Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163684

RESUMO

Aldehyde dehydrogenases (ALDHs) are the major enzyme superfamily for the aldehyde metabolism. Since the ALDH polymorphism leads to the accumulation of acetaldehyde, we considered that the enhancement of the liver ALDH activity by certain food ingredients could help prevent alcohol-induced chronic diseases. Here, we evaluated the modulating effects of 3-hydroxyphenylacetic acid (OPAC), the major metabolite of quercetin glycosides, on the ALDH activity and acetaldehyde-induced cytotoxicity in the cultured cell models. OPAC significantly enhanced the total ALDH activity not only in mouse hepatoma Hepa1c1c7 cells, but also in human hepatoma HepG2 cells. OPAC significantly increased not only the nuclear level of aryl hydrocarbon receptor (AhR), but also the AhR-dependent reporter gene expression, though not the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent one. The pretreatment of OPAC at the concentration required for the ALDH upregulation completely inhibited the acetaldehyde-induced cytotoxicity. Silencing AhR impaired the resistant effect of OPAC against acetaldehyde. These results strongly suggested that OPAC protects the cells from the acetaldehyde-induced cytotoxicity, mainly through the AhR-dependent and Nrf2-independent enhancement of the total ALDH activity. Our findings suggest that OPAC has a protective potential in hepatocyte models and could offer a new preventive possibility of quercetin glycosides for targeting alcohol-induced chronic diseases.


Assuntos
Aldeído Desidrogenase/metabolismo , Glicosídeos/metabolismo , Hepatócitos/patologia , Intestinos/metabolismo , Fenilacetatos/farmacologia , Substâncias Protetoras/farmacologia , Quercetina/metabolismo , Acetaldeído , Aldeído Desidrogenase/genética , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citoproteção/efeitos dos fármacos , Glicosídeos/química , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fenilacetatos/química , Quercetina/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Int J Mol Sci ; 20(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159151

RESUMO

Quercetin is an abundant flavonoid in nature and is used in several dietary supplements. Although quercetin is extensively metabolized by human enzymes and the colonic microflora, we have only few data regarding the pharmacokinetic interactions of its metabolites. Therefore, we investigated the interaction of human and microbial metabolites of quercetin with the xanthine oxidase enzyme. Inhibitory effects of five conjugates and 23 microbial metabolites were examined with 6-mercaptopurine and xanthine substrates (both at 5 µM), employing allopurinol as a positive control. Quercetin-3'-sulfate, isorhamnetin, tamarixetin, and pyrogallol proved to be strong inhibitors of xanthine oxidase. Sulfate and methyl conjugates were similarly strong inhibitors of both 6-mercaptopurine and xanthine oxidations (IC50 = 0.2-0.7 µM); however, pyrogallol inhibited xanthine oxidation (IC50 = 1.8 µM) with higher potency vs. 6-MP oxidation (IC50 = 10.1 µM). Sulfate and methyl conjugates were approximately ten-fold stronger inhibitors (IC50 = 0.2-0.6 µM) of 6-mercaptopurine oxidation than allopurinol (IC50 = 7.0 µM), and induced more potent inhibition compared to quercetin (IC50 = 1.4 µM). These observations highlight that some quercetin metabolites can exert similar or even a stronger inhibitory effect on xanthine oxidase than the parent compound, which may lead to the development of quercetin-drug interactions (e.g., with 6-mercaptopurin or azathioprine).


Assuntos
Quercetina/análogos & derivados , Quercetina/farmacologia , Xantina Oxidase/antagonistas & inibidores , Alopurinol/química , Alopurinol/farmacologia , Catálise , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Oxirredução , Ligação Proteica , Quercetina/química , Quercetina/metabolismo , Relação Estrutura-Atividade , Xantina/química , Xantina/farmacologia
3.
Biomed Pharmacother ; 88: 574-581, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28135601

RESUMO

Flavonoids are ubiquitous molecules in nature with manifold pharmacological effects. Flavonoids interact with several proteins, and thus potentially interfere with the pharmacokinetics of various drugs. Though much is known about the protein binding characteristics of flavonoid aglycones, the behaviour of their metabolites, which are extensively formed in the human body has received little attention. In this study, the interactions of the flavonoid aglycone quercetin and its main metabolites with the albumin binding of the oral anticoagulant warfarin were investigated by fluorescence spectroscopy and ultrafiltration. Furthermore, the inhibitory effects of these flavonoids on CYP2C9 enzyme were tested because the metabolic elimination of warfarin is catalysed principally by this enzyme. Herein, we demonstrate that each tested flavonoid metabolite can bind to human serum albumin (HSA) with high affinity, some with similar or even higher affinity than quercetin itself. Quercetin metabolites are able to strongly displace warfarin from HSA suggesting that high quercetin doses can strongly interfere with warfarin therapy. On the other hand, tested flavonoids showed no or weaker inhibition of CYP2C9 compared to warfarin, making it very unlikely that quercetin or its metabolites can significantly inhibit the CYP2C9-mediated inactivation of warfarin.


Assuntos
Inibidores do Citocromo P-450 CYP2C9/farmacologia , Citocromo P-450 CYP2C9/metabolismo , Metaboloma , Quercetina/metabolismo , Albumina Sérica/metabolismo , Varfarina/metabolismo , Diclofenaco/análogos & derivados , Diclofenaco/farmacologia , Interações Medicamentosas , Flavonoides/farmacologia , Humanos , Metaboloma/efeitos dos fármacos , Quercetina/química , Espectrometria de Fluorescência , Ultrafiltração
4.
Arch Biochem Biophys ; 559: 62-7, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24657077

RESUMO

Several plant-derived molecules, referred to as phytoestrogens, are thought to mimic the actions of endogenous estrogens. Among these, quercetin, one of the most widespread flavonoids in the plant kingdom, has been reported as estrogenic in some occasions. However, quercetin occurs in substantial amounts as glycosides such as quercetin-3-O-glucoside (isoquercitrin) and quercetin-3-O-rutinoside (rutin) in dietary sources. It is now well established that quercetin undergoes substantial phase II metabolism after ingestion by humans, with plasma metabolites after a normal dietary intake rarely exceeding nmol/L concentrations. Therefore, attributing phytoestrogenic activity to flavonoids without taking into account the fact that it is their phase II metabolites that enter the circulatory system, will almost certainly lead to misleading conclusions. With the aim of clarifying the above issue, the goal of the present study was to determine if plant-associated quercetin glycosides and human phase II quercetin metabolites, actually found in human biological fluids after intake of quercetin containing foods, are capable of interacting with the estrogen receptors (ER). To this end, we used a yeast-based two-hybrid system and an estrogen response element-luciferase reporter assay in an ER-positive human cell line (MCF-7) to probe the ER interaction capacities of quercetin and its derivatives. Our results show that quercetin-3-O-glucuronide, one of the main human phase II metabolites produced after intake of dietary quercetin, displays ERα- and ERß-dependent estrogenic activity, the functional consequences of which might be related to the protective activity of diets rich in quercetin glycosides.


Assuntos
Neoplasias da Mama/patologia , Glucuronídeos/química , Fitoestrógenos/química , Fitoestrógenos/farmacologia , Quercetina/química , Quercetina/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Humanos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA