved in neurodegenerative diseases, indicating their potential to serve as targets in therapeutic strategies. Mitochondrial SIRT4 possesses multiple enzymatic activities, such as deacetylase, ADP ribosyltransferase, lipoamidase, and deacylase activities, and exhibits different enzymatic activities and target substrates in different tissues and cells; thus, mitochondrial SIRT4 plays an integral role in regulating metabolism. However, the role and mechanism of SIRT4 in PD are not fully understood. This study aimed to investigate the potential mechanism and possible regulatory targets of SIRT4 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. Methods: The expression of the SIRT4 protein in the MPTP-induced PD mouse mice or key familial Parkinson disease protein 7 knockout (DJ-1 KO) rat was compared against the control group by western blot assay. Afterwards, quantitative proteomics and bioinformatics analyses were performed to identify altered proteins in the vitro model and reveal the possible functional role of SIRT4. The most promising molecular target of SIRT4 were screened and validated by viral transfection, western blot assay and reverse transcription quantitative PCR (RT-qPCR) assays. Results: The expression of the SIRT4 protein was found to be altered both in the MPTP-induced PD mouse mice and DJ-1KO rats. Following the viral transfection of SIRT4, a quantitative proteomics analysis identified 5,094 altered proteins in the vitro model, including 213 significantly upregulated proteins and 222 significantly downregulated proteins. The results from bioinformatics analyses indicated that SIRT4 mainly affected the ribosomal pathway, propionate metabolism pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway and peroxisome pathway in cells, and we screened 25 potential molecular targets. Finally, only fatty acid binding protein 4 (FABP4) in the PPAR signaling pathway was regulated by SIRT4 among the 25 molecules. Importantly, the alterations in FABP4 and PPARγ were verified in the MPTP-induced PD mouse model. Discussion: Our results indicated that FABP4 in the PPAR signaling pathway is the most promising molecular target of SIRT4 in an MPTP-induced mouse model and revealed the possible functional role of SIRT4. This study provides a reference for future drug development and mechanism research with SIRT4 as a target or biomarker.
RESUMO
3-Cyanoalanine and cyanohydrins are intermediate nitriles produced in cyanide degradation pathways in plants and bacteria. 3-Cyanoalanine is generated from cyanide by the 3-cyanoalanine synthase, an enzyme mainly characterized in cyanogenic plants. NIT4-type nitrilases use 3-cyanoalanine as a substrate, forming ammonium and aspartate. In some organisms, this enzyme also generates asparagine through an additional nitrile hydratase activity. The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 assimilates cyanide through an intermediate cyanohydrin, which is further converted into ammonium by the nitrilase NitC. This bacterium also contains three additional nitrilases, including Nit4. In this work, a proteomic analysis of P. pseudoalcaligenes CECT5344 cells grown with 3-cyanoalanine as the sole nitrogen source has revealed the overproduction of different proteins involved in nitrogen metabolism, including the nitrilase NitC. In contrast, the nitrilase Nit4 was not induced by 3-cyanoalanine, and it was only overproduced in cells grown with a cyanide-containing jewelry-manufacturing residue. Phenotypes of single and double mutant strains defective in nit4 or/and nitC revealed the implication of the nitrilase NitC in the assimilation of 3-cyanoalanine and suggest that the 3-cyanoalanine assimilation pathway in P. pseudoalcaligenes CECT5344 depends on the presence or absence of cyanide. When cyanide is present, 3-cyanoalanine is assimilated via Nit4, but in the absence of cyanide, a novel pathway for 3-cyanoalanine assimilation, in which the nitrilase NitC uses the nitrile generated after deamination of the α-amino group from 3-cyanoalanine, is proposed. IMPORTANCE Nitriles are organic cyanides with important industrial applications, but they are also found in nature. 3-Cyanoalanine is synthesized by plants and some bacteria to detoxify cyanide from endogenous or exogenous sources, but this nitrile may be also involved in other processes such as stress tolerance, nitrogen and sulfur metabolism, and signaling. The cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344 grows with 3-cyanoalanine as the sole nitrogen source, but it does not use this nitrile as an intermediate in the cyanide assimilation pathway. In this work, a quantitative proteomic analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to study, for the first time, the response to 3-cyanoalanine at the proteomic level. Proteomic data, together with phenotypes of different nitrilase-defective mutants of P. pseudoalcaligenes CECT5344, provide evidence that in the absence of cyanide, the nitrilase Nit4 is not involved in 3-cyanoalanine assimilation, and instead, the nitrilase NitC participates in a novel alternative 3-cyanoalanine assimilation pathway.
Assuntos
Alanina/análogos & derivados , Aminoidrolases/metabolismo , Nitrilas/metabolismo , Pseudomonas pseudoalcaligenes/metabolismo , Alanina/metabolismo , Transporte Biológico/fisiologia , Cromatografia Líquida , Cianetos/metabolismo , Hidroliases/metabolismo , Pseudomonas pseudoalcaligenes/genética , Espectrometria de Massas em TandemRESUMO
Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome-mediated chronic neuroinflammation plays a crucial role in the progression of Alzheimer's disease (AD), which is related to microglial activation. Using quantitative proteomic analysis, we identified 25 up-regulated and 83 down-regulated proteins in amyloid beta (Aß)1-42-induced BV2 cells. Among the differentiallyexpressedproteins involved in inflammation, the NLRP3 protein level increased dramatically. Ginkgolide B (GB) prevents Aß-induced neuroinflammation and neurotoxic effects in multiple neurodegenerative disorders. However, its role in NLRP3 inflammasome-mediated neuroinflammation in AD remain unknown. We found that GB treatment ameliorated Aß1-42-induced pathological damages and inhibited NLRP3 inflammasome activation. Furthermore, GB enhanced the expression of M2 microglial markers and suppressed the expression of M1 microglial markers. Our findings suggest that GB treatment prevents the pathological processes of AD and suppresses neuroinflammation by inhibiting NLRP3 inflammasome activation and promoting microglial M2 polarization.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Ginkgolídeos/farmacologia , Inflamassomos/antagonistas & inibidores , Lactonas/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Ginkgolídeos/uso terapêutico , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Lactonas/uso terapêutico , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologiaRESUMO
Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that has caused a substantial drop in egg production and severe neurological disorders in domestic waterfowl. Several studies have revealed that viral proteins encoded by DTMUV antagonize host IFN-mediated antiviral responses to facilitate virus replication. However, the role of host gene expression regulated by DTMUV in innate immune evasion remains largely unknown. Here, we utilized a stable isotope labeling with amino acids in cell culture (SILAC)-based proteomics analysis of DTMUV-infected duck embryo fibroblasts (DEFs) to comprehensively investigate host proteins involved in DTMUV replication and innate immune response. A total of 250 differentially expressed proteins were identified from 2697 quantified cellular proteins, among which duck interferon-induced protein 35 (duIFI35) was dramatically up-regulated due to DTMUV infection in DEFs. Next, we demonstrated that duIFI35 expression promoted DTMUV replication and impaired Sendai virus-induced IFN-ß production. Moreover, duIFI35 was able to impede duck RIG-I (duRIG-I)-induced IFN-ß promoter activity, rather than IFN-ß transcription mediated by MDA5, MAVS, TBK1, IKKϵ, and IRF7. Importantly, we found that because of the specific interaction with duIFI35, the capacity of duRIG-I to recognize double-stranded RNA was significantly impaired, resulting in the decline of duRIG-I-induced IFN-ß production. Taken together, our data revealed that duIFI35 expression stimulated by DTMUV infection disrupted duRIG-I-mediated host antiviral response, elucidating a distinct function of duIFI35 from human IFI35, by which DTMUV escapes host innate immune response, and providing information for the design of antiviral drug.
Assuntos
Patos/virologia , Infecções por Flavivirus/veterinária , Flavivirus/fisiologia , Regulação Viral da Expressão Gênica , Evasão da Resposta Imune , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Doenças das Aves Domésticas/virologia , Animais , Linhagem Celular , Patos/embriologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Flavivirus/imunologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , Genes Reporter , Células HEK293 , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Interferon beta/biossíntese , Interferon beta/genética , Poli I-C/metabolismo , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/metabolismo , Proteômica/métodos , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Espectrometria de Massas em TandemRESUMO
BACKGROUND: Pretreatment is a critical step required for efficient conversion of woody biomass into biofuels and platform chemicals. Fungal pretreatment is regarded as one of the most promising technology for woody biomass conversion but remains challenging for industrial application. The exploration of potential fungus strain with high efficient delignification and less processing time for woody biomass pretreatment will be valuable for development of biorefinery industry. Here, a newly isolated white-rot basidiomycete Peniophora incarnate T-7 was employed for poplar wood pretreatment. RESULTS: The chemical component analysis showed that cellulose, hemicellulose and lignin from poplar wood declined by 16%, 48% and 70%, respectively, after 7 days submerged fermentation by P. incarnate T-7. Enzymatic saccharification analysis revealed that the maximum yields of glucose and xylose from 7 days of P. incarnate T-7 treated poplar wood reached 33.4% and 27.6%, respectively, both of which were enhanced by sevenfold relative to the untreated group. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) characterization confirmed that lignocellulosic structure of poplar wood was largely broken by P. incarnate T-7, including delignification and de-crystalline of cellulose. Meanwhile, lignin component of poplar wood was selectively degraded by P. incarnate T-7, and G-type unit of lignin was preferentially attacked by the strain. Furthermore, quantitative proteomic analysis revealed that a considerable amount of lignocellulolytic enzymes were detected in the secretory proteins of P. incarnate T-7, especially with high abundance of lignin-degrading enzymes and hemicellulases. Combination of quantitative proteomic with transcriptomic analysis results showed that most of those lignocellulolytic enzymes were highly upregulated on poplar wood substrate compared to glucose substrate. CONCLUSIONS: This study showed that P. incarnate T-7 could selectively delignify poplar wood by submerged fermentation with short time of 7 days, which greatly improved its enzymatic saccharification efficiency. Our results suggested that P. incarnate T-7 might be a promising candidate for industrial woody biomass pretreatment.
RESUMO
SARS-CoV-2 infection has become a major public health burden and affects many organs including lungs, kidneys, the liver, and the brain. Although the virus is readily detected and diagnosed using nasopharyngeal swabs by reverse transcriptase polymerase chain reaction (RT-PCR), detection of its presence in body fluids is fraught with difficulties. A number of published studies have failed to detect viral RNA by RT-PCR methods in urine. Although microbial identification in clinical microbiology using mass spectrometry is undertaken after culture, here we undertook a mass spectrometry-based approach that employed an enrichment step to capture and detect SARS-CoV-2 nucleocapsid protein directly from urine of COVID-19 patients without any culture. We detected SARS-CoV-2 nucleocapsid protein-derived peptides from 13 out of 39 urine samples. Further, a subset of COVID-19 positive and COVID-19 negative urine samples validated by mass spectrometry were used for the quantitative proteomics analysis. Proteins with increased abundance in urine of SARS-CoV-2 positive individuals were enriched in the acute phase response, regulation of complement system, and immune response. Notably, a number of renal proteins such as podocin (NPHS2), an amino acid transporter (SLC36A2), and sodium/glucose cotransporter 5 (SLC5A10), which are intimately involved in normal kidney function, were decreased in the urine of COVID-19 patients. Overall, the detection of viral antigens in urine using mass spectrometry and alterations of the urinary proteome could provide insights into understanding the pathogenesis of COVID-19.