Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Adv Sci (Weinh) ; 11(31): e2404301, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38887210

RESUMO

Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non-metallic reductant in mediating Ni-catalyzed C(sp3)-C(sp2) reductive cross-coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono-functionalization of diols and bio-relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross-electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond-forming methodologies that can otherwise be difficult to achieve with a metal reductant.

2.
Sci Rep ; 14(1): 10818, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734772

RESUMO

This study focuses on the effect of an emerging source of waste, lithium iron phosphate (LFP) cathode materials, on the hydrometallurgical recycling of the currently dominant industrial battery waste that is rich in transition metals (Ni, Co, Mn, and Li). The effects of the dosage of LFP, initial acidity, and timing of LFP reductant addition were investigated in sulfuric acid (H2SO4) leaching (t = 3 h, T = 60 °C, ω = 300 rpm). The results showed that addition of LFP increased both transition metal extraction and acid consumption. Further, the redox potential was lowered due to the increased presence of Fe2+. An initial acidity of 2.0 mol/L H2SO4 with acid consumption of 1.3 kg H2SO4/kg black mass provided optimal conditions for achieving a high leaching yield (Co = 100%, Ni = 87.6%, Mn = 91.1%, Li = 100%) and creating process solutions (Co 8.8 g/L, Ni 13.8 g/L, Li 6.7 g/L, Mn 7.6 g/L, P 12.1 g/L) favorable for subsequent hydrometallurgical processing. Additionally, the overall efficiency of H2O2 decreased due to its decomposition by high concentrations of Fe2+ and Mn2+ when H2O2 was added after t = 2 h, leading to only a minor increase in final battery metals extraction levels.

3.
Sensors (Basel) ; 24(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276349

RESUMO

Electrochemical sensors have been used for many decades. However, the modeling of such sensors used in electrolysis mode is poorly documented, especially in the case of multiple gases' parallel actions. These are of great interest since they constitute the first brick to bring information on the natures and concentrations of gaseous mixture compositions, thanks to gray box modeling of sensor arrays, for example. Based on Butler-Volmer's equations, a model assuming parallel reactions at gold cathode has been introduced in this article and confronted with experimental results. The establishment of the model is based on the extraction of three variables: the charge transfer coefficient "α", the reaction order γ, and the reaction constant rate k0. Tests performed without pollutants and with different concentrations of oxygen could be nicely fitted using the model. The influence of the polarization current on the three variables of the model has been evaluated, showing a clear influence on the constant rate and the reaction order. Moreover, increasing the polarization current enabled us to obtain selectivity for oxidant gases. Similarly, the effect of the oxygen concentration was evaluated. Results showed that, in this case, the charge transfer coefficients "α" obtained for oxidant gases are quite different from the ones obtained in the polarization current varying conditions. Therefore, the model will be interesting in situations where polarization current and oxygen content are not varied together. Variation of polarization current can be quite interesting to obtain increased information for multivariate analysis purposes in constant oxygen content situations. Additionally, other parameters have to be considered for applications in which the oxygen content is bound to change, such as exhaust gases or combustion.

4.
Environ Sci Pollut Res Int ; 31(2): 1863-1889, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38063964

RESUMO

Advanced oxidation/reduction processes (AO/RPs) are considered as effective water treatment technologies and thus could be used to solve the problem of water pollution. These technologies of wastewater treatment involve the production of highly reactive species such as •OH, H•, e-aq, SO4•-, and SO3•-. These radicals can attack the targeted contaminants present in aqueous media and result in their destruction. The efficiency of AO/RPs is highly affected by various operational parameters such as initial concentration of contaminant, solution pH, catalyst amount, intensity of light source, nature of oxidant and reductant used, and the presence of various ionic species in aquatic media. Among AO/RPs, the solar light-based AO/RPs are most widely used nowadays for contaminant removal from aqueous media because of their high environmental friendliness and cost effectiveness. By using these techniques, almost all types of pollutants can be easily removed from aquatic media within short intervals of time, and hence, the problem of water pollution can be solved effectively. This review focuses on various AO/RPs used for wastewater treatment. The effects of different operational parameters that affect the efficiency of these processes toward contaminant removal have been discussed. Besides, challenges and future recommendations are also briefly provided for the researchers in order to improve the efficiency of these processes.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Oxirredução , Luz Solar , Purificação da Água/métodos , Catálise , Poluentes Químicos da Água/análise
5.
Materials (Basel) ; 16(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37959642

RESUMO

Groundwater contamination by trichloroethylene (TCE) presents a pressing environmental challenge with far-reaching consequences. Traditional remediation methods have shown limitations in effectively addressing TCE contamination. This study reviews the limitations of conventional remediation techniques and investigates the application of oxidant-based controlled-release materials, including encapsulated, loaded, and gel-based potassium permanganate since the year 2000. Additionally, it examines reductant controlled-release materials and electron donor-release materials such as tetrabutyl orthosilicate (TBOS) and polyhydroxybutyrate (PHB). The findings suggest that controlled-release materials offer a promising avenue for enhancing TCE degradation and promoting groundwater restoration. This study concludes by highlighting the future research directions and the potential of controlled-release materials in addressing TCE contamination challenges.

6.
Materials (Basel) ; 16(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629985

RESUMO

Cu-containing hierarchical SAPO-34 catalysts were synthesized by the bottom-up method using different mesoporogen templates: CTAB encapsulated within ordered mesoporous silica nanoparticles (MSNs) and sucrose. A high fraction of the Cu centers exchanged in the hierarchical SAPO-34 architecture with high mesopore surface area and volume was achieved when CTAB was embedded within ordered mesoporous silica nanoparticles. Physicochemical characterization was performed by using structural and spectroscopic techniques to elucidate the properties of hierarchical SAPO-34 before and after Cu introduction. The speciation of the Cu sites, investigated by DR UV-Vis, and the results of the catalytic tests indicated that the synergy between the textural properties of the hierarchical SAPO-34 framework, the high Cu loading, and the coordination and localization of the Cu sites in the hierarchical architecture is the key point to obtaining good preliminary results in the NO selective catalytic reduction with hydrocarbons (HC-SCR).

7.
J Colloid Interface Sci ; 652(Pt A): 1006-1015, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37639923

RESUMO

Designing Pt-skin on the catalyst surface is critical to developing efficient and stable electrocatalysts toward oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. In this paper, an acidic reductant is proposed to synchronously manipulate in-situ growth of Pt-skin on the surface of alloyed Pt-Cu nanospheres (PtCuNSs) by a facile one-pot synthesis in an aqueous solution. Ascorbic acid can create a Pt-skin of three atomic layers to make the typical PtCu-alloy@Pt-skin core/shell nanostructure rather than the uniform alloys generated by using alkaline reductants. Surfactant as soft-template can make the alloyed PtCuNSs with a three-dimensional porous network structure. Multiple characterizations of XRD, XPS and XAFS are used to confirm Pt-alloying with Cu and formation of core/shell structure of such a catalyst. This PtCuNSs/C exhibits a half-wave potential of 0.913 V (vs. RHE), with mass activity and specific activity about 3.5 and 6.4 times higher than those of Pt/C, respectively. Fuel cell tests verify the excellent activity of PtCuNSs/C catalyst with a maximum power density of about 1.2 W cm-2. Moreover, this catalyst shows excellent stability, achieving a long-term operation of 40,000 cycles. Furthermore, theoretical calculations reveal the enhancement effect of characteristic PtCu-alloy@Pt-skin nanostructure on both catalytic ORR activity and stability.

8.
Nanotechnology ; 34(39)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37356427

RESUMO

An innovative Pd-Me (Pd-Cu, Pd-In and Pd-Sn) bimetallic catalyst supported on porous chelating DOWEX M4195 resin (D) was established to reduce the nitrate almost entirely and achieved high selectivity to the expected harmless form of nitrogen. In this study, sodium borohydride (NaBH4) was applied in preparing bimetallic catalysts by liquid-phase reduction as the prestoring reductant. Pd-In/D and Pd-Sn/D groups performed well in N2selectivity (all above 97%). In addition, Pd-In and Pd-Sn bimetallic catalysis yields higher selectivity towards N2than the Pd-Cu pair in the presence of HCO3-, Cl-, SO42-and humic acid. Likewise, in terms of N2selectivity, Pd-In/D and Pd-Sn/D bimetallic catalysts were superior to that of Pd-Cu/D (72.16%) in the municipal wastewater treatment plant sewage. The current results provide insight into the superb reactivity, excellent stability, and most important-extremely high harmless N2selectivity of Pd-In and Pd-Sn-based bimetallic catalysts in practical application and provide new ideas for enhancing the feasibility of the catalytic reduction of nitrate by minimizing environmentally harmful by-products.


Assuntos
Nitratos , Purificação da Água , Água , Cobre , Purificação da Água/métodos , Catálise
9.
Sci Total Environ ; 892: 164652, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37295514

RESUMO

A challenge to successfully implementing an injection-based remedial treatment in aquifers is to ensure that the oxidative reaction is efficient and lasts long enough to contact the contaminated plume. Our objective was to determine the efficacy of zinc ferrite nanocomposites (ZnFe2O4) and sulfur-containing reductants (SCR) (i.e., dithionite; DTN and bisulfite; BS) to co-activate persulfate (S2O82-; PS) and treat herbicide-contaminated water. We also evaluated the ecotoxicity of the treated water. While both SCRs delivered excellent PS activation in a 1:0.4 ratio (PS:SCR), the reaction was relatively short-lived. By including ZnFe2O4 in the PS/BS or PS/DTN activations, herbicide degradation rates dramatically increased by factors of 2.5 to 11.3. This was due to the SO4- and OH reactive radical species that formed. Radical scavenging experiments and ZnFe2O4 XPS spectra results revealed that SO4- was the dominant reactive species that originated from S(IV)/PS activation in solution and from the Fe(II)/PS activation that occurred on the ZnFe2O4 surface. Based on liquid chromatography mass spectrometry (LC-MS), atrazine and alachlor degradation pathways are proposed that involve both dehydration and hydroxylation. In 1-D column experiments, five different treatment scenarios were run using 14C-labeled and unlabeled atrazine, and 3H2O to quantify changes in breakthrough curves. Our results confirmed that ZnFe2O4 successfully prolonged the PS oxidative treatment despite the SCR being completely dissociated. Toxicity testing showed treated 14C-atrazine was more biodegradable than the parent compound in soil microcosms. Post-treatment water (25 %, v/v) also had less impact on both Zea Mays L. and Vigna radiata L. seedling growth, but more impact on root anatomies, while ≤4 % of the treated water started to exert cytotoxicity (<80 % viability) on ELT3 cell lines. Overall, the findings confirm that ZnFe2O4/SCR/PS reaction is efficient and relatively longer lasting in treating herbicide-contaminated groundwater.


Assuntos
Compostos Férricos , Água Subterrânea , Herbicidas , Substâncias Redutoras , Compostos de Enxofre , Poluentes Químicos da Água , Purificação da Água , Compostos de Zinco , Herbicidas/química , Herbicidas/metabolismo , Água Subterrânea/química , Compostos de Zinco/química , Compostos de Enxofre/química , Substâncias Redutoras/química , Compostos Férricos/química , Atrazina/química , Atrazina/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Linhagem Celular , Recuperação e Remediação Ambiental , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Nanoestruturas/química , Purificação da Água/métodos , Sobrevivência Celular/efeitos dos fármacos
10.
FEBS Lett ; 597(10): 1363-1374, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081294

RESUMO

Polysaccharide-degrading mono-copper lytic polysaccharide monooxygenases (LPMOs) are efficient peroxygenases that require electron donors (reductants) to remain in the active Cu(I) form and to generate the H2 O2 co-substrate from molecular oxygen. Here, we show how commonly used reductants affect LPMO catalysis in a pH-dependent manner. Between pH 6.0 and 8.0, reactions with ascorbic acid show little pH dependency, whereas reactions with gallic acid become much faster at increased pH. These dependencies correlate with the reductant ionization state, which affects its ability to react with molecular oxygen and generate H2 O2 . The correlation does not apply to l-cysteine because, as shown by stopped-flow kinetics, increased H2 O2 production at higher pH is counteracted by increased binding of l-cysteine to the copper active site. The findings highlight the importance of the choice of reductant and pH in LPMO reactions.


Assuntos
Cisteína , Substâncias Redutoras , Substâncias Redutoras/farmacologia , Oxirredução , Cisteína/metabolismo , Polissacarídeos/metabolismo , Oxigenases de Função Mista/química , Concentração de Íons de Hidrogênio , Oxigênio
11.
Sci Total Environ ; 882: 163652, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094683

RESUMO

Health risk posed by ultrafine particles (UFPs) is potentially increased by reducing substances present in lung fluid, although knowledge of the underlying mechanisms is insufficient. Here, UFPs mainly consisting of metals and quinones were prepared. The reducing substances examined included lung endogenous and exogenous reductants. UFPs were extracted in simulated lung fluid containing reductants. Extracts were used to analyze metrics relevant to health effects, including the bioaccessible metal concentration (MeBA) and oxidative potential (OPDTT). The MeBA of Mn (974.5-9896.9 µg L-1) was higher than those of Cu (155.0-599.6 µg L-1) and Fe (79.9-500.9 µg L-1). Correspondingly, UFPs containing Mn had higher OPDTT (2.07-12.0 pmol min-1 µg-1) than those containing Cu (2.03-7.11 pmol min-1 µg-1) and Fe (1.63-5.34 pmol min-1 µg-1). Endogenous and exogenous reductants can increase MeBA and OPDTT, and the increments were generally higher for composite than pure UFPs. Positive correlations between OPDTT and MeBA of UFPs in the presence of most reductants emphasized the importance of the bioaccessible metal fraction in UFPs for inducing oxidative stress by reactive oxygen species (ROS)-generating reactions between quinones, metals, and lung reductants. Present findings provide novel insight into the toxicity and health risks of UFPs.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/toxicidade , Material Particulado/análise , Substâncias Redutoras , Estresse Oxidativo , Metais , Pulmão , Quinonas , Tamanho da Partícula
12.
Chem Asian J ; 18(10): e202300156, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36951804

RESUMO

In this article, we present a unique bimetallic paddle wheel copper(II) complex with the molecular formula [Cu2 C42 H54 N6 O8 ]. Several characterization tools have been employed to analyze this complex including single-crystal X-ray diffraction, HRMS, FTIR, and UV-vis spectroscopy. This copper(II) complex excels admirably as a catalytic system in parts-per-million level (ppm) loading for the azide-alkyne 'click' reaction under solvent-free conditions, allowing for the quantitative conversion of numerous 1,4-disubstituted 1,2,3-triazole. The specially designed coordinated ligand (perimidin-2-imine) in the Cu(II) complex accelerates the reaction rate significantly during the oxidative homocoupling reaction (OHC) and acts as a base for Cu-coordinated alkyne deprotonation. It has been demonstrated that the catalyst loading of 2.5 ppm is adequate to catalyze the cycloaddition of benzyl azide to phenylacetylene, leading to the extremely high turnover number of 120000 and a turnover frequency of 5000 h-1 . Synergistic evidence from stoichiometric reactions and experimental results provides insights into the plausible mechanism for the reaction. Each copper atom contributes to the outcome of the proposed reaction, one by bonding to the acetylide and the other by activating the azide as part of a bimetallic synergistic pathway.

13.
J Environ Manage ; 329: 117107, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566732

RESUMO

The massive spent lithium-ion batteries (LIBs) need to be recycled due to their increasing decommission in recent years. This paper aims to propose an effective process that uses self-supplied reductant roasting and acid leaching to recover Lithium, Nickle, Cobalt and Manganese from spent LIBs. In the absence of external carbon resources, the waste membrane from spent LIBs was used as the reductant in the self-supplied reductant roasting. A thermodynamic analysis was conducted to judge the possible reduction reaction between the cathode material and waste membrane. Then, the effects of roasting temperature, roasting time and membrane dosage on the crystal structure and phase transformation of roasting products were investigated and optimized. After the roasting process, the valence state of metals in the cathode material decreased and the structure became loose and porous. Moreover, the layer structure of the cathode material was transformed into groups of Li2CO3, Ni, Co, NiO, CoO and MnO. Further, the reduction effect of cathode powders under each roasting condition was verified under the same leaching conditions. After leaching for 30 min, the leaching efficiencies of Li, Ni, Co and Mn were over 99% under the optimum roasting conditions. Finally, economic assessments proved that the proposed process is profitable. The whole process demonstrates an effective and positive way for recycling spent LIBs and making full use of their waste membrane, which promotes resource recovery and environmental protection.


Assuntos
Lítio , Substâncias Redutoras , Metais/química , Níquel , Cobalto , Fontes de Energia Elétrica , Reciclagem
14.
Environ Res ; 220: 115120, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563980

RESUMO

Soil washing is an efficient, economical, and green remediation technology for removing several heavy metal (loid)s from contaminated industrial sites. The extraction of green and efficient washing agents from low-cost feedback is crucially important. In this study, a soluble humic substance (HS) extracted from leonardite was first tested to wash soils (red soil, fluvo-aquic soil, and black soil) heavily contaminated with arsenic (As) and cadmium (Cd). A D-optimal mixture design was investigated to optimize the washing parameters. The optimum removal efficiencies of As and Cd by single HS washing were found to be 52.58%-60.20% and 58.52%-86.69%, respectively. Furthermore, a two-step sequential washing with chemical reductant NH2OH•HCl coupled with HS (NH2OH•HCl + HS) was performed to improve the removal efficiency of As and Cd. The two-step sequential washing significantly enhanced the removal of As and Cd to 75.25%-81.53% and 64.53%-97.64%, which makes the residual As and Cd in soil below the risk control standards for construction land. The two-step sequential washing also effectively controlled the mobility and bioavailability of residual As and Cd. However, the activities of soil catalase and urease significantly decreased after the NH2OH•HCl + HS washing. Follow-up measures such as soil neutralization could be applied to relieve and restore the soil enzyme activity. In general, the two-step sequential soil washing with NH2OH•HCl + HS is a fast and efficient method for simultaneously removing high content of As and Cd from contaminated soils.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Substâncias Húmicas/análise , Cádmio/análise , Arsênio/química , Substâncias Redutoras , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise
15.
Molecules ; 29(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38202751

RESUMO

The preparation of gold nanoparticles (AuNPs) from tetrachloroauric acid in the presence of tetrahydrothiophenocucurbit[n]uril (THTmQ[n]) has been effectively achieved in a microwave reactor. The reaction was performed in the presence of an excess of the tetrahydrothiopheno function in a partial reductant role, while the remainder formed AuNP-THTmQ[n] conjugates after the reduction was completed with formic acid. An affinity for the AuNPs by the THTmQ[n] was observed in the purification of the NPs via centrifugation, removal of the supernatant and resuspension of the conjugate.

16.
Front Bioeng Biotechnol ; 10: 1071159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582841

RESUMO

The role of lignin in enzymatic saccharification of cellulose involving lytic polysaccharide monooxygenase (LPMO) was investigated in experiments with the solid and liquid fractions of pretreated Norway spruce from a biorefinery demonstration plant using hydrothermal pretreatment and impregnation with sulfur dioxide. Pretreated biomass before and after enzymatic saccharification was characterized using HPAEC, HPLC, Py-GC/MS, 2D-HSQC NMR, FTIR, and SEM. Chemical characterization indicated that relatively harsh pretreatment conditions resulted in that the solid phase contained no or very little hemicellulose but considerable amounts of pseudo-lignin, and that the liquid phase contained a relatively high concentration (∼5 g/L) of lignin-derived phenolics. As judged from reactions continuously supplied with either air or nitrogen gas, lignin and lignin fragments from both the solid and the liquid phases efficiently served as reductants in LPMO-supported saccharification. When air was used to promote LPMO activity, the enzymatic conversion of cellulose after 72 h was 25% higher in reactions with pretreated solids and buffer, and 14% higher in reactions with pretreatment liquid and microcrystalline cellulose. Research in this area is useful for designing efficient saccharification steps in biochemical conversion of lignocellulosic biomass.

17.
Front Neurosci ; 16: 1006203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188476

RESUMO

Connections between altered iron homeostasis and certain neurodegenerative diseases are highlighted by numerous studies suggesting iron neurotoxicity. Iron causes aggregation in neurodegenerative disease-linked proteins as well as others and additionally facilitates oxidative damage. Iron and oxidative damage can cause cell death including by ferroptosis. As treatment for neurodegeneration, chelation therapy alone is sometimes used with modest, varying efficacy and has not in general proven to reverse or halt the damage long term. Questions often focus on optimal chelator partitioning and fine-tuning binding strength; however iron oxidation state chemistry implies a different approach. More specifically, my perspective is that applying a redox-based component to iron mobilization and handling is crucial because ferrous iron is in general a more soluble, weaker biological binder than ferric. Once cellular iron becomes oxidized to ferric, it binds tenaciously, exchanges ligands more slowly, and enhances protein aggregation, which importantly can be reversed by iron reduction. This situation escalates with age as brain reducing ability decreases, iron concentration increases, autophagic clearance decreases, and cell stress diminishes iron handling capacity. Taken together, treatment employing chelation therapy together with a strong biological reductant may effectively remove inappropriately bound cellular iron or at least inhibit accumulation. This approach would likely require high concentration ascorbate or glutathione by IV along with chelation to enhance iron mobilization and elimination, thus reducing cumulative cellular damage and perhaps restoring partial function. Potential treatment-induced oxidative damage may be attenuated by high reductant concentration, appropriate choice of chelator, and/or treatment sequence. Comprehensive study is urged.

18.
Amino Acids ; 54(8): 1173-1181, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35732978

RESUMO

Vanadium carbide MXene (V2C) acts as a new type of two-dimensional (2D) graphene-like transition metal material that has attracted research interest. V2C has been widely used in various fields due to its excellent physical and chemical properties. Herein, the self-assembled V2C@gold nanoparticles (V2C@AuNPs) are prepared by water bath process at 80 °C. With the addition of glutathione (GSH), the absorbance (Abs.) at 550 nm of V2C@AuNPs was decreased. Therefore, an optical sensor is developed to detect GSH based on the properties of V2C@AuNPs. Under the optimal conditions, the detection range is 1-32 µM and the detection limit is 0.099 µM. Furthermore, the proposed GSH sensor exhibits high sensitivity, high selectivity, strong stability, and excellent recovery. The work will expand the application of V2C in biosensing.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Glutationa/química , Ouro/química , Nanopartículas Metálicas/química , Substâncias Redutoras , Vanádio
19.
Chemistry ; 28(28): e202104567, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35262232

RESUMO

Herein, we disclose cyclic(alkyl)(amino)carbenes (CAACs) to be one-electron reductants under the formation of a transient radical cation as indicated by EPR spectroscopy. The disclosed CAAC reducing reactivity was used to synthesize acyclic(amino)(aryl)carbene-based Thiele and Chichibabin hydrocarbons, a new class of Kekulé diradicaloids. The results demonstrate CAACs to be potent organic reductants. Notably, the acyclic(amino)(aryl)carbene-based Chichibabin's hydrocarbon shows an appreciable population of the triplet state at room temperature, as evidenced by both variable-temperature NMR and EPR spectroscopy.

20.
FEBS Lett ; 596(10): 1299-1312, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34928499

RESUMO

l-ergothioneine is a low-molecular weight natural product, the chemical structure of which comprises oxygen-, nitrogen- and sulfur-containing functional groups. This gives l-ergothioneine specific physicochemical properties and allows a better understanding of its chemical reactivity, which is primarily due to the 2-thio-imidazole group. Here, a review is provided of how different modes of chemical reactivity account for the reported molecular biological activities of l-ergothioneine. By matching the physicochemical properties to the biological properties of l-ergothioneine, a new perspective of the function and the mode of action of this enigmatic molecule emerges.


Assuntos
Ergotioneína , Antioxidantes , Ergotioneína/farmacologia , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA