Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Econ ; 27(1): 51-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38014443

RESUMO

Aims: Point-of-care electroencephalogram (POC-EEG) is an acute care bedside screening tool for the identification of nonconvulsive seizures (NCS) and nonconvulsive status epilepticus (NCSE). The objective of this narrative review is to describe the economic themes related to POC-EEG in the United States (US).Materials and methods: We examined peer-reviewed, published manuscripts on the economic findings of POC-EEG for bedside use in US hospitals, which included those found through targeted searches on PubMed and Google Scholar. Conference abstracts, gray literature offerings, frank advertisements, white papers, and studies conducted outside the US were excluded.Results: Twelve manuscripts were identified and reviewed; results were then grouped into four categories of economic evidence. First, POC-EEG usage was associated with clinical management amendments and antiseizure medication reductions. Second, POC-EEG was correlated with fewer unnecessary transfers to other facilities for monitoring and reduced hospital length of stay (LOS). Third, when identifying NCS or NCSE onsite, POC-EEG was associated with greater reimbursement in Medical Severity-Diagnosis Related Group coding. Fourth, POC-EEG may lower labor costs via decreasing after-hours requests to EEG technologists for conventional EEG (convEEG).Limitations: We conducted a narrative review, not a systematic review. The studies were observational and utilized one rapid circumferential headband system, which limited generalizability of the findings and indicated publication bias. Some sample sizes were small and hospital characteristics may not represent all US hospitals. POC-EEG studies in pediatric populations were also lacking. Ultimately, further research is justified.Conclusions: POC-EEG is a rapid screening tool for NCS and NCSE in critical care and emergency medicine with potential financial benefits through refining clinical management, reducing unnecessary patient transfers and hospital LOS, improving reimbursement, and mitigating burdens on healthcare staff and hospitals. Since POC-EEG has limitations (i.e. no video component and reduced montage), the studies asserted that it did not replace convEEG.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Estado Epiléptico , Criança , Humanos , Convulsões , Estado Epiléptico/diagnóstico , Estado Epiléptico/tratamento farmacológico , Eletroencefalografia/métodos , Cuidados Críticos/métodos
2.
Front Neurol ; 13: 1087969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530612

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, elective and non-emergent tests and procedures were delayed or suspended in lieu of diverting resources to more emergent treatment of critically ill patients and to avoid the spread and contraction of COVID-19. Further, the workforce was stretched thin, and healthcare facilities saw high turnover rates for full-time and contract employees, which strained the system and reduced the ability to provide clinical services. One of the casualties of these changes was electroencephalography (EEG) procedures, which have been performed less frequently throughout the world since the pandemic. Whether considered routine or emergent, the deferral of EEG studies can cause downstream effects, including a delay in diagnosis and initiation of treatment for epilepsy and non-epileptic seizures resulting in a higher risk of morbidity and mortality. Despite these limitations, the importance and utility of EEG and EEG technologists have been reinforced with the development of COVID-related neurological complications, including encephalopathy and seizures, which require EEG for diagnosis and treatment. Since the pandemic, reliance on remote telemonitoring has further highlighted the value and ease of using EEG. There has also been a heightened interest in rapid EEG devices that non-technologist professionals can attach quickly, allowing minimum patient contact to avoid exposure to COVID-19 and taking advantage of remote EEG monitoring. This review discusses the acute and potential long-term effects of the COVID-19 pandemic on the use and performance of EEG.

3.
Curr Neurol Neurosci Rep ; 20(9): 42, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32715371

RESUMO

PURPOSE OF REVIEW: Acute brain injury (ABI) is a broad category of pathologies, including traumatic brain injury, and is commonly complicated by seizures. Electroencephalogram (EEG) studies are used to detect seizures or other epileptiform patterns. This review seeks to clarify EEG findings relevant to ABI, explore practical barriers limiting EEG implementation, discuss strategies to leverage EEG monitoring in various clinical settings, and suggest an approach to utilize EEG for triage. RECENT FINDINGS: Current literature suggests there is an increased morbidity and mortality risk associated with seizures or patterns on the ictal-interictal continuum (IIC) due to ABI. Further, increased use of EEG is associated with better clinical outcomes. However, there are many logistical barriers to successful EEG implementation that prohibit its ubiquitous use. Solutions to these limitations include the use of rapid EEG systems, non-expert EEG analysis, machine learning algorithms, and the incorporation of EEG data into prognostic models.


Assuntos
Lesões Encefálicas , Convulsões , Eletroencefalografia , Humanos , Prognóstico , Convulsões/diagnóstico , Convulsões/etiologia
4.
Sensors (Basel) ; 19(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934931

RESUMO

We developed a new type of electroencephalogram (EEG) headset system with comb-shaped electrodes that enables the wearer to quickly don and utilize it in daily life. Two models that can measure EEG signals using up to eight channels have been implemented. The electrodes implemented in the headsets are similar to a comb and are placed quickly by wiping the hair (as done with a comb) using the headset. To verify this headset system, donning time was measured and three brain computer interface (BCI) application experiments were conducted. Alpha rhythm-based, steady-state visual evoked potential (SSVEP)-based, and auditory steady state response (ASSR)-based BCI systems were adopted for the validation experiments. Four subjects participated and ten trials were repeated in the donning experiment. The results of the validation experiments show that reliable EEG signal measurement is possible immediately after donning the headsets without any preparation. It took approximately 10 s for healthy subjects to don the headsets, including an earclip with reference and ground electrodes. The results of alpha rhythm-based BCI showed 100% accuracy. Furthermore, the results of SSVEP-based and ASSR-based BCI experiments indicate that performance is sufficient for BCI applications; 95.7% and 76.0% accuracies were obtained, respectively. The results of BCI paradigm experiments indicate that the new headset type is feasible for various BCI applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA