Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475056

RESUMO

In this paper, an improved APF-GFARRT* (artificial potential field-guided fuzzy adaptive rapidly exploring random trees) algorithm based on APF (artificial potential field) guided sampling and fuzzy adaptive expansion is proposed to solve the problems of weak orientation and low search success rate when randomly expanding nodes using the RRT (rapidly exploring random trees) algorithm for disinfecting robots in the dense environment of disinfection operation. Considering the inherent randomness of tree growth in the RRT* algorithm, a combination of APF with RRT* is introduced to enhance the purposefulness of the sampling process. In addition, in the context of RRT* facing dense and restricted environments such as narrow passages, adaptive step-size adjustment is implemented using fuzzy control. It accelerates the algorithm's convergence and improves search efficiency in a specific area. The proposed algorithm is validated and analyzed in a specialized environment designed in MATLAB, and comparisons are made with existing path planning algorithms, including RRT, RRT*, and APF-RRT*. Experimental results show the excellent exploration speed of the improved algorithm, reducing the average initial path search time by about 46.52% compared to the other three algorithms. In addition, the improved algorithm exhibits faster convergence, significantly reducing the average iteration count and the average final path cost by about 10.01%. The algorithm's enhanced adaptability in unique environments is particularly noteworthy, increasing the chances of successfully finding paths and generating more rational and smoother paths than other algorithms. Experimental results validate the proposed algorithm as a practical and feasible solution for similar problems.

2.
Sensors (Basel) ; 23(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299899

RESUMO

The search efficiency of a rapidly exploring random tree (RRT) can be improved by introducing a high-probability goal bias strategy. In the case of multiple complex obstacles, the high-probability goal bias strategy with a fixed step size will fall into a local optimum, which reduces search efficiency. Herein, a bidirectional potential field probabilistic step size rapidly exploring random tree (BPFPS-RRT) was proposed for the path planning of a dual manipulator by introducing a search strategy of a step size with a target angle and random value. The artificial potential field method was introduced, combining the search features with the bidirectional goal bias and the concept of greedy path optimization. According to simulations, taking the main manipulator as an example, compared with goal bias RRT, variable step size RRT, and goal bias bidirectional RRT, the proposed algorithm reduces the search time by 23.53%, 15.45%, and 43.78% and decreases the path length by 19.35%, 18.83%, and 21.38%, respectively. Moreover, taking the slave manipulator as another example, the proposed algorithm reduces the search time by 6.71%, 1.49%, and 46.88% and decreases the path length by 19.88%, 19.39%, and 20.83%, respectively. The proposed algorithm can be adopted to effectively achieve path planning for the dual manipulator.

3.
Sensors (Basel) ; 21(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696120

RESUMO

In order to solve the problems of long path planning time and large number of redundant points in the rapidly-exploring random trees algorithm, this paper proposed an improved algorithm based on the parent point priority determination strategy and the real-time optimization strategy to optimize the rapidly-exploring random trees algorithm. First, in order to shorten the path-planning time, the parent point is determined before generating a new point, which eliminates the complicated process of traversing the random tree to search the parent point when generating a new point. Second, a real-time optimization strategy is combined, whose core idea is to compare the distance of a new point, its parent point, and two ancestor points to the target point when a new point is generated, choosing the new point that is helpful for the growth of the random tree to reduce the number of redundant points. Simulation results of 3-dimensional path planning showed that the success rate of the proposed algorithm, which combines the strategy of parent point priority determination and the strategy of real-time optimization, was close to 100%. Compared with the rapidly-exploring random trees algorithm, the number of points was reduced by more than 93.25%, the path planning time was reduced by more than 91.49%, and the path length was reduced by more than 7.88%. The IRB1410 manipulator was used to build a test platform in a laboratory environment. The path obtained by the proposed algorithm enables the manipulator to safely avoid obstacles to reach the target point. The conclusion can be made that the proposed strategy has a better performance on optimizing the success rate, the number of points, the planning time, and the path length.


Assuntos
Algoritmos , Simulação por Computador , Robótica , Tempo
4.
Molecules ; 26(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923805

RESUMO

To understand how proteins function on a cellular level, it is of paramount importance to understand their structures and dynamics, including the conformational changes they undergo to carry out their function. For the aforementioned reasons, the study of large conformational changes in proteins has been an interest to researchers for years. However, since some proteins experience rapid and transient conformational changes, it is hard to experimentally capture the intermediate structures. Additionally, computational brute force methods are computationally intractable, which makes it impossible to find these pathways which require a search in a high-dimensional, complex space. In our previous work, we implemented a hybrid algorithm that combines Monte-Carlo (MC) sampling and RRT*, a version of the Rapidly Exploring Random Trees (RRT) robotics-based method, to make the conformational exploration more accurate and efficient, and produce smooth conformational pathways. In this work, we integrated the rigidity analysis of proteins into our algorithm to guide the search to explore flexible regions. We demonstrate that rigidity analysis dramatically reduces the run time and accelerates convergence.


Assuntos
Proteínas/química , Algoritmos , Animais , Biologia Computacional , Humanos , Conformação Proteica
5.
Sensors (Basel) ; 21(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806992

RESUMO

Safe path planning for obstacle avoidance in autonomous vehicles has been developed. Based on the Rapidly Exploring Random Trees (RRT) algorithm, an improved algorithm integrating path pruning, smoothing, and optimization with geometric collision detection is shown to improve planning efficiency. Path pruning, a prerequisite to path smoothing, is performed to remove the redundant points generated by the random trees for a new path, without colliding with the obstacles. Path smoothing is performed to modify the path so that it becomes continuously differentiable with curvature implementable by the vehicle. Optimization is performed to select a "near"-optimal path of the shortest distance among the feasible paths for motion efficiency. In the experimental verification, both a pure pursuit steering controller and a proportional-integral speed controller are applied to keep an autonomous vehicle tracking the planned path predicted by the improved RRT algorithm. It is shown that the vehicle can successfully track the path efficiently and reach the destination safely, with an average tracking control deviation of 5.2% of the vehicle width. The path planning is also applied to lane changes, and the average deviation from the lane during and after lane changes remains within 8.3% of the vehicle width.

6.
Sensors (Basel) ; 19(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818870

RESUMO

Information gathering (IG) algorithms aim to intelligently select a mobile sensor actions required to efficiently obtain an accurate reconstruction of a physical process, such as an occupancy map, or a magnetic field. Many recent works have proposed algorithms for IG that employ Gaussian processes (GPs) as underlying model of the process. However, most algorithms discretize the state space, which makes them computationally intractable for robotic systems with complex dynamics. Moreover, they are not suited for online information gathering tasks as they assume prior knowledge about GP parameters. This paper presents a novel approach that tackles the two aforementioned issues. Specifically, our approach includes two intertwined steps: (i) a Rapidly-Exploring Random Tree (RRT) search that allows a robot to identify unvisited locations, and to learn the GP parameters, and (ii) an RRT*-based informative path planning that guides the robot towards those locations by maximizing the information gathered while minimizing path cost. The combination of the two steps allows an online realization of the algorithm, while eliminating the need for discretization. We demonstrate that our proposed algorithm outperforms state-of-the-art both in simulations, and in a lab experiment in which a ground-based robot explores the magnetic field intensity within an indoor environment populated with obstacles.

7.
J Comput Chem ; 37(8): 739-52, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26714673

RESUMO

The number of local minima of the potential energy landscape (PEL) of molecular systems generally grows exponentially with the number of degrees of freedom, so that a crucial property of PEL exploration algorithms is their ability to identify local minima, which are low lying and diverse. In this work, we present a new exploration algorithm, retaining the ability of basin hopping (BH) to identify local minima, and that of transition based rapidly exploring random trees (T-RRT) to foster the exploration of yet unexplored regions. This ability is obtained by interleaving calls to the extension procedures of BH and T-RRT, and we show tuning the balance between these two types of calls allows the algorithm to focus on low lying regions. Computational efficiency is obtained using state-of-the art data structures, in particular for searching approximate nearest neighbors in metric spaces. We present results for the BLN69, a protein model whose conformational space has dimension 207 and whose PEL has been studied exhaustively. On this system, we show that the propensity of our algorithm to explore low lying regions of the landscape significantly outperforms those of BH and T-RRT.


Assuntos
Algoritmos , Proteínas/química , Inteligência Artificial , Biologia Computacional , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA