Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.913
Filtrar
1.
J Med Imaging (Bellingham) ; 12(Suppl 1): S13003, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39055549

RESUMO

Purpose: Use of mechanical imaging (MI) as complementary to digital mammography (DM), or in simultaneous digital breast tomosynthesis (DBT) and MI - DBTMI, has demonstrated the potential to increase the specificity of breast cancer screening and reduce unnecessary biopsies compared with DM. The aim of this study is to investigate the increase in the radiation dose due to the presence of an MI sensor during simultaneous image acquisition when automatic exposure control is used. Approach: A radiation dose study was conducted on clinically available breast imaging systems with and without an MI sensor present. Our estimations were based on three approaches. In the first approach, exposure values were compared in paired clinical DBT and DBTMI acquisitions in 97 women. In the second approach polymethyl methacrylate (PMMA) phantoms of various thicknesses were used, and the average glandular dose (AGD) values were compared. Finally, a rectangular PMMA phantom with a 45 mm thickness was used, and the AGD values were estimated based on air kerma measurements with an electronic dosemeter. Results: The relative increase in exposure estimated from digital imaging and communications in medicine headers when using an MI sensor in clinical DBTMI was 11.9 % ± 10.4 . For the phantom measurements of various thicknesses of PMMA, the relative increases in the AGD for DM and DBT measurements were, on average, 10.7 % ± 3.1 and 11.4 % ± 3.0 , respectively. The relative increase in the AGD using the electronic dosemeter was 11.2 % ± < 0.001 in DM and 12.2 % ± < 0.001 in DBT. The average difference in dose between the methods was 11.5 % ± 3.3 . Conclusions: Our measurements suggest that the use of simultaneous breast radiography and MI increases the AGD by an average of 11.5 % ± 3.3 . The increase in dose is within the acceptable values for mammography screening recommended by European guidelines.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39352423

RESUMO

PURPOSE: To assess the trends in administered 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) doses, computed tomography (CT) radiation doses, and image quality over the last 15 years in children with drug-resistant epilepsy (DRE) undergoing hybrid positron emission tomography (PET) brain scans. METHODS: We retrospectively analyzed data from children with DRE who had [18F]FDG-PET/CT or magnetic resonance scans for presurgical evaluation between 2005 and 2021. We evaluated changes in injected [18F]FDG doses, administered activity per body weight, CT dose index volume (CTDIvol), and dose length product (DLP). PET image quality was assessed visually by four trained raters. Conversely, CT image quality was measured using region-of-interest analysis, normalized by signal-to-noise (SNR) and contrast-to-noise ratio (CNR). RESULTS: We included 55 children (30 male, mean age: 9 ± 6 years) who underwent 61 [18F]FDG-PET scans (71% as PET/CT). Annually, the injected [18F]FDG dose decreased by ~ 1% (95% CI: 0.92%-0.98%, p < 0.001), with no significant changes in administered activity per body weight (p = 0.51). CTDIvol and DLP decreased annually by 16% (95% CI: 9%-23%) and 15% (95% CI: 8%-21%, both p < 0.001), respectively. PET image quality improved by 9% year-over-year (95% CI: 6%-13%, p < 0.001), while CT-associated SNR and CNR decreased annually by 7% (95% CI: 3%-11%, p = 0.001) and 6% (95% CI: 2%-10%, p = 0.008), respectively. CONCLUSION: Our findings indicate stability in [18F]FDG administered activity per body weight alongside improvements in PET image quality. Conversely, CT-associated radiation doses reduced. These results reaffirm [18F]FDG-PET as an increasingly safer and higher-resolution auxiliary imaging modality for children with DRE. These improvements, driven by technological advancements, may enhance the diagnostic precision and patient outcomes in pediatric epilepsy surgery.

4.
Br J Radiol ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392799

RESUMO

Photon-counting computed tomography (PCCT) has shown promising advancements in abdominal imaging in clinical use. Though more peer-reviewed primary literature is needed, this commentary explores PCCT's potential applications, focusing on enhancing diagnostic accuracy, optimizing radiation dose management, and improving patient care. PCCT offers improved spatial and contrast resolution, lower image noise, and reduced radiation dose. Increased spatial resolution provides better detail in abdominal imaging, aiding in the detection of small lesions and subtle pathological changes. However, this generates more images per scan, raising concerns about "image overload" in PACS, potentially leading to longer reading times and increased stress for radiologists. PCCT's improved contrast resolution enhances tissue differentiation, reducing the need for intravenous contrast agents. The technology's advanced tissue characterization provides several advantages, such as non-invasive and opportunistic liver disease evaluation and improved differentiation of renal and adrenal masses. PCCT's optimized radiation dose management is crucial for patients requiring frequent scans. Enhanced diagnostic accuracy through spectral information aids in tissue differentiation, improving confidence in diagnoses. Streamlined workflows, particularly in emergency settings, and oncologic imaging, are potential benefits, reducing the need for additional imaging studies. Future integration of PCCT into clinical practice requires collaboration, education, and research to fully harness its potential, ensuring optimized abdominal imaging and improved patient care.

5.
J Environ Manage ; 370: 122781, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39378811

RESUMO

Containing only low levels of U-bearing minerals, U ores often have to undergo hydrometallurgical processing for the separation of other minerals. Hydrometallurgical operations, even after being shut down, could pose radiological risk to the ecosystem and human health due to the radionuclide contamination of surrounding environmental media. This study investigated the contamination of radionuclides in the agricultural topsoils downstream of a decommissioned hydrometallurgical U plant in southern China, and assessed the corresponding radiological risk and evaluated its impact on soil microbial communities. The values of geoaccumulation index and potential ecological risk index indicate that all soil samples were significantly contaminated with U and 226Ra, with their concentrations being 4.4-28.7 times and 4.4-114.8 times higher than the corresponding regional background values, respectively. The mean outdoor annual effective dose (OAED) in the sampling plot next to the drainage ditch downstream of the decommissioned plant was up to 3.9 and 8.2 times higher than the Chinese annual effective dose limit and global average, respectively, which is indicative of unacceptable radiological risk for the local farm workers. Soil microbial composition was obviously impacted by the soil physicochemical properties and radionuclides. Specifically, Cladophialophora, which belongs to the fungal genus, exhibited significantly positive correlations with the contents of total Cd, total U, organic U, residual U, and total K, while Methanosarcina, which belongs to the archaeal genus, exhibited significantly positive correlations with the contents of 226Ra and residual U. Soil pH and total N content were significantly correlated with the abundance of several bacterial genera and the dominant archaeal genus (i.e., Candidatus Nitrocosmicus). These findings demonstrate the existence of potentially significant radiological risk associated with the radionuclides released from historical hydrometallurgical processing of U ores to the surrounding environment, and the need for proper site management and remediation.

6.
Radiat Oncol J ; 42(3): 171-180, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39354820

RESUMO

Hypofractionated radiotherapy (RT) has become a trend in the modern era, as advances in RT techniques, including intensity-modulated RT and image-guided RT, enable the precise and safe delivery of high-dose radiation. Hypofractionated RT offers convenience and can reduce the financial burden on patients by decreasing the number of fractions. Furthermore, hypofractionated RT is potentially more beneficial for tumors with a low α/ß ratio compared with conventional fractionation RT. Therefore, hypofractionated RT has been investigated for various primary cancers and has gained status as a standard treatment recommended in the guidelines. In genitourinary (GU) cancer, especially prostate cancer, the efficacy, and safety of various hypofractionated dose schemes have been evaluated in numerous prospective clinical studies, establishing the standard hypofractionated RT regimen. Hypofractionated RT has also been explored for gynecological (GY) cancer, yielding relevant evidence in recent years. In this review, we aimed to summarize the representative evidence and current trends in clinical studies on hypofractionated RT for GU and GY cancers addressing several key questions. In addition, the objective is to offer suggestions for the available dose regimens for hypofractionated RT by reviewing protocols from previous clinical studies.

7.
Cureus ; 16(9): e68489, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39364522

RESUMO

BACKGROUND:  Restricting the irradiated volume can reduce X-ray scattering incidents on the image receptor. Proper X-ray collimation during medical imaging reduces a patient's dose while improving image quality. Even though the patient radiation dose due to chest X-ray imaging is low, the 'as low as reasonably achievable' (ALARA) principle should be satisfied, especially for young patients. PURPOSE: To evaluate the accuracy of collimation in digital chest radiography. MATERIALS AND METHODS: Ninety-eight chest radiographs were studied retrospectively from February 2021 to December 2021. Chest images were collected from three main centers in the Madinah region of Saudi Arabia. The ratio of the field of interest area to the field of view (FOV) was measured and calculated to determine the accuracy of X-ray beam collimation. RESULTS: Out of 98 chest radiographs enrolled in the study, 87.8% (n=80) were adequately collimated, while 12.2% (n=18) were rejected due to inadequate collimation. The ratio of the field of interest collimated area of chest radiographs was 0.547, which indicated an acceptable value. Among the three centers, Center 2 showed higher, significant, adequate collimation than Center 1 (P<0.001) and Center 3 (P=0.007). There was a significant gender difference in collimation levels as the level of collimation of female chest radiographs is inferior to that of males (P>0.001). CONCLUSIONS: The collimation of chest radiographs among the three centers was adequate. Based on the study findings, the X-ray beam collimation was sufficient, indicating good optimization and no unnecessary radiation exposure to patients and staff. The collimation of chest radiographs in females was significantly inferior to that of males.

8.
Artigo em Japonês | MEDLINE | ID: mdl-39384373

RESUMO

PURPOSE: The effects of scanning parameters such as CT system performance, CT bed geometry, and upper limb position on effective diameter (ED) and water equivalent diameter (WED) have not been assessed. The purpose of this study was to compare both ED and WED obtained with various CT systems with theoretical values and to assess their accuracy. METHODS: Jaszczak cylindrical phantom (Data Spectrum, Durham, NC, USA), NEMA IEC body phantom (AcroBio, Tokyo), and thoracic bone phantom were used in this study with and without upper limb phantom. The ED, WED, and size-specific dose estimate (SSDE) obtained using 8 types of CT systems were computed using radiation dose control software. RESULTS: The EDs had <5% error for all systems, but the error increased as the aspect ratio of the phantom increased. The accuracy of WED varied depending on the CT systems, with a maximum difference of 3.57 cm between systems. The influence of the upper limb depended on the shape of the bed of the CT systems, which affected the correlation between ED as well as WED and SSDE. CONCLUSION: Although the ED did not show any dependence on the CT system, the accuracy of WED for fusion CT was low. We found that there are issues in the management of scanning data, including the upper limb.

9.
Curr Oncol ; 31(9): 5088-5097, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39330004

RESUMO

(1) This study evaluates the impact of the CT-guided SIRIO augmented reality navigation system on the procedural efficacy and clinical outcomes of neuroprotection in vertebral thermal ablation (RTA) for primary and metastatic bone tumors. (2) Methods: A retrospective non-randomized analysis of 28 vertebral RTA procedures was conducted, comparing 12 SIRIO-assisted and 16 non-SIRIO-assisted procedures. The primary outcomes included dose-length product (DLP) and epidural dissection time. The secondary outcomes included technical success, complication rates, and pain scores at procedural time (VAS Time 0) and three months post-procedure (VAS Time 1). The statistical analyses included t-tests, Mann-Whitney U tests, and multiple regression. (3) Results: SIRIO-assisted procedures significantly reduced DLP (307.42 mGycm vs. 460.31 mGycm, p = 2.23 × 10-8) and procedural epidural dissection time (13.48 min vs. 32.26 min, p = 2.61 × 10-12) compared to non-SIRIO-assisted procedures. Multiple regression confirmed these reductions were significant (DLP: ß = -162.38, p < 0.001; time: ß = -18.25, p < 0.001). Pain scores (VAS Time 1) did not differ significantly between groups, and tumor type did not significantly influence outcomes. (4) Conclusions: The SIRIO system enhances neuroprotection efficacy and safety, reducing radiation dose and procedural time during spine tumoral ablation while maintaining consistent pain management outcomes.


Assuntos
Realidade Aumentada , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Neoplasias da Coluna Vertebral/cirurgia , Adulto , Neuroproteção , Técnicas de Ablação/métodos , Resultado do Tratamento
10.
Medicina (Kaunas) ; 60(9)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39336555

RESUMO

Background and Objectives: The recently published Spine Stereotactic Radiosurgery (SSRS) ESTRO guidelines advise against treating spinal metastatic disease with a single dose equal to or smaller than 18 Gy, prioritizing local control over the potential for complications. This study aims to assess the necessity and validity of these higher dose recommendations by evaluating the outcomes and experiences with lower radiation doses. Materials and Methods: A retrospective evaluation of SSRS patients treated at a single institute was conducted. The outcomes and complications of this cohort were compared to the current literature and the data supporting the new ESTRO guidelines. Results: A total of 149 treatment sessions involving 242 spinal levels were evaluated. The overall local control rate was 91.2%. The mean radiation dose for the local control group compared to the local failure group was similar (17.5 vs. 17.6 Gy, not significant). The overall complication rate was 6%. These results are consistent with previous publications evaluating SSRS for metastatic spinal disease. Conclusions: SSRS dose escalation may increase local control efficacy but comes with a higher risk of complications. The evidence supporting the strong recommendations in the recent ESTRO guidelines is not robust enough to justify a universal application. Given the palliative nature of treatment for metastatic patients, dose determination should be individualized based on patient conditions and preferences, with a detailed discussion about the risk-benefit ratio of increased doses and the level of evidence supporting these recommendations.


Assuntos
Radiocirurgia , Neoplasias da Coluna Vertebral , Humanos , Radiocirurgia/métodos , Radiocirurgia/efeitos adversos , Neoplasias da Coluna Vertebral/secundário , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/cirurgia , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Idoso de 80 Anos ou mais , Dosagem Radioterapêutica , Resultado do Tratamento
11.
Pediatr Radiol ; 54(11): 1896-1905, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39259301

RESUMO

BACKGROUND: Increased positron emission tomography (PET) scanner z-axis coverage provides an opportunity in pediatrics to reduce dose, anesthesia, or repeat scans due to motion. OBJECTIVE: Recently, our digital PET scanner was upgraded from a 25-cm to a 30-cm z-axis coverage. We compare the two systems through National Electrical Manufacturing Association (NEMA) testing and evaluation of paired images from patients scanned on both systems. MATERIALS AND METHODS: NEMA testing and a retrospective review of pediatric patients who underwent clinically indicated 18F-fluorodeoxyglucose (FDG) PET computed tomography (PET/CT) on both systems with unchanged acquisition parameters were performed. Image quality was assessed with liver signal to noise ratio (SNR-liver) and contrast to noise ratio (CNR) in the thigh muscle and liver with results compared with an unpaired t-test. Three readers independently reviewed paired (25 cm and 30 cm) images from the same patient, blinded to scanner configuration. RESULTS: Expansion to 30 cm increased system sensitivity to 29.8% (23.4 cps/kBq to 30.4 cps/kBq). Seventeen patients (6 male/11 female, median age 12.5 (IQR 8.3-15.0) years, median weight 53.7 (IQR 34.2-68.7) kg) were included. SNR-liver and CNR increased by 35.1% (IQR 19.0-48.4%) and 43.1% (IQR 6.2-50.2%) (P-value <0.001), respectively. All readers preferred images from the 30-cm configuration. A median of 1 (IQR 1-1) for fewer bed positions was required with the 30-cm configuration allowing a median of 91 (IQR 47-136) s for shorter scans. CONCLUSION: Increasing z-axis coverage from 25 to 30 cm on a current-generation digital PET scanner significantly improved PET system performance and patient image quality, and reduced scan duration.


Assuntos
Hospitais Pediátricos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Humanos , Estudos Retrospectivos , Criança , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Masculino , Feminino , Fluordesoxiglucose F18 , Adolescente , Razão Sinal-Ruído , Sensibilidade e Especificidade , Pré-Escolar
12.
Quant Imaging Med Surg ; 14(9): 6260-6272, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39281124

RESUMO

Background: Colorectal cancer (CRC) is commonly assessed by computed tomography (CT), but the associated radiation exposure is a major concern. This study aimed to quantitatively and qualitatively compare the image quality of virtual non-contrast (VNC) images reconstructed from arterial and portal venous phases with that of true non-contrast (TNC) images in patients with CRC to assess the potential of TNC images to replace VNC images, thereby reducing the radiation dose. Methods: A total of 69 patients with postoperative pathologically confirmed CRC at the West China Hospital of Sichuan University between May 2022 and April 2023 were enrolled in this cross-sectional study. The CT protocol included the acquisition of TNC images, arterial and portal venous phase images; the VNC images were reconstructed from the two postcontrast phase images. Several parameters, including the CT attenuation value, absolute attenuation error, imaging noise [standard deviation (SD)], signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR), were measured in multiple abdominal structures for both the TNC and VNC images. Two blinded readers assessed the subjective image quality using a five-point scale. Interobserver agreement was evaluated using interclass correlation coefficients (ICCs). The paired t-test and Wilcoxon signed-rank test were used to compare the objective and subjective results between the TNC and VNC images. Individual measurements of radiation doses for the TNC scan and contrast scan protocols were recorded. Results: A total of 2,070 regions of interest (ROIs) of the 69 patients were analyzed. Overall, the VNC images exhibited significantly lower attenuation values and SD values than the TNC images in all tissues, except for the abdominal aorta, portal vein, and spleen. The mean absolute attenuation errors between the VNC and TNC images were all less than 10 Hounsfield units (HU). The percentages of absolute attenuation errors less than 5 and 10 HU in the VNC images from the arterial phase (VNCa) were 78.99% and 97.97%, respectively, while those from the portal venous phase (VNCp) were 81.59% and 96.96%, respectively. The absolute attenuation errors between the TNC and VNCa images were smaller than those between the TNC and VNCp images for tumors [VNCaerror: 2.77, interquartile range (IQR) 1.77-4.22; VNCperror: 3.27, IQR 2.68-4.30; P=0.002]. The SNR values and CNR values in the VNC images were significantly higher than those in the TNC images for all tissues, except for the portal vein and spleen. The image quality was rated as excellent (represented by a score of 5) in the majority of the TNC and VNC images; however, the VNC images scored lower than the TNC images. Eliminating the TNC phase resulted in a reduction of approximately 37.99% in the effective dose (ED). Conclusions: The VNC images provided accurate CT attenuation, good image quality, and lower radiation doses than the TNC images in CRC, and the VNCa images showed minimal differences in the CT attenuation of the tumors.

13.
Asian Pac J Cancer Prev ; 25(9): 3269-3275, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39342606

RESUMO

BACKGROUND: There is growing evidence that local recurrence after radiotherapy often occurs within the dominant intraprostatic lesions (DILs) in prostate cancer. This study aimed to evaluate the dose difference between DILs defined by Magnetic Resonance-guided and arc-based Intensity Modulated Radiation Therapy (IMRT) and to assess the association between the dose difference and biochemical recurrence-free survival. MATERIALS AND METHODS: Between 2015 and 2019, 48 prostate cancer patients with DILs visible from multiparametric Magnetic Resonance Imaging (mpMRI) underwent arc-based IMRT with 70 Gy (2.5 Gy each fraction) to the prostate gland. Pretreatment mpMRI DILs contoured the prostate gland retrospectively. RESULTS: Biochemical recurrence was 8.3%. There was a significant difference between the median dose of DILs from MRI-guided imaging, 69.22 Gy, and the median dose of the whole prostate from arc-based IMRT which was 67.09 Gy (p < 0.001*). The Kaplan-Meier survival curve compared by log-rank test showed an escalation dose of at least 2 Gy tends to improve biochemical recurrence-free survival. However, this tendency did not reach statistical significance (p = 0.2). CONCLUSIONS: The dose distribution within DILs defined by mpMRI is significantly higher than the whole prostate dose from arc-based IMRT. Escalation doses in DILs tend to improve biochemical recurrence-free survival, further validation in larger patient cohorts with extended follow-up is warranted.


Assuntos
Recidiva Local de Neoplasia , Neoplasias da Próstata , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Radioterapia de Intensidade Modulada/métodos , Recidiva Local de Neoplasia/radioterapia , Recidiva Local de Neoplasia/patologia , Idoso , Estudos Retrospectivos , Pessoa de Meia-Idade , Prognóstico , Seguimentos , Imageamento por Ressonância Magnética/métodos , Radioterapia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Taxa de Sobrevida , Planejamento da Radioterapia Assistida por Computador/métodos , Próstata/patologia , Próstata/diagnóstico por imagem , Próstata/efeitos da radiação
14.
Neuroradiology ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243294

RESUMO

INTRODUCTION: The establishment of diagnostic reference levels (DRLs) is challenge for interventional neuroradiology (INR) due to the complexity and variability of its procedures. OBJECTIVE: The main objective of this systematic review is to analyse and compare DRLs in fluoroscopy-guided procedures in INR. METHODS: An observational study reporting DRLs in INR procedures, specifically cerebral arteriography, cerebral aneurysm embolisation, cerebral thrombectomy, embolisation of arteriovenous malformations (AVM), arteriovenous fistulas (AVF), retinoblastoma embolisation, and spinal cord arteriography. Comprehensive literature searches for relevant studies published between 2017 and 2023 were conducted using the Scopus, PubMed, and Web of Science databases. RESULTS: A total of 303 articles were identified through an extensive literature search, with 159 removed due to duplication. The title and abstract of 144 studies were assessed and excluded if they did not meet the inclusion criteria. Thirty-one out of the 144 articles were selected for a thorough full-text screening. Twenty-one articles were included in the review after the complete text screening. CONCLUSION: The different conditions of patients undergoing INR procedures pose a barrier to the standardization of DRLs; nevertheless, they are extremely important for monitoring and optimising radiological practices.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39222266

RESUMO

During the first half of the 20th century, it was commonly assumed that radiation-induced health effects occur only when the dose exceeds a certain threshold. This idea was discarded for stochastic effects when more knowledge was gained about the mechanisms of radiation-induced cancer. Currently, a key tenet of the international system of radiological protection is the linear no-threshold (LNT) model where the risk of radiation-induced cancer is believed to be directly proportional to the dose received, even at dose levels where the effects cannot be proven directly. The validity of the LNT approach has been questioned on the basis of a claim that only conclusions that can be verified experimentally or epidemiologically are scientific and LNT should, thus, be discarded because the system of radiological protection must be based on solid science. The aim of this publication is to demonstrate that the LNT concept can be tested in principle and fulfils the criteria of a scientific hypothesis. The fact that the system of radiological protection is also based on ethics does not render it unscientific either. One of the fundamental ethical concepts underlying the LNT model is the precautionary principle. We explain why it is the best approach, based on science and ethics (as well as practical experience), in situations of prevailing uncertainty.

16.
Acad Radiol ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39294053

RESUMO

RATIONALE AND OBJECTIVES: Traumatic neuroradiological emergencies necessitate rapid and accurate diagnosis, often relying on computed tomography (CT). However, the associated ionizing radiation poses long-term risks. Modern artificial intelligence reconstruction algorithms have shown promise in reducing radiation dose while maintaining image quality. Therefore, we aimed to evaluate the dose reduction capabilities of a deep learning-based denoising (DLD) algorithm in traumatic neuroradiological emergency CT scans. MATERIALS AND METHODS: This retrospective single-center study included 100 patients with neuroradiological trauma CT scans. Full-dose (100%) and low-dose (25%) simulated scans were processed using iterative reconstruction (IR2) and DLD. Subjective and objective image quality assessments were performed by four neuroradiologists alongside clinical endpoint analysis. Bayesian sensitivity and specificity were computed with 95% credible intervals. RESULTS: Subjective analysis showed superior scores for 100% DLD compared to 100% IR2 and 25% IR2 (p < 0.001). No significant differences were observed between 25% DLD and 100% IR2. Objective analysis revealed no significant CT value differences but higher noise at 25% dose for DLD and IR2 compared to 100% (p < 0.001). DLD exhibited lower noise than IR2 at both dose levels (p < 0.001). Clinical endpoint analysis indicated equivalence to 100% IR2 in fracture detection for all datasets, with sensitivity losses in hemorrhage detection at 25% IR2. DLD (25% and 100%) maintained comparable sensitivity to 100% IR2. All comparisons demonstrated robust specificity. CONCLUSIONS: The evaluated algorithm enables high-quality, fully diagnostic CT scans at 25% of the initial radiation dose and improves patient care by reducing unnecessary radiation exposure.

17.
Strahlenther Onkol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283341

RESUMO

OBJECTIVE: Radiation therapy is applied in the treatment of head and neck cancer patients. However, oral-health-related side effects like hyposalivation and a higher prevalence of caries have been shown. This study aims to assess the influence of different radiotherapy doses on the mechanical properties, roughness, superficial microstructure, and crystallinity of the enamel and dentin of human premolar teeth. METHODS: Specimens (n = 25) were categorized into five groups based on the radiation dose received (0, 10, 30, 50, and 70 Gy). The enamel and dentin of these specimens were subjected to a microhardness tester, profilometer, atomic force microscopy (AFM), scanning electron microscopy (SEM), and X­ray diffraction (XRD) before and after different irradiation doses and compared to hydroxylapatite in each group. The data were analyzed using repeated-measures analysis of variance (ANOVA). RESULTS: Therapeutic radiation doses of 30, 50, and 70 Gy led to a decrease in the microhardness and an increase in the average roughness of the enamel, and rougher surfaces were observed in the mixed three-dimensional images. Moreover, in the dentin, a similar outcome could be observed for more than 10 Gy. The main crystalline phase structure remained hydroxylapatite, but the crystallinity decreased and the crystalline size increased above 10 Gy. The superficial micromorphology revealed granulation, fissures, and cracks in a dose-dependent manner. Radiation below 70 Gy had little effect on the hydroxylapatite concentration during the whole experiment. CONCLUSION: Above a radiation dose of 30 Gy, the micromorphology of the tooth enamel changed. This occurred for dentin above 10 Gy, which indicates that dentin is more sensitive to radiotherapy than enamel. The radiation dose had an effect on the micromorphology of the hard tissues of the teeth. These results illustrate the possible mechanism of radiation-related caries and have guiding significance for clinical radiotherapy.

18.
Radiography (Lond) ; 30(6): 1517-1523, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303328

RESUMO

INTRODUCTION: Computed Tomography (CT) chest, abdomen and pelvis research demonstrates a relationship between vertical phantom positioning and radiation dose. Moving the phantom closer or further from the x-ray source results in magnification or minimisation of the localiser. As automatic tube current modulation (ATCM) algorithms use localisers to estimate patient size and calculate required tube current, magnification or minimisation results in the incorrect provision of radiation dose. Radiation dose changes also depend on localiser orientation, changes with anteroposterior (AP) and posteroanterior (PA) localisers demonstrating an inverse relationship. However, within CT head literature often attributes radiation dose changes on impaired function of the bow-tie filter instead. The current study investigated the role of miscentering on ATCM function within CT head, paying particular attention to localiser orientation. METHODS: Head scanning was performed with an anthropomorphic phantom at the isocentre, alongside ten vertically miscentered positions. This was performed three times, with an AP, PA and lateral localiser. CT dose index values at each miscentered level were compared across conditions. RESULTS: Vertical miscentering altered radiation dose in both AP and PA conditions, radiation dose linearly increasing (up to 17.05%) when positioning the phantom closer to the x-ray source and decreasing when positioning away (up to -13.13%). Changes across AP and PA conditions demonstrated an inverse relationship. Radiation dose was unaffected in the lateral condition. CONCLUSIONS: Miscentering during CT head alters ATCM function due to magnification/minimisation of the localiser image, causing ATCM algorithms to misinterpret patient size and miscalculate required tube current. IMPLICATIONS FOR PRACTICE: Radiographers should be accurate when centering for CT head, avoiding any potential radiation dose changes. Further research into vertical miscentering and image quality during CT head is recommended.

19.
Heliyon ; 10(17): e37043, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39295996

RESUMO

Objectives: Medical devices based on X-ray imaging, such as computed tomography, are considered notable sources of artificial radiation. The aim of this study was to compare the computed tomography dose volume index, the dose length product, and the effective dose of the brain non-contrast enhanced examination on two CT scanners to determine the current state in terms of radiation doses, compare doses to the reference values, and possibly optimize the examination. Materials and methods: Data from January 2020 to the second half of 2021 were retrospectively obtained by accessing dose reports from the Picture Archiving and Communication System (PACS). Data were collected and analyzed in Microsoft Excel. The effective dose was estimated using the dose-length product parameter and the normalized conversion factor for a given anatomical region. For statistical analysis, a two-sample t-test was used. Results: The first data set consists of 200 patients (100 and 100 for older and newer CT scanners) regardless of the scan technique; the average CTDIvol and DLP for the older CT scanner were 57.61 ± 2.89 mGy and 993.28 ± 146.18 mGy cm, and for the newer CT scanner, 43.66 ± 11.15 mGy and 828.14 ± 130.06 mGy cm. The second data set consists of 100 patients (50 for the older CT scanner and 50 for the newer CT scanner) for a sequential scan; the average CTDIvol and DLP for the older CT scanner were 58.63 ± 3.33 mGy and 949.42 ± 80.87 mGy.cm, and for the newer CT, 57.25 ± 3.4 mGy and 942.13 ± 73.05 mGy cm. The third data set consists of 40 patients (20 and 20 for older and newer CT scanners) for the helical scan - the average CTDIvol and DLP for the older CT scanner were 54.6 ± 0 mGy and 1252.2 ± 52.11 mGy.cm, and for the newer CT, 37.18 ± 2.52 mGy and 859.66 ± 72.04 mGy cm. The difference between the older and newer CT scanners in terms of dose reduction was approximately 30 % in favor of the newer scanner for noncontrast enhanced brain examinations performed using the helical scan technique. Conclusion: A non-contrast enhanced brain examination scanned with newer CT equipment was associated with a lower radiation burden on the patient.

20.
Diagnostics (Basel) ; 14(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39272773

RESUMO

Purpose: This study evaluates a deep learning-based denoising algorithm to improve the trade-off between radiation dose, image noise, and motion artifacts in TIPSS procedures, aiming for shorter acquisition times and reduced radiation with maintained diagnostic quality. Methods: In this retrospective study, TIPSS patients were divided based on CBCT acquisition times of 6 s and 3 s. Traditional weighted filtered back projection (Original) and an AI denoising algorithm (AID) were used for image reconstructions. Objective assessments of image quality included contrast, noise levels, and contrast-to-noise ratios (CNRs) through place-consistent region-of-interest (ROI) measurements across various critical areas pertinent to the TIPSS procedure. Subjective assessments were conducted by two blinded radiologists who evaluated the overall image quality, sharpness, contrast, and motion artifacts for each dataset combination. Statistical significance was determined using a mixed-effects model (p ≤ 0.05). Results: From an initial cohort of 60 TIPSS patients, 44 were selected and paired. The mean dose-area product (DAP) for the 6 s acquisitions was 5138.50 ± 1325.57 µGy·m2, significantly higher than the 2514.06 ± 691.59 µGym2 obtained for the 3 s series. CNR was highest in the 6 s-AID series (p < 0.05). Both denoised and original series showed consistent contrast for 6 s and 3 s acquisitions, with no significant noise differences between the 6 s Original and 3 s AID images (p > 0.9). Subjective assessments indicated superior quality in 6 s-AID images, with no significant overall quality difference between the 6 s-Original and 3 s-AID series (p > 0.9). Conclusions: The AI denoising algorithm enhances CBCT image quality in TIPSS procedures, allowing for shorter scans that reduce radiation exposure and minimize motion artifacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA