RESUMO
Measuring quinine is critical for the detection of its overdose, understanding its pharmacological and toxicological effects, and monitoring its pollution. While a previously reported aptamer named MN4 can bind quinine, it was not selected for it, leading to compromised binding affinity and specificity. In this work, a new quinine aptamer was isolated using the library immobilization capture-SELEX technique. The Q1 aptamer has a Kd value of 10 nM determined by an isothermal titration calorimetry experiment and 45 nM in a fluorescence binding assay. A 3.5 nM quinine limit of detection was obtained based on the aptamer binding-induced quenching of the intrinsic fluorescence of quinine. A large blue shift in fluorescence was observed for quinine upon binding to Q1, whereas binding to MN4 led to a very small red shift, indicating different ways of quinine binding by these two aptamers. Q1 did not bind cocaine based on NMR spectroscopy and fluorescence assays also indicated excellent selectivity against other tested molecules. This work has supplied a high affinity aptamer for quinine that can be useful for its detection and fundamental aptamer binding studies. It also highlights the advantages of using capture-SELEX to isolate aptamers for small molecules.
RESUMO
For centuries, quinoline alkaloids from the tree bark of Cinchona ledgeriana (C. ledgeriana) have been used in the treatment of malaria. However, unsustainable harvesting and poor growth conditions greatly limit its use as raw materials. Since plant endophytes are known to contribute to the physiology of the host and its metabolism for survival, this study showed the potential of endophytes isolated from C. ledgeriana roots in promoting the germination of Catharathus roseus (C. roseus) seedlings and the biosynthesis of quinoline alkaloid. In this present study, we found that the Enterobacteriaceae family comprised the majority of the bacterial community, with Klebsiella pneumoniae being the most abundant species at the C. ledgeriana roots. Characterization of culturable bacterial endophytes from the C. ledgeriana roots showed that all the isolates displayed plant growth-promoting factors and antifungal activities. Interestingly, chromatographic analyses led to the identification of the quinoline alkaloids producing Achromobacter xylosoxidans (A. xylosoxidans) A1. Moreover, the co-cultures of A. xylosoxidans A1, Cytobacillus solani (C. solani) A3, and Klebsiella aerogenes A6 increased the fresh and dry weight of the C. roseus seedlings. These results suggest that these bacterial endophytes may enhance quinine and quinidine production as well as the growth of the plant host.
RESUMO
A series of 2-(trifluoromethyl)-4-hydroxyquinoline derivatives were designed and synthesized with introduction of the antibacterial fragment amino alcohols, and their antibacterial activity against plant phytopathogenic bacteria was evaluated for the development of quinoline bactericides. It is worth noting that compound Qa5 exhibited excellent antibacterial activity in vitro with a minimum inhibitory concentration (MIC) value of 3.12 µg/mL against Xanthomonas oryzae (Xoo). Furthermore, in vivo assays demonstrated that the protective efficacy of Qa5 against rice bacterial blight at 200 µg/mL (33.0%) was superior to that of the commercial agent bismerthiazol (18.3%), while the curative efficacy (35.0%) was comparable to that of bismerthiazol (35.7%). The antibacterial mechanisms of Qa5 indicated that it affected the activity of bacteria by inducing intracellular oxidative damage in Xoo and disrupting the integrity of the bacterial cell membrane. The above results demonstrated that the novel quinoline derivative Qa5 possessed excellent in vitro and in vivo antibacterial activity, indicating its potential as a novel green agricultural antibacterial agent.
RESUMO
Crete, strategically situated at the crossroads of three continents, was historically embroiled in incessant conflicts between colonisers and Greek revolutionaries, as well as recurrent battles against disease. In 1918, the island faced a novel adversary: influenza. In response, the state, local authorities, and medical professionals on the island mounted a formidable defence. Hospitals, health centres, and the military all contributed to the effort. Essential provisions of medicine and food were distributed to support the populations in areas most inflicted. The Heraklion-based newspaper Nea Ephimeris played a crucial role in documenting these events. Through its articles, reports, interviews, and reviews of the influenza situation, it disseminated vital information that helped the public understand both preventive measures and the necessary actions to combat the spread of the virus. This study examines the coverage by Nea Ephimeris from January 1918 to January 1919, assessing how the newspaper informed, supported, and uplifted the urban and rural populations of Crete. The data collected reconstruct the events of that period and demonstrate how historical pandemics offer lessons that can prepare health professionals for future challenges.
RESUMO
BACKGROUND & AIMS: The post-oral sensing of bitter compounds by a family of bitter taste receptors (TAS2Rs) is suggested to regulate postprandial glycemia in humans. However, reports are inconsistent. This systematic review used meta-analysis to synthesise the impact of bitter compound interventions on the postprandial glycaemic response in humans. METHODS: Electronic databases (Medline, PubMed, and Web of Science) were systematically searched from inception to April 2024 to identify randomised controlled trials reporting the effect of interventions utilising post-oral bitter compounds vs. placebo on postprandial plasma glucose levels at t = 2 h (2 h-PPG), and area under the curve (AUC) of glucose, insulin, and c-peptide. The random-effect and subgroup analysis were performed to calculate pooled weighted mean differences (WMD), overall and by predefined criteria. RESULTS: Forty-six studies (within 34 articles) were identified; 29 and 17 studies described chronic and acute interventions, respectively. The chronic interventions reduced 2 h-PPG (n = 21, WMD = -0.35 mmol/L, 95%CIs = -0.58, -0.11) but not AUC for glucose or insulin. Subgroup analysis showed the former was particularly evident in individuals with impaired glycemia, interventions longer than three months, or quinine family administration. The acute interventions did not improve the postprandial glycemia response, but subgroup analysis revealed a decrease in AUC-glucose after quinine family administration (n = 4 WMD = -90.40 (nmol × time/L), 95%CIs = -132.70, -48.10). CONCLUSION: Chronic bitter compound interventions, particularly those from the quinine family, may have therapeutic potential in those with glycemia dysregulation. Acute intervention of the quinine family may also improve postprandial glucose. Given the very low quality of the evidence, further investigations with more rigorous methods are still required.
Assuntos
Glicemia , Insulina , Período Pós-Prandial , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Período Pós-Prandial/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Insulina/sangue , Paladar/efeitos dos fármacosRESUMO
The year 2024 marks the 80th anniversary of the landmark formal synthesis of (±)-quinine completed by Woodward and Doering. This article examines the evolution of approaches to access this storied Cinchona alkaloid natural product which represent a microcosm the progress that has been made in organic synthesis over the past ~170 years. Seminal contributions led by Pasteur, Rabe, Woodward, Uskokovic, Stork, Jacobsen, Hayashi, Maulide and others are discussed.
RESUMO
Disorders of gallbladder motility can lead to serious pathology. Bitter tastants acting upon bitter taste receptors (TAS2R family) have been proposed as a novel class of smooth muscle relaxants to combat excessive contraction in the airways and other organs. To explore whether this might also emerge as an option for gallbladder diseases, we here tested bitter tastants for relaxant properties and profiled Tas2r expression in the mouse gallbladder. In organ bath experiments, the bitter tastants denatonium, quinine, dextromethorphan, and noscapine, dose-dependently relaxed the pre-contracted gallbladder. Utilizing gene-deficient mouse strains, neither transient receptor potential family member 5 (TRPM5), nor the Tas2r143/Tas2r135/Tas2r126 gene cluster, nor tuft cells proved to be required for this relaxation, indicating direct action upon smooth muscle cells (SMC). Accordingly, denatonium, quinine and dextromethorphan increased intracellular calcium concentration preferentially in isolated gallbladder SMC and, again, this effect was independent of TRPM5. RT-PCR revealed transcripts of Tas2r108, Tas2r126, Tas2r135, Tas2r137, and Tas2r143, and analysis of gallbladders from mice lacking tuft cells revealed preferential expression of Tas2r108 and Tas2r137 in tuft cells. A TAS2R143-mCherry reporter mouse labeled tuft cells in the gallbladder epithelium. An in silico analysis of a scRNA sequencing data set revealed Tas2r expression in only few cells of different identity, and from in situ hybridization histochemistry, which did not label distinct cells. Our findings demonstrate profound tuft cell- and TRPM5-independent relaxing effects of bitter tastants on gallbladder smooth muscle, but do not support the concept that these effects are mediated by bitter receptors.
Assuntos
Vesícula Biliar , Músculo Liso , Receptores Acoplados a Proteínas G , Canais de Cátion TRPM , Animais , Camundongos , Cálcio/metabolismo , Dextrometorfano/farmacologia , Vesícula Biliar/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Noscapina/farmacologia , Compostos de Amônio Quaternário/farmacologia , Quinina/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Paladar/fisiologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Células em Tufo/metabolismoRESUMO
Bitter taste receptors (TAS2Rs) Tas2r108 gene possesses a high abundance in mouse kidney; however, the biological functions of Tas2r108 encoded receptor TAS2Rs member 4 (TAS2R4) are still unknown. In the present study, we found that mouse TAS2R4 (mTAS2R4) signaling was inactivated in chronic high glucose-stimulated mouse podocyte cell line MPC, evidenced by the decreased protein expressions of mTAS2R4 and phospholipase C ß2 (PLCß2), a key downstream molecule of mTAS2R4 signaling. Nonetheless, agonism of mTAS2R4 by quinine recovered mTAS2R4 and PLCß2 levels, and increased podocyte cell viability as well as protein expressions of ZO-1 and nephrin, biomarkers of podocyte slit diaphragm, in high glucose-cultured MPC cells. However, blockage of mTAS2R4 signaling with mTAS2R4 blockers γ-aminobutyric acid and abscisic acid, a Gßγ inhibitor Gallein, or a PLCß2 inhibitor U73122 all abolished the effects of quinine on NLRP3 inflammasome and p-NF-κB p65 as well as the functional podocyte proteins in MPC cells in a high glucose condition. Furthermore, knockdown of mTAS2R4 with lentivirus-carrying Tas2r108 shRNA also ablated the effect of quinine on the key molecules of the above inflammatory signalings and podocyte functions in high glucose-cultured MPC cells. In summary, we demonstrated that activation of TAS2R4 signaling alleviated the podocyte injury caused by chronic high glucose, and inhibition of NF-κB p65 and NLRP3 inflammasome mediated the protective effects of TAS2R4 activation on podocytes. Moreover, activation of TAS2R4 signaling could be an important strategy for prevention and treatment of diabetic kidney disease.
Assuntos
Glucose , Podócitos , Receptores Acoplados a Proteínas G , Transdução de Sinais , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Animais , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Glucose/toxicidade , Glucose/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Linhagem CelularRESUMO
Coastal concrete structures, such as cross-sea bridges and tunnels, are susceptible to the penetration of chloride ions, which can lead to the deterioration of the passive film on the rebar surface, consequently accelerating the corrosion process. Conventional methods for monitoring chloride ions typically require in situ drilling for sample collection, thereby compromising efficiency and accuracy. Additionally, real-time monitoring and early warning cannot be achieved. To address these challenges, this work introduces a fluorescent-probe-based fiber optic sensor for monitoring chloride levels in concrete structures. Quinine sulfate was chosen as the fluorescent material due to its exceptional sensitivity to chloride ions and its stability in concrete environments. The proposed sensor was manufactured using sol-gel and 3D-printing techniques. Tests were conducted using concrete simulation fluid and cement mortar specimens. The results demonstrate that the sensitivity of the proposed sensor is greater than 0.01 M, and its accuracy in penetration depth measurement is better than 3 mm. The findings confirm that the designed fiber optic sensor based on quinine sulfate enables real-time monitoring of chloride ions in concrete structures, offering high sensitivity (0.1% in concentration and 2.7 mm in terms of penetration depth), unique selectivity (as it is immune to other ions whose concentrations are 10 times higher than those of Cl-), and a compact size (10 × 20 mm). These attributes render it promising for practical engineering applications.
RESUMO
Alcohol use disorder (AUD) is a complex and widespread disease with limited pharmacotherapies. Preclinical animal models of AUD use a variety of voluntary alcohol consumption procedures to recapitulate different phases of AUD, including binge alcohol consumption and dependence. However, voluntary alcohol consumption in mice is widely variable, making it difficult to reproduce results across labs. Accumulating evidence indicates that different brands of commercially available rodent chow can profoundly influence alcohol intake. In this study, we investigated the effects of three commercially available and widely used rodent diet formulations on alcohol consumption and preference in C57BL/6 J mice using the 24 h intermittent access procedure. The three brands of chow tested were LabDiet 5,001 (LD5001), LabDiet 5,053 (LD5053), and Teklad 2019S (TL2019S) from two companies (Research Diets and Envigo, respectively). Mice fed LD5001 and LD5053 displayed higher levels of alcohol consumption and preference compared to mice fed TL2019S. We also found that alcohol consumption and preference could be rapidly switched by changing the diet 48 h prior to alcohol administration. Sucrose, saccharin, and quinine preferences were not altered, suggesting that the diets did not alter sweet and bitter taste perception. We also found that mice fed LD5001 displayed increased quinine-resistant alcohol intake compared to mice fed TL2019S, suggesting that diets could influence the development of compulsive behaviors such as alcohol consumption. We profiled the gut microbiome of water- and alcohol-drinking mice that were maintained on different diets and found significant differences in bacterial alpha- and beta-diversities, which could impact the gut-brain axis signaling and alcohol consumption.
RESUMO
Malaria tropica, caused by the parasite Plasmodium falciparum (P. falciparum), remains one of the greatest public health burdens for humankind. Due to its pivotal role in parasite survival, the energy metabolism of P. falciparum is an interesting target for drug design. To this end, analysis of the central metabolite adenosine triphosphate (ATP) is of great interest. So far, only cell-disruptive or intensiometric ATP assays have been available in this system, with various drawbacks for mechanistic interpretation and partly inconsistent results. To address this, we have established fluorescent probes, based on Förster resonance energy transfer (FRET) and known as ATeam, for use in blood-stage parasites. ATeams are capable of measuring MgATP2- levels in a ratiometric manner, thereby facilitating in cellulo measurements of ATP dynamics in real-time using fluorescence microscopy and plate reader detection and overcoming many of the obstacles of established ATP analysis methods. Additionally, we established a superfolder variant of the ratiometric pH sensor pHluorin (sfpHluorin) in P. falciparum to monitor pH homeostasis and control for pH fluctuations, which may affect ATeam measurements. We characterized recombinant ATeam and sfpHluorin protein in vitro and stably integrated the sensors into the genome of the P. falciparum NF54attB cell line. Using these new tools, we found distinct sensor response patterns caused by several different drug classes. Arylamino alcohols increased and redox cyclers decreased ATP; doxycycline caused first-cycle cytosol alkalization; and 4-aminoquinolines caused aberrant proteolysis. Our results open up a completely new perspective on drugs' mode of action, with possible implications for target identification and drug development.
Assuntos
Trifosfato de Adenosina , Antimaláricos , Transferência Ressonante de Energia de Fluorescência , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/genética , Trifosfato de Adenosina/metabolismo , Antimaláricos/farmacologia , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Humanos , Quinina/farmacologia , Doxiciclina/farmacologia , Artemisininas/farmacologia , Cloroquina/farmacologia , Concentração de Íons de HidrogênioRESUMO
Drug-induced thrombotic microangiopathy (DITMA) is a life-threatening condition which may be immune or nonimmune mediated. Quinine is the most implicated drug in immune-mediated DITMA. However, the optimal treatment is unclear. Complement inhibition by eculizumab has demonstrated success in many DITMA (e.g., carfilzomib, gemcitabine, and tacrolimus), but there are limited data in DITMA, including quinine-associated cases. A 55-year-old female was diagnosed with quinine-associated thrombotic microangiopathy (TMA), as confirmed by a positive quinine-dependent platelet-associated antibody. This was successfully treated with eculizumab with complete resolution of thrombocytopenia and anemia by 1 and 6 weeks. She required hemodialysis for a month and gained full recovery of renal function. We discuss various challenges with the diagnosis and management of DITMA. We also review published data on the use of eculizumab in various DITMA. Our case demonstrates successful treatment of quinine-induced TMA with eculizumab. We recommend further studies to assess the efficacy of complement inhibition in quinine and other DITMA.
Assuntos
Quinina , Microangiopatias Trombóticas , Feminino , Humanos , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/uso terapêutico , Quinina/efeitos adversos , Diálise Renal , Microangiopatias Trombóticas/tratamento farmacológicoRESUMO
Leishmaniasis is an endemic disease in more than 90 countries, constituting a relevant public health problem. Limited treatment options, increase in resistance, and therapeutic failure are important aspects for the discovery of new treatment options. Drug repurposing may accelerate the discovery of antiLeishmanial drugs. Recent tests indicating the in vitro potential of antimalarials Leishmania resulted in the design of this study. This study aimed at evaluating the susceptibility of Leishmania (L.) amazonensis to chloroquine (CQ) and quinine (QN), alone or in combination with amphotericin B (AFT) and pentamidine (PTN). In the in vitro tests, first, we evaluated the growth inhibition of 50 % of promastigotes (IC50) and cytotoxicity for HepG2 and THP-1 cells (CC50). The IC50 values of AFT and PNT were below 1 µM, while the IC50 values of CQ and QN ranged between 4 and 13 µM. Concerning cytotoxicity, CC50 values ranged between 7 and 30 µM for AFT and PNT, and between 22 and 157 µM for the antimalarials. We also calculated the Selectivity Index (SI), where AFT and PTN obtained the highest values, while the antimalarias obtained values between 5 and 12. Both antimalarials were additive (Æ©FIC 1.05-1.8) in combination with AFT and PTN. For anti-amastigote activity, the drugs obtained the following ICA50 values: AFT (0.26 µM), PNT (2.09 µM), CQ (3.77 µM) and QN (24.5 µM). In the in vivo tests, we observed that the effective dose for the death of 50 % of parasites (ED50) of AFT and CQ were 0.63 mg/kg and 27.29 mg/kg, respectively. When combining CQ with AFT, a decrease in parasitemia was observed, being statistically equal to the naive group. For cytokine quantification, it was observed that CQ, despite presenting anti-inflammatory activity was effective at increasing the production of IFN-γ. Overall, our data indicate that chloroquine will probably be a candidate for repurposing and use in drug combination therapy.
Assuntos
Antimaláricos , Leishmania , Leishmaniose , Humanos , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Quinina/farmacologia , Quinina/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Leishmaniose/tratamento farmacológico , Plasmodium falciparumRESUMO
Chemical repellents play a crucial role in personal protection, serving as essential elements in reducing the transmission of vector-borne diseases. A biorational perspective that extends beyond the olfactory system as the classical target may be a promising direction to move. The taste system provides reliable information regarding food quality, helping animals to discriminate between nutritious and potentially harmful food sources, often associated with a bitter taste. Understanding how bitter compounds affect feeding in blood-sucking insects could unveil novel molecules with the potential to reduce biting and feeding. Here, we investigated the impact of two naturally occurring bitter compounds, caffeine and quinine, on the feeding decisions in female Aedes aegypti mosquitoes at two distinctive phases: (1) when the mosquito explores the biting substrate using external taste sensors and (2) when the mosquito takes a sip of food and tastes it using internal taste receptors. We assessed the aversiveness of bitter compounds through both an artificial feeding condition (artificial feeder test) and a real host (arm-in-cage test). Our findings revealed different sensitivities in the external and internal sensory pathways responsible for detecting bitter taste in Ae. aegypti. Internal detectors exhibited responsiveness to lower doses compared to the external sensors. Quinine exerted a more pronounced negative impact on biting and feeding activity than caffeine. The implications of our findings are discussed in the context of mosquito food recognition and the potential practical implications for personal protection.
Assuntos
Aedes , Cafeína , Comportamento Alimentar , Quinina , Paladar , Animais , Feminino , Cafeína/farmacologia , Aedes/fisiologia , Comportamento Alimentar/efeitos dos fármacosRESUMO
A series of novel triazole-tethered ferrocenoylamino-substituted cinchona-chalcone hybrids along with two representative benzoylamino-substituted reference compounds were prepared by three methods of CuAAC chemistry. In line with the limited success or complete failure of attempted conversions with low catalyst loadings, by means of DFT modeling studies, we demonstrated that a substantial part of the Cu(I) ions can be chelated and thus trapped in the aroylamino-substituted cinchona fragment and all of the accessible coordinating sites of the chalcone residues. Accordingly, increased amounts of catalysts were used to achieve acceptable yields; however, the cycloadditions with para-azidochalcones were accompanied by partial or complete aldehyde-forming hydrolytic fission of the enone C=C bond in a substituent-, solvent- and copper load-dependent manner. The experienced hydrolytic stability of the hybrids obtained by cycloadditions with ortho-azidochalcones was interpreted in terms of relative energetics, DFT reactivity indices and MO analysis of simplified models of two isomer copper-enone complexes. The novel hybrids were evaluated on HeLa, MDA-MB-231 and A2780 cell lines and showed substantial activity at low-to-submicromolar concentrations. An organometallic model carrying 3,4,5-trimethoxyphenyl residue in the enone part with a para-disubstituted benzene ring in the central skeletal region was identified as the most potent antiproliferative lead, characterized by submicromolar IC50 values measured on the three investigated cells. The biological assays also disclosed that this ferrocenoylamino-containing lead compound displays a ca. two- to five-fold more substantial antiproliferative effect than its benzoylamino-substituted counterpart.
RESUMO
Somatostatin analogues (SSTA) are first-line pharmacological treatment choice for acromegaly, which received satisfying tumor shrinkage and normalization of growth hormone. However, there are still patients unresponsive to SSTA, and the underline mechanism remains unknown. Besides, there is no evidence regarding the role of endoplasmic reticulum stress (ERS) and its transmission in SSTA resistance, which also require investigation. Primary growth hormone adenoma cells and cell lines were treated with SSTA; autophagy double-labeled LC3 (mRFP-GFP) adenovirus transfection, flow cytometry sorting, western blotting, calcium imaging as well as immunofluorescence staining were used to determine ERS and autophagy signal transmission; xenograft and syngeneic tumor in vivo model were exploited to confirm the ERS signal transmission mediated effect. Our results revealed that SSTA induces ERS in pituitary growth hormone (GH) adenoma cells. The ERS signals can be intercellularly transmitted, leading to less responsible to SSTA treatment. Moreover, SSTA stimulates inositol triphosphate (IP3) elevation, mediating ERS intercellular transfer. In addition, connexin 36 tunnels ERS transmission, and its blocker, Quinine, exhibits a synergistic effect with SSTA treating GH adenoma. Our study provided insight into ERS intercellular transmission mediated SSTA resistance, which could be translated into clinical usage to improve SSTA efficiency in GH adenoma treatment.
Assuntos
Adenoma , Neoplasias Hipofisárias , Humanos , Somatostatina/farmacologia , Somatostatina/uso terapêutico , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/uso terapêutico , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Proteína delta-2 de Junções Comunicantes , Adenoma/tratamento farmacológico , Estresse do Retículo EndoplasmáticoRESUMO
Quinine, a bitter compound, can act as an agonist to activate the family of bitter taste G protein-coupled receptor family of proteins. Previous work from our laboratory has demonstrated that quinine causes activation of RalA, a Ras p21-related small G protein. Ral proteins can be activated directly or indirectly through an alternative pathway that requires Ras p21 activation resulting in the recruitment of RalGDS, a guanine nucleotide exchange factor for Ral. Using normal mammary epithelial (MCF-10A) and non-invasive mammary epithelial (MCF-7) cell lines, we investigated the effect of quinine in regulating Ras p21 and RalA activity. Results showed that in the presence of quinine, Ras p21 is activated in both MCF-10A and MCF-7 cells; however, RalA was inhibited in MCF-10A cells, and no effect was observed in the case of MCF-7 cells. MAP kinase, a downstream effector for Ras p21, was activated in both MCF-10A and MCF-7 cells. Western blot analysis confirmed the expression of RalGDS in MCF-10A cells and MCF-7 cells. The expression of RalGDS was higher in MCF-10A cells in comparison to the MCF-7 cells. Although RalGDS was detected in MCF-10A and MCF-7 cells, it did not result in RalA activation upon Ras p21 activation with quinine suggesting that the Ras p21-RalGDS-RalA pathway is not active in the MCF-10A cells. The inhibition of RalA activity in MCF-10A cells due to quinine could be as a result of a direct effect of this bitter compound on RalA. Protein modeling and ligand docking analysis demonstrated that quinine can interact with RalA through the R79 amino acid, which is located in the switch II region loop of the RalA protein. It is possible that quinine causes a conformational change that results in the inhibition of RalA activation even though RalGDS is present in the cell. More studies are needed to elucidate the mechanism(s) that regulate Ral activity in mammary epithelial cells.
Assuntos
Quinina , Fator ral de Troca do Nucleotídeo Guanina , Fator ral de Troca do Nucleotídeo Guanina/metabolismo , Quinina/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Epiteliais/metabolismoRESUMO
Solid-phase fluorescence excitation-emission matrix (SPF-EEM) spectroscopy has potential for non-extractive, non-destructive, and non-contact analytical measurements of powder and solid-state samples, as well as front-face EEM spectroscopy for suspensions of high optical density. However, as there is no unified measurement method for SPF spectroscopy, comparing samples measured in different research fields is difficult. Therefore, this study designs a cell that can be created by a 3D printer and examines reproducibility on measuring fluorescent powders. The developed cell is applied to proteins (ovalbumin, BSA, gliadin, gluten, powdered collagen, casein), amino acids (tryptophan, tyrosine, and phenylalanine), soybean ingredients (daidzein, and genistein), and fluorescent chemicals (rhodamine B, fluorescein sodium salt, pyrene, and quinine sulfate dihydrate) and their spectra are compared with those in the solution states. When samples are refilled into the cell three times, the cell exhibits high reproducibility in terms of fluorescence peak wavelength and intensity. The solid proteins exhibit peaks attributed to the fluorescent amino acid residues, and broad peaks which are not detected for the proteins in the solution states. Powdered rhodamine B and fluorescein sodium salt do not exhibit fluorescence, possibly due to the inner-filter effect (IFE). Some non-colored molecules also exhibit loss of fluorescence or a remarkable difference between the solid and solution states, possibly due to the interaction of the fluorescent structure with the surrounding local environment, similar to the solvent effect, which is possibly affected by the molecular proximity, three-dimensional structure, and moisture absorption capacity.
Assuntos
Aminoácidos , Proteínas , Fluoresceína , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodosRESUMO
This study is aimed to evaluate the effect and underling mechanism of dietary supplementation with pyrroloquinoline quinone (PQQ) disodium on improving inflammatory liver injury in piglets challenged with lipopolysaccharide (LPS). A total of seventy-two crossbred barrows were allotted into four groups as follows: the CTRL group (basal diet + saline injection); the PQQ group (3 mg/kg PQQ diet + saline injection); the CTRL + LPS group (basal diet + LPS injection) and the PQQ + LPS group (3 mg/kg PQQ diet + LPS injection). On days 7, 11 and 14, piglets were challenged with LPS or saline. Blood was sampled at 4 h after the last LPS injection (day 14), and then the piglets were slaughtered and liver tissue was harvested. The results showed that the hepatic morphology was improved in the PQQ + LPS group compared with the CTRL + LPS group. PQQ supplementation decreased the level of serum inflammatory factors, aspartate aminotransferase and alanine transaminase, and increased the HDL-cholesterol concentration in piglets challenged with LPS; piglets in the PQQ + LPS group had lower liver mRNA level of inflammatory factors and protein level of α-smooth muscle actin than in the CTRL + LPS group. Besides, mRNA expression of STAT3/TGF-ß1 pathway and protein level of p-STAT3(Tyr 705) were decreased, and mRNA level of PPARα and protein expression of p-AMPK in liver were increased in the PQQ + LPS group compared with the CTRL + LPS group (P < 0·05). In conclusion, dietary supplementation with PQQ alleviated inflammatory liver injury might partly via inhibition of the STAT3/TGF-ß1 pathway in piglets challenged with LPS.
Assuntos
Suplementos Nutricionais , Lipopolissacarídeos , Animais , Suínos , Cofator PQQ/farmacologia , Cofator PQQ/uso terapêutico , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fígado/metabolismo , RNA Mensageiro/metabolismoRESUMO
The use of organocatalysts and a pot economy has strengthened recent organic syntheses. Synthetic methodologies may be applicable in laboratory preparation or in the industrial production of valuable organic compounds. In most cases, synthetic challenges are overcome by highly efficient and environmentally benign organocatalysts in a pot-economical manner. This is exemplified by the recent synthesis of tetrahydropyridine-containing (-)-quinine.