Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Metab ; 5(10): 903-917, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27689003

RESUMO

OBJECTIVE: Obesity and type 2 diabetes (T2D) lead to various life-threatening diseases such as coronary heart disease, stroke, osteoarthritis, asthma, and neurodegeneration. Therefore, extensive research is ongoing to identify novel pathways that can be targeted in obesity/T2D. Deletion of the inositol pyrophosphate (5-IP7) biosynthetic enzyme, inositol hexakisphosphate kinase-1 (IP6K1), protects mice from high fat diet (HFD) induced obesity (DIO) and insulin resistance. Yet, whether this pathway is a valid pharmacologic target in obesity/T2D is not known. Here, we demonstrate that TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine], a pan-IP6K inhibitor, has strong anti-obesity and anti-diabetic effects in DIO mice. METHODS: Q-NMR, GTT, ITT, food intake, energy expenditure, QRT-PCR, ELISA, histology, and immunoblot studies were conducted in short (2.5-week)- and long (10-week)-term TNP treated DIO C57/BL6 WT and IP6K1-KO mice, under various diet and temperature conditions. RESULTS: TNP, when injected at the onset of HFD-feeding, decelerates initiation of DIO and insulin resistance. Moreover, TNP facilitates weight loss and restores metabolic parameters, when given to DIO mice. However, TNP does not reduce weight gain in HFD-fed IP6K1-KO mice. TNP specifically enhances insulin sensitivity in DIO mice via Akt activation. TNP decelerates weight gain primarily by enhancing thermogenic energy expenditure in the adipose tissue. Accordingly, TNP's effect on body weight is partly abolished whereas its impact on glucose homeostasis is preserved at thermoneutral temperature. CONCLUSION: Pharmacologic inhibition of the inositol pyrophosphate pathway has strong therapeutic potential in obesity, T2D, and other metabolic diseases.

2.
Physiol Behav ; 125: 21-9, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24291381

RESUMO

Brown adipose tissue (BAT) burns calories to produce heat, and is thus relevant to energy balance. Interscapular BAT (IBAT) of donor mice was transplanted into recipient mice (transBATation). To test whether transBATation counteracts high-fat diet (HFD)-induced obesity, some sham-operated and recipient mice were fed a HFD (HFD-sham, HFD-trans) while others remained on a standard chow (chow-sham, chow-trans). HFD-trans mice had lower body weight and fat and greater energy expenditure, but similar caloric intake compared with HFD-sham mice. We hypothesized that HFD-trans mice had elevated sympathetic activity compared with HFD-sham mice, contributing to increased energy expenditure and fuel mobilization. This was supported by findings that HFD-trans mice had greater energy expenditure during a norepinephrine challenge test and higher core temperatures after cold exposure than did HFD-sham mice, implicating enhanced whole-body metabolic response and elevated sympathetic activity. Additionally, transBATation selectively increased sympathetic drive to some, but not all, white adipose tissue depots and skeletal muscles, as well as the endogenous IBAT, heart, and liver. Collectively, transBATation confers resistance to HFD-induced obesity via increase in whole-body sympathetic activity, and differential activation of sympathetic drive to some of the tissues involved in energy expenditure and fuel mobilization.


Assuntos
Tecido Adiposo Marrom/transplante , Obesidade/fisiopatologia , Sistema Nervoso Simpático/fisiologia , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/inervação , Tecido Adiposo Branco/metabolismo , Animais , Temperatura Corporal/fisiologia , Peso Corporal/fisiologia , Resposta ao Choque Frio/fisiologia , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Coração/inervação , Fígado/inervação , Fígado/metabolismo , Masculino , Camundongos , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Obesidade/metabolismo , Obesidade/cirurgia
3.
Nutr Res ; 33(11): 952-60, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24176235

RESUMO

Animal studies using a high-fat diet (HFD) have studied the effects of lipid overconsumption by comparing a defined HFD either with a natural-ingredient chow diet or with a defined low-fat diet (LFD), despite the dramatic differences between these control diets. We hypothesized that these differences in the control diet could modify the conclusions regarding the effects that an increase of fat in the diet has on several metabolic parameters. For 11 weeks, C57bl6/J mice were fed a low-fat chow diet (8% energy from fat), a typical semisynthetic LFD (12%), or a semisynthetic HFD (sy-HF) (40%). Conclusions about the effect of sy-HF on body weight gain, subcutaneous adipose tissue, insulin sensitivity, and adipose tissue inflammation were modified according to the control LFD. Conversely, conclusions about epididymal and retroperitoneal adipose tissue; fat intake effects on liver and muscular lipids, cholesterol, free fatty acids, and markers of low-grade inflammation; and of adipose tissue macrophage infiltration were the same regardless of the use of low-fat chow diet or semisynthetic LFD. For some physiological outcomes, conflicting conclusions were even reached about the effects of increased fat intake according to the chosen low-fat control. Some deleterious effects of sy-HF may not be explained by lipid overconsumption but rather by the overall quality of ingredients in a semisynthetic diet. According to the control LFD chosen, conclusions on the lipid-related effects of HFDs must be formulated with great care because some end points are profoundly affected by the ingredient composition of the diet rather than by fat content.


Assuntos
Tecido Adiposo/metabolismo , Adiposidade , Pesquisa Biomédica/métodos , Dieta Hiperlipídica/efeitos adversos , Inflamação/etiologia , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Dieta com Restrição de Gorduras/normas , Gorduras na Dieta/administração & dosagem , Ingestão de Energia , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gordura Subcutânea/metabolismo , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA