Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Nucl Med ; 63(1): 51-56, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33990404

RESUMO

In penile squamous cell carcinoma (pSCC), primary surgery aims to obtain oncologically safe margins while minimizing mutilation. Surgical guidance provided by receptor-specific tracers could potentially improve margin detection and reduce unnecessary excision of healthy tissue. Here, we present the first results of a prospective feasibility study for real-time intraoperative visualization of pSCC using a fluorescent mesenchymal-epithelial transition factor (c-MET) receptor targeting tracer (EMI-137). Methods: EMI-137 tracer performance was initially assessed ex vivo (n = 10) via incubation of freshly excised pSCC in a solution containing EMI-137 (500 nM). The in vivo potential of c-MET targeting and intraoperative tumor visualization was assessed after intravenous administration of EMI-137 to 5 pSCC patients scheduled for surgical resection using a cyanine-5 fluorescence camera. Fluorescence imaging results were related to standard pathologic tumor evaluation and c-MET immunohistochemistry. Three of the 5 in vivo patients also underwent a sentinel node resection after local administration of the hybrid tracer indocyanine green- 99mTc-nanocolloid, which could be imaged using a near-infrared fluorescence camera. Results: No tracer-related adverse events were encountered. Both ex vivo and in vivo, EMI-137 enabled c-MET-based tumor visualization in all patients. Histopathologic analyses showed that all pSCCs expressed c-MET, with expression levels of at least 70% in 14 of 15 patients. Moreover, the highest c-MET expression levels were seen on the outside rim of the tumors, and a visual correlation was found between c-MET expression and fluorescence signal intensity. No complications were encountered when combining primary tumor targeting with lymphatic mapping. As such, simultaneous use of cyanine-5 and indocyanine green in the same patient proved to be feasible. Conclusion: Fluorescence imaging of c-MET receptor- expressing pSCC tumors after intravenous injection of EMI-137 was shown to be feasible and can be combined with fluorescence-based lymphatic mapping. This combination is unique and paves the way toward further development of this surgical guidance approach.


Assuntos
Verde de Indocianina
2.
Front Oncol ; 11: 674083, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277418

RESUMO

Cancer surgery remains the primary treatment option for most solid tumors and can be curative if all malignant cells are removed. Surgeons have historically relied on visual and tactile cues to maximize tumor resection, but clinical data suggest that relapse occurs partially due to incomplete cancer removal. As a result, the introduction of technologies that enhance the ability to visualize tumors in the operating room represents a pressing need. Such technologies have the potential to revolutionize the surgical standard-of-care by enabling real-time detection of surgical margins, subclinical residual disease, lymph node metastases and synchronous/metachronous tumors. Fluorescence-guided surgery (FGS) in the near-infrared (NIRF) spectrum has shown tremendous promise as an intraoperative imaging modality. An increasing number of clinical studies have demonstrated that tumor-selective FGS agents can improve the predictive value of fluorescence over non-targeted dyes. Whereas NIRF-labeled macromolecules (i.e., antibodies) spearheaded the widespread clinical translation of tumor-selective FGS drugs, peptides and small-molecules are emerging as valuable alternatives. Here, we first review the state-of-the-art of promising low molecular weight agents that are in clinical development for FGS; we then discuss the significance, application and constraints of emerging tumor-selective FGS technologies.

3.
Mol Imaging Biol ; 22(2): 377-383, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31292915

RESUMO

PURPOSE: Neuroendocrine tumors (NETs) have reasonably high 5-year survival rates when diagnosed at an early stage but are significantly more lethal when discovered only after metastasis. Although several imaging modalities such as computed tomography (CT), positron emission tomography, and magnetic resonance imaging can detect neuroendocrine tumors, their high false positive rates suggest that more specific diagnostic tests are required. Targeted imaging agents such as Octreoscan® have met some of this need for improved specificity, but their inability to image poorly differentiated NETs suggests that improved NET imaging agents are still needed. Because neurokinin 1 receptors (NK1Rs) are widely over-expressed in neuroendocrine tumors, but show limited expression in healthy tissues, we have undertaken to develop an NK1R-targeted imaging agent for improved diagnosis and staging of neuroendocrine tumors. PROCEDURE: A small molecule NK1R antagonist was conjugated via a flexible spacer to a Tc-99m chelating peptide. After complexation with Tc-99m, binding of the conjugate to human embryonic kidney (HEK293) cells transfected with the human NK1R was evaluated as a function of radioimaging agent concentration. In vivo imaging of HEK293-NK1R tumor xenografts in mice was also performed by single-photon emission computed tomography/computed tomography (γ-SPECT/CT), and the distribution of the conjugate in various tissues was quantified by tissue resection and γ-counting. RESULTS: NK1R-targeted Tc-99m-based radioimaging agent displayed excellent affinity (Kd = 16.8 nM) and specificity for HEK293-NK1R tumor xenograft. SPECT/CT analysis of tumor-bearing mice demonstrated significant tumor uptake and high tumor to background ratio as early as 2 h post injection. CONCLUSION: The excellent tumor contrast afforded by our NK1R-targeted radioimaging agent exhibits properties that could improve early diagnosis and staging of many neuroendocrine tumors.


Assuntos
Tumores Neuroendócrinos/diagnóstico por imagem , Receptores da Neurocinina-1/química , Tecnécio/química , Animais , Quelantes/química , Reações Falso-Positivas , Feminino , Células HEK293 , Humanos , Ligantes , Camundongos , Camundongos Nus , Transplante de Neoplasias , Peptídeos/química , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Somatostatina/análogos & derivados , Tomografia Computadorizada por Raios X
4.
J Fluoresc ; 27(5): 1897-1908, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28667371

RESUMO

The authors report Ho3+ ion incorporated and fluorescent dye-doped silica nanoparticles which are engineered to enable the imaging modalities of receptor targeted fluorescence imaging (FI) and magnetic resonance imaging (MRI). The silica nanoparticles synthesized through a modified Stöber method is luminomagnetic by virtue of the luminescence of organic dye fluorophore (FITC) and magnetism of Ho3+. The doping concentration of Ho3+ is estimated by inductively coupled plasma mass spectrometry (ICP-MS) as 0.97%. The presence of Ho3+ has a little effect on the luminescence intensity but impart strong paramagnetism of 27.217 emu/g at room temperature. The relaxivity measurements shown that the nanoparticles exhibit a longitudinal relaxivity (r1) of 0.12 s-1 mM-1 and transverse relaxivity (r2) of 26.96 s-1 mM-1, which makes the system potentially suitable for developing T2 MRI contrast agents based on holmium. The luminomagnetic nanoparticles were surface engineered through aminization and conjugated with folic acid (FA) to address the folate receptor targeted imaging of the cancer cells. The biocompatibility studies revealed no apparent toxicity even at higher doses of 750 µg/mL and at 48 h of incubation. The as prepared nanoparticles were demonstrated as a bioimaging probe in the in vitro receptor targeted fluorescence imaging of HeLa cells. The luminescence and magnetism together with biocompatibility enables the adaptability of the present system as a nano platform for potential bimodal imaging. Graphical Abstract ᅟ.


Assuntos
Corantes Fluorescentes/química , Receptores de Folato com Âncoras de GPI/metabolismo , Hólmio/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas/química , Imagem Molecular/métodos , Dióxido de Silício/química , Fluorescência , Ácido Fólico/metabolismo , Células HeLa , Humanos , Células MCF-7 , Microscopia de Fluorescência/métodos
5.
Biomaterials ; 34(36): 9149-59, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23998858

RESUMO

Receptor-targeted imaging is emerging as a promising strategy for diagnosis of human cancer. Herein, we developed an epidermal growth factor-based nanoprobe (EGF-NP) for in vivo optical imaging of epidermal growth factor receptor (EGFR), an important target for cancer imaging. The self-quenched EGF-NP is fabricated by sequentially conjugating a near-infrared (NIR) fluorophore (Cy5.5) and a quencher (BHQ-3) to EGF, a low-molecular weight polypeptide (6.2 kDa), compared to EGFR antibody (150 kDa). The self-quenched EGF-NP presented great specificity to EGFR, and rapidly internalized into the cells, as monitored by time-lapse imaging. Importantly, the self-quenched EGF-NP boosted strong fluorescence signals upon EGFR-targeted uptake into EGFR-expressing cells, followed by lysosomal degradation, as confirmed by lysosomal marker cell imaging. Consistent with cellular results, intravenous injection of EGF-NP into tumor-bearing mice induced strong NIR fluorescence intensity in the target tumor tissue with high specificity against EGFR-expressing cancer cells. Signal accumulation of EGF-NP in tumor was much faster than that of EGFR monoclonal antibody (Cetuximab)-Cy5.5 conjugates due to the rapid clearance from the body and tissue permeability of low-molecular weight EGF. This self-quenched, EGF-based imaging probe can be applied for diagnosis of various cancers.


Assuntos
Diagnóstico por Imagem/métodos , Fator de Crescimento Epidérmico , Receptores ErbB/metabolismo , Nanopartículas , Neoplasias/diagnóstico , Animais , Linhagem Celular Tumoral , Fluorescência , Humanos , Espaço Intracelular/metabolismo , Camundongos , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA