RESUMO
Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin . Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.
Assuntos
Bainha de Mielina , Nervos Periféricos , Animais , Camundongos , Regulação da Expressão Gênica , Camundongos Knockout , Bainha de Mielina/metabolismo , Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Schwann cells play critical roles in peripheral neuropathies; however, the regulatory mechanisms of their homeostasis remain largely unknown. Here, we show that nucleoporin Seh1, a component of nuclear pore complex, is important for Schwann cell homeostasis. Expression of Seh1 decreases as mice age. Loss of Seh1 leads to activated immune responses and cell necroptosis. Mice with depletion of Seh1 in Schwann cell lineage develop progressive reduction of Schwann cells in sciatic nerves, predominantly non-myelinating Schwann cells, followed by neural fiber degeneration and malfunction of the sensory and motor system. Mechanistically, Seh1 safeguards genome stability by mediating the interaction between SETDB1 and KAP1. The disrupted interaction after ablation of Seh1 derepresses endogenous retroviruses, which triggers ZBP1-dependent necroptosis in Schwann cells. Collectively, our results demonstrate that Seh1 is required for Schwann cell homeostasis by maintaining genome integrity and suggest that decrease of nucleoporins may participate in the pathogenesis of periphery neuropathies.
Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Doenças do Sistema Nervoso Periférico , Animais , Camundongos , Instabilidade Genômica , Bainha de Mielina/metabolismo , Necroptose , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/metabolismoRESUMO
Most invertebrate axons and small-caliber axons in mammalian peripheral nerves are unmyelinated but still ensheathed by glia. Here, we use Drosophila wrapping glia to study the development and function of non-myelinating axon ensheathment, which is poorly understood. Selective ablation of these glia from peripheral nerves severely impaired larval locomotor behavior. In an in vivo RNA interference screen to identify glial genes required for axon ensheathment, we identified the conserved receptor tyrosine kinase Discoidin domain receptor (Ddr). In larval peripheral nerves, loss of Ddr resulted in severely reduced ensheathment of axons and reduced axon caliber, and we found a strong dominant genetic interaction between Ddr and the type XV/XVIII collagen Multiplexin (Mp), suggesting that Ddr functions as a collagen receptor to drive axon wrapping. In adult nerves, loss of Ddr decreased long-term survival of sensory neurons and significantly reduced axon caliber without overtly affecting ensheathment. Our data establish essential roles for non-myelinating glia in nerve development, maintenance and function, and identify Ddr as a key regulator of axon-glia interactions during ensheathment and establishment of axon caliber.
Assuntos
Axônios , Proteínas de Drosophila , Animais , Receptores com Domínio Discoidina , Axônios/fisiologia , Neuroglia , Proteínas de Drosophila/genética , Nervos Periféricos , Drosophila , MamíferosRESUMO
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Assuntos
Bainha de Mielina , Células de Schwann , Feminino , Humanos , Bainha de Mielina/metabolismo , Neuroglia , Sistema Nervoso Periférico/fisiologia , Gravidez , Células de Schwann/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Peripheral nerve regeneration relies on the ability of Schwann cells to support the regrowth of damaged axons. Schwann cells re-differentiate when reestablishing contact with the sprouting axons, with large fibers becoming remyelinated and small nociceptive fibers ensheathed and collected into Remak bundles. We have previously described how the receptor sortilin facilitates neurotrophin signaling in peripheral neurons via regulated trafficking of Trk receptors. This study aims to characterize the effects of sortilin deletion on nerve regeneration following sciatic crush injury. We found that Sort1 - / - mice displayed functional motor recovery like that of WT mice, with no detectable differences in relation to nerve conduction velocities and morphological aspects of myelinated fibers. In contrast, we found abnormal ensheathment of regenerated C-fibers in injured Sort1 - / - mice, demonstrating a role of sortilin for Remak bundle formation following injury. Further studies on Schwann cell signaling pathways showed a significant reduction of MAPK/ERK, RSK, and CREB phosphorylation in Sort1 - / - Schwann cells after stimulation with neurotrophin-3 (NT-3), while Schwann cell migration and myelination remained unaffected. In conclusion, our results demonstrate that loss of sortilin blunts NT-3 signaling in Schwann cells which might contribute to the impaired Remak bundle regeneration after sciatic nerve injury.
RESUMO
In the peripheral nervous system aquaporins (AQPs) have been reported in both peripheral neurons and glial cells. Previously we described the precise localization of AQP1 in the rat sciatic nerve, which is present in both Remak and myelin Schwann cells, and is enriched in the Schmidt-Lanterman incisures. In this work, we found that AQP1 in mouse is only present in Remak cells, showing a different localization between these species. However, after nerve crush injury the level of AQP1 mRNA expression remains constant at all times studied in rat and mouse. We then performed RT-PCR of nine AQP (AQP1-9) isoforms from rat and mouse sciatic nerve, we found that in rat only five AQPs are present (AQP1, AQP4, AQP5, AQP7 and AQP9), whereas in mouse all AQPs except AQP8 are expressed. Then, we studied the expression by RT-PCR of AQPs in rat after nerve crush injury, showing that AQP1, AQP4 and AQP7 expression remain constant at all times studied, while AQP2, AQP5 and AQP9 are upregulated after injury. Therefore, these two closely related rodents show different AQP1 localization and have different AQPs expression patterns in the sciatic nerve, possibly due to a difference in the regulation of these AQPs. The expression of AQP1 in Remak cells supports the involvement of AQP1 in pain perception. Also, in rat the upregulation of AQP2, AQP5 and AQP7 after nerve injury suggests a possible role for these AQPs in promoting regeneration following injury.
RESUMO
Glia are known to play important roles in the brain, the gut, and around the sciatic nerve. While the gut has its own specialized nervous system, other viscera are innervated solely by autonomic nerves. The functions of glia that accompany autonomic innervation are not well known, even though they are one of the most abundant cell types in the peripheral nervous system. Here, we focused on non-myelinating Schwann cells in the spleen, spleen glia. The spleen is a major immune organ innervated by the sympathetic nervous system, which modulates immune function. This interaction is known as neuroimmune communication. We establish that spleen glia can be visualized using both immunohistochemistry for S100B and GFAP and with a reporter mouse. Spleen glia ensheath sympathetic axons and are localized to the lymphocyte-rich white pulp areas of the spleen. We sequenced the spleen glia transcriptome and identified genes that are likely involved in axonal ensheathment and communication with both nerves and immune cells. Spleen glia express receptors for neurotransmitters made by sympathetic axons (adrenergic, purinergic, and Neuropeptide Y), and also cytokines, chemokines, and their receptors that may communicate with immune cells in the spleen. We also established similarities and differences between spleen glia and other glial types. While all glia share many genes in common, spleen glia differentially express genes associated with immune responses, including genes involved in cytokine-cytokine receptor interactions, phagocytosis, and the complement cascade. Thus, spleen glia are a unique glial type, physically and transcriptionally poised to participate in neuroimmune communication in the spleen.
Assuntos
Neuroglia , Baço , Animais , Axônios/metabolismo , Camundongos , Neuroglia/metabolismo , Células de Schwann/metabolismo , Nervo IsquiáticoRESUMO
The trigeminovascular system (TGV) comprise of the trigeminal ganglion with neurons and satellite glial cells, with sensory unmyelinated C-fibers and myelinated Aδ-fibers picking up information from different parts of the head and sending signals to the brainstem and the central nervous system. In this review we discuss aspects of signaling at the distal parts of the sensory fibers, the extrasynaptic signaling between C-fibers and Aδ-fibers, and the contact between the trigeminal fibers at the nerve root entry zone where they transit into the CNS. We also address the possible role of the neuropeptides calcitonin gene-related peptide (CGRP), the neurokinin family and pituitary adenylyl cyclase-activating polypeptide 38 (PACAP-38), all found in the TGV system together with their respective receptors. Elucidation of the expression and localization of neuropeptides and their receptors in the TGV system may provide novel ways to understand their roles in migraine pathophysiology and suggest novel ways for treatment of migraine patients.
RESUMO
Nerves of the peripheral nervous system contain two classes of Schwann cells: myelinating Schwann cells that ensheath large caliber axons and generate the myelin sheath, and Remak Schwann cells that surround smaller axons and do not myelinate. While tools exist for genetic targeting of Schwann cell precursors and myelinating Schwann cells, such reagents have been challenging to generate specifically for the Remak population, in part because many of the genes that mark this population in maturity are also robustly expressed in Schwann cell precursors. To circumvent this challenge, we utilized BAC transgenesis to generate a mouse line expressing a tamoxifen-inducible Cre under the control of a Remak-expressed gene promoter (Egr1). However, as Egr1 is also an activity dependent gene expressed by some neurons, we flanked this Cre by flippase (Flpe) recognition sites, and coinjected a BAC expressing Flpe under control of a pan-neuronal Snap25 promoter to excise the Cre transgene from these neuronal cells. Genotyping and inheritance demonstrate that the two BACs co-integrated into a single locus, facilitating maintenance of the line. Anatomical studies following a cross to a reporter line show sparse tamoxifen-dependent recombination in Remak Schwann cells within the mature sciatic nerve. However, depletion of neuronal Cre activity by Flpe is partial, with some neurons and astrocytes also showing evidence of Cre reporter activity in the central nervous system. Thus, this mouse line will be useful in mosaic loss-of-function studies, lineage tracing studies following injury, live cell imaging studies, or other experiments benefiting from sparse labeling.
Assuntos
Cromossomos Artificiais Bacterianos , Proteína 1 de Resposta de Crescimento Precoce , Técnicas de Transferência de Genes , Integrases , Células de Schwann , Transgenes , Animais , Axônios , Linhagem Celular , Técnicas de Genotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamoxifeno/farmacologiaRESUMO
The enteric nervous system (ENS) is a complex network constituted of neurons and glial cells that ensures the intrinsic innervation of the gastrointestinal tract. ENS cells originate from vagal and sacral neural crest cells that are initially located at the border of the neural tube. In birds, sacral neural crest cells (sNCCs) first give rise to an extramural ganglionated structure (the so-called Nerve of Remak [NoR]) and to the pelvic plexus. Later, sNCCs enter the colon mesenchyme to colonize and contribute to the intrinsic innervation of the caudal part of the gut. However, no specific sNCC marker has been described. Here, we report the expression pattern of prospero-related homeobox 1 (PROX1) in the developing chick colon. PROX1 is a homeobox domain transcription factor that plays a role in cell type specification in various tissues. Using in situ hybridization and immunofluorescence techniques, we showed that PROX1 is expressed in sNCCs localized in the NoR and in the pelvic plexus. Then, using real-time quantitative PCR we found that PROX1 displays a strong and highly dynamic expression pattern during NoR development. Moreover, we demonstrated using in vivo cell tracing, that sNCCs are the source of the PROX1-positive cells within the NoR. Our results indicate that PROX1 is the first marker that specifically identifies sNCCs. This might help to better identify the role of the different neural crest cell populations in distal gut innervation, and consequently to improve the diagnosis of diseases linked to incomplete ENS formation, such as Hirschsprung's disease.
Assuntos
Proteínas de Homeodomínio/metabolismo , Intestinos/inervação , Crista Neural/metabolismo , Animais , Biomarcadores/metabolismo , Embrião de Galinha , Sistema Nervoso Entérico/citologia , Crista Neural/citologiaRESUMO
The repair of nerve gap injuries longer than 3â¯cm is limited by the need to sacrifice donor tissue and the morbidity associated with the autograft gold standard, while decellularized grafts and biodegradable conduits are effective only in short nerve defects. The advantage of isogenic nerve implants seems to be the release of various growth factors by the denervated Schwann cells. We evaluated the effect of vascular endothelial growth factor, neurotrophins, and pleiotrophin (PTN) supplementation of multi-luminal conduits, in the repair of 3 and 4â¯cm nerve gaps in the rabbit peroneal nerve. In vitro screening revealed a synergistic regenerative effect of PTN with glial-derived neurotrophic factor (GDNF) in promoting sensory axon density, and motor axonal growth from spinal cord explants. In vivo, pleiotrophins were able to support nerve regrowth across a 3â¯cm gap. In the 4â¯cm lesions, PTN-GDNF had a modest effect in the number of axons distal to the implant, while increasing the mean axon diameter (1⯱â¯0.4; pâ¯≤â¯0.001) over PTN or GDNF alone (0.80⯱â¯0.2, 0.84⯱â¯0.5; respectively). Some regenerated axons reinnervated muscle targets as indicated by neuromuscular junction staining. However, many were wrapped in Remak bundles, suggesting a delay in axonal sorting, explaining the limited electrophysiological function of the reinnervated muscle, and the modest recovery in toe spreading in the PTN-GDNF repaired animals. These results support the use of synergistic neurotrophic/pleiotrophic growth factors in long gap repair and underscore the need for re-myelination strategies distal to the injury site. STATEMENT OF SIGNIFICANCE: Nerve injuries due to trauma or tumor resection often result in long gaps that are challenging to repair. The best clinical option demands the use of autologous grafts that are associated with serious side effects. Bioengineered nerves are considered a good alternative, particularly if supplemented with growth factors, but current options do not match the regenerative capacity of autografts. This study revealed the synergistic effect of neurotrophins and pleiotrophins designed to achieve a broad cellular regenerative effect, and that GDNF-PTN are able to mediated axonal growth and partial functional recovery in a 4â¯cm nerve gap injury, albeit delays in remyelination. This report underscores the need for defining an optimal growth factor support for biosynthetic nerve implants.
Assuntos
Axônios/metabolismo , Proteínas de Transporte/farmacologia , Citocinas/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Neuregulina-1/farmacologia , Nervo Fibular/lesões , Nervo Fibular/fisiopatologia , Animais , Axônios/efeitos dos fármacos , Sinergismo Farmacológico , Potenciais Evocados/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/inervação , Nervo Fibular/efeitos dos fármacos , Nervo Fibular/patologia , Coelhos , Recuperação de Função Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologiaRESUMO
Schwann cells in the peripheral nervous system wrap around large diameter axons to form the myelin sheath, that contains one axon. Schwann cells also wrap around small diameter axons to form the Remak bundle, that contains many axons. Neuregulin-1 (NRG1) type III binds Schwann cell plasma membrane ErbB2/3 receptor to regulate morphological changes of Schwann cells. Herein we provide the data on the effect of NRG1 type III knockout (Miyamoto et al., 2017) [1] on the Remak bundle structure. Since complete knockout mice of NRG1type III are embryonically lethal, we have usedNRG1type III (+/-) mice's sciatic nerves in these experiments.
RESUMO
Aims: Complex regional pain syndrome (CRPS) is characterized by chronic debilitating pain disproportional to the inciting event and accompanied by motor, sensory, and autonomic disturbances. The pathophysiology of CRPS remains elusive. An exceptional case of severe CRPS leading to forearm amputation provided the opportunity to examine nerve histopathological features of the peripheral nerves. Methods: A 35-year-old female developed CRPS secondary to low voltage electrical injury. The CRPS was refractory to medical therapy and led to functional loss of the forelimb, repeated cutaneous wound infections leading to hospitalization. Specifically, the patient had exhausted a targeted conservative pain management programme prior to forearm amputation. Radial, median, and ulnar nerve specimens were obtained from the amputated limb and analyzed by light and transmission electron microscopy (TEM). Results: All samples showed features of selective myelinated nerve fiber degeneration (47-58% of fibers) on electron microscopy. Degenerating myelinated fibers were significantly larger than healthy fibers (p < 0.05), and corresponded to the larger Aα fibers (motor/proprioception) whilst smaller Aδ (pain/temperature) fibers were spared. Groups of small unmyelinated C fibers (Remak bundles) also showed evidence of degeneration in all samples. Conclusions: We are the first to show large fiber degeneration in CRPS using TEM. Degeneration of Aα fibers may lead to an imbalance in nerve signaling, inappropriately triggering the smaller healthy Aδ fibers, which transmit pain and temperature. These findings suggest peripheral nerve degeneration may play a key role in CRPS. Improved knowledge of pathogenesis will help develop more targeted treatments.
RESUMO
The autonomic nervous system consists of sympathetic and parasympathetic nerves, which functionally antagonize each other to control physiology and homeostasis of organs. However, it is largely unexplored how the autonomic nervous system is established during development. In particular, early formation of parasympathetic network remains elusive because of its complex anatomical structure. To distinguish between parasympathetic (cholinergic) and sympathetic (adrenergic) ganglia, vesicular acetylcholine transporter (VAChT) and choline O-acetyltransferase (ChAT), proteins associated with acetylcholine synthesis, are known to be useful markers. Whereas commercially available antibodies against these proteins are widely used for mammalian specimens including mice and rats, these antibodies do not work satisfactorily in chickens, although chicken is an excellent model for the study of autonomic nervous system. Here, we newly raised antibodies against chicken VAChT and ChAT proteins. One monoclonal and three polyclonal antibodies for VAChT, and one polyclonal antibody for ChAT were obtained, which were available for Western blotting analyses and immunohistochemistry. Using these verified antibodies, we detected cholinergic cells in Remak ganglia of autonomic nervous system, which form in the dorsal aspect of the digestive tract of chicken E13 embryos. The antibodies obtained in this study are useful for visualization of cholinergic neurons including parasympathetic ganglia.
Assuntos
Anticorpos/metabolismo , Colina O-Acetiltransferase/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Animais , Embrião de Galinha , Galinhas , Colina O-Acetiltransferase/antagonistas & inibidores , Neurônios Colinérgicos/metabolismo , Trato Gastrointestinal/embriologia , Proteínas Vesiculares de Transporte de Acetilcolina/antagonistas & inibidoresRESUMO
Autonomic nerves regulate important functions in visceral organs, including the lung. The postganglionic portion of these nerves is ensheathed by glial cells known as non-myelinating Schwann cells. In the brain, glia play important functional roles in neurotransmission, neuroinflammation, and maintenance of the blood brain barrier. Similarly, enteric glia are now known to have analogous roles in gastrointestinal neurotransmission, inflammatory response, and barrier formation. In contrast to this, very little is known about the function of glia in other visceral organs. Like the gut, the lung forms a barrier between airborne pathogens and the bloodstream, and autonomic lung innervation is known to affect pulmonary inflammation and lung function. Lung glia are described as non-myelinating Schwann cells but their function is not known, and indeed no transgenic tools have been validated to study them in vivo. The primary goal of this research was, therefore, to investigate the relationship between non-myelinating Schwann cells and pulmonary nerves in the airways and vasculature and to validate existing transgenic mouse tools that would be useful for studying their function. We focused on the glial fibrillary acidic protein promoter, which is a cognate marker of astrocytes that is expressed by enteric glia and non-myelinating Schwann cells. We describe the morphology of non-myelinating Schwann cells in the lung and verify that they express glial fibrillary acidic protein and S100, a classic glial marker. Furthermore, we characterize the relationship of non-myelinating Schwann cells to pulmonary nerves. Finally, we report tools for studying their function, including a commercially available transgenic mouse line.
Assuntos
Proteína Glial Fibrilar Ácida/metabolismo , Pulmão/metabolismo , Células de Schwann/metabolismo , Animais , Vias Autônomas/citologia , Vias Autônomas/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Pulmão/inervação , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Proteínas S100/metabolismo , Células de Schwann/citologiaRESUMO
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Assuntos
Células de Schwann/metabolismo , Animais , Humanos , Bainha de Mielina/metabolismo , Células-Tronco Neurais/metabolismoRESUMO
The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and elongation on axons, as well as during axon sorting, ensheathment, and myelination, require their close interaction with the surrounding laminin-rich basal lamina. In contrast to myelinating central nervous system glia, SCs strongly and constitutively express the giant scaffolding protein AHNAK1, localized essentially underneath the outer, abaxonal plasma membrane. Using electron microscopy, we show here that in the sciatic nerve of ahnak1(-) (/) (-) mice the ultrastructure of myelinated, and unmyelinated (Remak) fibers is affected. The major SC laminin receptor ß-dystroglycan co-immunoprecipitates with AHNAK1 shows reduced expression in ahnak1(-) (/) (-) SCs, and is no longer detectable in Cajal bands on myelinated fibers in ahnak1(-) (/) (-) sciatic nerve. Reduced migration velocity in a scratch wound assay of purified ahnak1(-) (/) (-) primary SCs cultured on a laminin substrate indicated a function of AHNAK1 in SC motility. This was corroborated by atomic force microscopy measurements, which revealed a greater mechanical rigidity of shaft and leading tip of ahnak1(-) (/) (-) SC processes. Internodal lengths of large fibers are decreased in ahnak1(-) (/) (-) sciatic nerve, and longitudinal extension of myelin segments is even more strongly reduced after acute knockdown of AHNAK1 in SCs of developing sciatic nerve. Together, our results suggest that by interfering in the cross-talk between the transmembrane form of the laminin receptor dystroglycan and F-actin, AHNAK1 influences the cytoskeleton organization of SCs, and thus plays a role in the regulation of their morphology and motility and lastly, the myelination process.
Assuntos
Movimento Celular/fisiologia , Distroglicanas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Células de Schwann/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Axônios/diagnóstico por imagem , Axônios/fisiologia , Células Cultivadas , Elasticidade , Técnicas de Silenciamento de Genes , Proteínas de Membrana/genética , Camundongos Knockout , Microscopia de Força Atômica , Bainha de Mielina/fisiologia , Bainha de Mielina/ultraestrutura , Proteínas de Neoplasias/genética , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Mielinizadas/ultraestrutura , RNA Interferente Pequeno/metabolismo , Células de Schwann/ultraestrutura , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/fisiopatologia , Nervo Isquiático/ultraestrutura , UltrassonografiaRESUMO
We investigated three models for Charcot-Marie-Tooth type 1 (CMT1) neuropathy, comprising mice lacking connexin 32 (Cx32def), mice with reduced myelin protein zero (P0) expression (P0het) and transgenic mouse mutants overexpressing peripheral myelin protein 22 (PMP22tg), with regard of the expression of the developmentally regulated molecules NCAM, L1, the low-affinity NGF-receptor p75 (p75(NTR) ) and the transcription factor component c-Jun. We found that all molecules were uniformly expressed by myelin deficient and supernumerary Schwann cells. The mutant myelinating Schwann cells of PMP22tg mice showed a robust NCAM-immunoreactivity in Schmidt-Lanterman incisures (SLI) that accompanies other early onset abnormalities, such as the presence of supernumerary Schwann cells and impaired myelin formation in some fibers. In line with this, Cx32def and P0het mice, which represent demyelinating models, only rarely express NCAM in SLI. Surprisingly, c-Jun immunoreactivity displayed a mosaic-like pattern with mostly negative and some weakly or moderately positive nuclei both in myelinating Schwann cells and Remak cells of wildtype (wt), P0het and PMP22tg mice. However, c-Jun expression was substantially upregulated in myelinating Schwann cells of Cx32def mice and spatially associated with axon perturbation, a typical predemyelinating feature of Cx32 deficiency. Additionally, c-Jun upregulation was correlated with an elevated level of GDNF, possibly causally linked to the typical compensatory sprouting of axons in Cx32def mice and CMT1X patients. Our findings suggest that in myelinating Schwann cells of distinct models of CMT1, c-Jun upregulation is a marker for predemyelinating axonal perturbation while myelin-related NCAM expression is indicative for early Schwann cell abnormalities.
Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Genes jun/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Moléculas de Adesão de Célula Nervosa/biossíntese , Células de Schwann/metabolismo , Regulação para Cima/fisiologia , Animais , Axônios/metabolismo , Axônios/patologia , Doença de Charcot-Marie-Tooth/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Mielinizadas/patologia , Células de Schwann/patologiaRESUMO
Isotopic and isochronic transplantation of fragments of quail neural tube into chick demonstrates that neural and glial cells of the entire ganglion of Remak (RG) arise from the lumbo-sacral level of the neural crest.The ganglioblasts first accumulate in the mesorectum (stage 24 of Hamburger and Hamilton, in the chick and I8 of Zacchei in the quail) and subsequently migrate cranially.Histochemical studies have been carried out on the rectal and cloacal parts of the quail RG at various stages of development. Cholinesterase activity can be detected as soon as the primordium is in place and the intensity of the reaction increases rapidly. During morphogenesis of the cloacal region the RG and the pelvic plexus become intimately associated. Catecholamine-containing cells are found first in the pelvic plexus, then in the cloacal part of the RG. Fluorescent cells are often grouped close to blood vessels and associated with non-fluorescent ganglia. Cranial to the level of the bursa of Fabricius, the RG is composed only of non-fluorescent neurons whatever the developmental stage considered (up to 1 day after hatching).The developmental capabilities of the RG of the 5-day quail have been tested by transplanting various parts of the hind-gut with the dorsal mesentery onto the chorio-allantoic membrane. Catecholamine-containing cells develop only in grafts including the cloacal region.By using quail-chick chimaerae in which the RG belongs to the quail while mesentery and gut are of chick origin, it was possible to show that neurons which develop in the graft (i.e. in the absence of preganglionic innervation), send nerve fibres into the gut wall. Moreover some neuroblasts located in the primordium of the RG migrate into the gut wall and give rise to some enteric ganglion cells. The contribution of the lumbo-sacral neural crest to the enteric ganglia, by this route, is discussed.