Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Cycle ; 21(8): 820-834, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35107036

RESUMO

Cell cycle is an important and complex biological system. A lot of efforts have been put in understanding cell cycle arrest for its vital role in clinical therapies. The cell-cycle-arrest outcomes upon stimulation are complicated. The response could be stringent or relaxed, and graded or quantized. A model fully addressing various cell-cycle-arrest outcomes is to be developed. Here, we developed a mathematical model of cell cycle control incorporating distinct characteristics of various cell-cycle-arrest outcomes. The model can simulate two typical properties of cell cycle arrest, quantized and graded. We also characterized the inheritable quiescence and refractory state, which were crucial in long-term response of the population. Then, we monitored cells respond to multiple stimulations, and the results indicated that cells responded to stimulations with small interval did not induce significantly sustained cell cycle arrest as the existence of refractory state. Our work will benefit fundamental research and make efforts to predicting outcomes of clinical therapeutics.


Assuntos
Modelos Teóricos , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Divisão Celular
2.
Eur J Neurosci ; 53(11): 3612-3620, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33840135

RESUMO

The duration of daytime light phase (photoperiod) controls reproduction in seasonal mammals. Syrian hamsters are sexually active when exposed to long photoperiod, while gonadal atrophy is observed after exposure to short photoperiod. The photorefractory period, or photorefractoriness, is a particular state of spontaneous recrudescence of sexual activity that occurs after a long-term exposure to short photoperiod. Expression of core clock genes in the master circadian clock contained in the suprachiasmatic nuclei depends on photoperiodic conditions. Interestingly, the expression of the Clock gene is also modified in photorefractory Syrian hamsters. Since melatonin and testosterone levels in seasonal species are dependent on photoperiod, photoperiodic variations of Clock mRNA levels in the suprachiasmatic clock could be a consequence of these hormonal changes. To test this hypothesis, we analysed the effects of pinealectomy on Clock mRNA changes due to long to short photoperiod transition and of gonadectomy on Clock mRNA levels in photorefractory period. Our data show that the suprachiasmatic integration of the short photoperiod (assessed by a rhythmic expression profile of Clock) is independent of the presence of melatonin. Furthermore, constitutively low expression of Clock observed during the photorefractory period does not require the presence of either melatonin or testosterone. However, we show that both hormones provide positive feedback on average levels of Clock expression. Thus, our data support the hypothesis that daily variations of Clock levels in the suprachiasmatic nuclei are influenced by photoperiodic changes and the time spent in short photoperiod, independently of seasonal modifications of melatonin or testosterone levels.


Assuntos
Melatonina , Fotoperíodo , Animais , Castração , Ritmo Circadiano , Cricetinae , Expressão Gênica , Mesocricetus , Pinealectomia , Núcleo Supraquiasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA