Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Bioessays ; 44(9): e2200061, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35778827

RESUMO

DNA replication stress threatens ordinary DNA synthesis. The evolutionarily conserved DNA replication stress response pathway involves sensor kinase Mec1/ATR, adaptor protein Mrc1/Claspin, and effector kinase Rad53/Chk1, which spurs a host of changes to stabilize replication forks and maintain genome integrity. DNA replication forks consist of largely distinct sets of proteins at leading and lagging strands that function autonomously in DNA synthesis in vitro. In this article, we discuss eSPAN and BrdU-IP-ssSeq, strand-specific sequencing technologies that permit analysis of protein localization and DNA synthesis at individual strands in budding yeast. Using these approaches, we show that under replication stress Rad53 stalls DNA synthesis on both leading and lagging strands. On lagging strands, it stimulates PCNA unloading, and on leading strands, it attenuates the replication function of Mrc1-Tof1. We propose that in doing so, Rad53 couples leading and lagging strand DNA synthesis during replication stress, thereby preventing the emergence of harmful ssDNA.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , DNA/metabolismo , Replicação do DNA/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell Biol ; 42(6): e0004522, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35612306

RESUMO

Smc5/6, like cohesin and condensin, is a structural maintenance of chromosomes complex crucial for genome stability. Unlike cohesin and condensin, Smc5/6 carries an essential Nse2 subunit with SUMO E3 ligase activity. While screening for new DNA replication checkpoint mutants in fission yeast, we have identified two previously uncharacterized mutants in Smc5/6. Characterization of the mutants and a series of previously reported Smc5/6 mutants uncovered that sumoylation of the RecQ helicase Rqh1 by Nse2 facilitates the checkpoint signaling at the replication fork. We found that mutations that eliminate the sumoylation sites or the helicase activity of Rqh1 compromised the checkpoint signaling similar to a nse2 mutant lacking the ligase activity. Surprisingly, introducing a sumoylation site mutation to a helicase-inactive rqh1 mutant promoted cell survival under stress. These findings, together with other genetic data, support a mechanism that sumoylation of Rqh1 by Smc5/6-Nse2 recruits Rqh1 or modulates its helicase activity at the fork to facilitate the checkpoint signaling. Since the Smc5/6 complex, Rqh1, and the replication checkpoint are conserved in eukaryotes, a similar checkpoint mechanism may be operating in human cells.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Proteínas Cromossômicas não Histona/genética , Cromossomos/metabolismo , Dano ao DNA , DNA Helicases/genética , Replicação do DNA , Humanos , Mutação/genética , RecQ Helicases/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Sumoilação
3.
Cell Rep ; 39(3): 110701, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443178

RESUMO

Mitotic DNA synthesis (MiDAS) has been proposed to restart DNA synthesis during mitosis because of replication fork stalling in late interphase caused by mild replication stress (RS). Contrary to this proposal, we find that cells exposed to mild RS in fact maintain continued DNA replication throughout G2 and during G2-M transition in RAD51- and RAD52-dependent manners. Persistent DNA synthesis is necessary to resolve replication intermediates accumulated in G2 and disengage an ATR-imposed block to mitotic entry. Because of its continual nature, DNA synthesis at very late replication sites can overlap with chromosome condensation, generating the phenomenon of mitotic DNA synthesis. Unexpectedly, we find that the commonly used CDK1 inhibitor RO3306 interferes with replication to preclude detection of G2 DNA synthesis, leading to the impression of a mitosis-driven response. Our study reveals the importance of persistent DNA replication and checkpoint control to lessen the risk for severe genome under-replication under mild RS.


Assuntos
Replicação do DNA , Mitose , DNA
4.
FEMS Yeast Res ; 22(1)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35262697

RESUMO

Schizosaccharomyces pombe is an established yeast model for studying the cellular mechanisms conserved in humans, such as the DNA replication checkpoint. The replication checkpoint deals with replication stress caused by numerous endogenous and exogenous factors that perturb fork movement. If undealt with, perturbed forks collapse, causing chromosomal DNA damage or cell death. Hydroxyurea (HU) is an inhibitor of ribonucleotide reductase (RNR) commonly used in checkpoint studies. It produces replication stress by depleting dNTPs, which slows the movement of ongoing forks and thus activates the replication checkpoint. However, HU also causes side effects such as oxidative stress, particularly under chronic exposure conditions, which complicates the studies. To find a drug that generates replication stress more specifically, we tested three other RNR inhibitors gemcitabine, guanazole and triapine in S. pombe under various experimental conditions. Our results show that guanazole and triapine can produce replication stress more specifically than HU under chronic, not acute drug treatment conditions. Therefore, using the two drugs in spot assay, the method commonly used for testing drug sensitivity in yeasts, should benefit the checkpoint studies in S. pombe and likely the research in other model systems.


Assuntos
Ribonucleotídeo Redutases , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA , Desoxicitidina/análogos & derivados , Inibidores Enzimáticos/metabolismo , Guanazol , Humanos , Hidroxiureia/farmacologia , Piridinas , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Ribonucleotídeo Redutases/farmacologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Tiossemicarbazonas , Gencitabina
5.
Dev Cell ; 57(5): 638-653.e5, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35245445

RESUMO

In human cells, ATR/Chk1 signaling couples S phase exit with the expression of mitotic inducers and prevents premature mitosis upon replication stress (RS). Nonetheless, under-replicated DNA can persist at mitosis, prompting chromosomal instability. To decipher how the DNA replication checkpoint (DRC) allows cells to enter mitosis over time upon RS, we developed a FRET-based Chk1 activity sensor. During unperturbed growth, a basal Chk1 activity level is sustained throughout S phase and relies on replication origin firing. Incremental RS triggers stepwise Chk1 over-activation that delays S-phase, suggesting a rheostat-like role for DRC coupled with the replication machinery. Upon RS, Chk1 is inactivated as DNA replication terminates but surprisingly is reactivated in a subset of G2 cells, which relies on Cdk1/2 and Plk1 and prevents mitotic entry. Cells can override active Chk1 signaling and reach mitosis onset, revealing checkpoint adaptation. Cell division following Chk1 reactivation in G2 results in a p53/p21-dependent G1 arrest, eliminating the daughter cells from proliferation.


Assuntos
Fase G2 , Mitose , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Replicação do DNA , Humanos , Fase S , Transdução de Sinais
6.
EMBO J ; 40(21): e108439, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34569643

RESUMO

Upon replication stress, budding yeast checkpoint kinase Mec1ATR triggers the downregulation of transcription, thereby reducing the level of RNA polymerase (RNAP) on chromatin to facilitate replication fork progression. Here, we identify a hydroxyurea-induced phosphorylation site on Mec1, Mec1-S1991, that contributes to the eviction of RNAPII and RNAPIII during replication stress. The expression of the non-phosphorylatable mec1-S1991A mutant reduces replication fork progression genome-wide and compromises survival on hydroxyurea. This defect can be suppressed by destabilizing chromatin-bound RNAPII through a TAP fusion to its Rpb3 subunit, suggesting that lethality in mec1-S1991A mutants arises from replication-transcription conflicts. Coincident with a failure to repress gene expression on hydroxyurea in mec1-S1991A cells, highly transcribed genes such as GAL1 remain bound at nuclear pores. Consistently, we find that nuclear pore proteins and factors controlling RNAPII and RNAPIII are phosphorylated in a Mec1-dependent manner on hydroxyurea. Moreover, we show that Mec1 kinase also contributes to reduced RNAPII occupancy on chromatin during an unperturbed S phase by promoting degradation of the Rpb1 subunit.


Assuntos
Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase III/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Regulação Fúngica da Expressão Gênica , Hidroxiureia/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , Fase S/efeitos dos fármacos , Fase S/genética , Saccharomyces cerevisiae/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica
7.
Genes (Basel) ; 12(7)2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34356112

RESUMO

Hydroxyurea (HU) is mostly referred to as an inhibitor of ribonucleotide reductase (RNR) and as the agent that is commonly used to arrest cells in the S-phase of the cycle by inducing replication stress. It is a well-known and widely used drug, one which has proved to be effective in treating chronic myeloproliferative disorders and which is considered a staple agent in sickle anemia therapy and-recently-a promising factor in preventing cognitive decline in Alzheimer's disease. The reversibility of HU-induced replication inhibition also makes it a common laboratory ingredient used to synchronize cell cycles. On the other hand, prolonged treatment or higher dosage of hydroxyurea causes cell death due to accumulation of DNA damage and oxidative stress. Hydroxyurea treatments are also still far from perfect and it has been suggested that it facilitates skin cancer progression. Also, recent studies have shown that hydroxyurea may affect a larger number of enzymes due to its less specific interaction mechanism, which may contribute to further as-yet unspecified factors affecting cell response. In this review, we examine the actual state of knowledge about hydroxyurea and the mechanisms behind its cytotoxic effects. The practical applications of the recent findings may prove to enhance the already existing use of the drug in new and promising ways.


Assuntos
Hidroxiureia/metabolismo , Hidroxiureia/farmacologia , Hidroxiureia/uso terapêutico , Animais , Replicação do DNA/efeitos dos fármacos , Humanos , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/metabolismo , Fase S/efeitos dos fármacos
8.
Mol Cell ; 81(13): 2778-2792.e4, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932350

RESUMO

DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks. We show that stalled Polε drives nascent strand resection causing fork functional collapse, averted via checkpoint-dependent phosphorylation. Polε catalytic subunit Pol2 is phosphorylated on serine 430, influencing partitioning between polymerase and exonuclease active sites. A phosphormimetic S430D change reduces exonucleolysis in vitro and counteracts fork collapse. Conversely, non-phosphorylatable pol2-S430A expression causes resection-driven stressed fork defects. Our findings reveal that checkpoint kinases switch Polε to an exonuclease-safe mode preventing nascent strand resection and stabilizing stalled replication forks. Elective partitioning suppression has implications for the diverse Polε roles in genome integrity maintenance.


Assuntos
DNA Polimerase II/química , Exonucleases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/genética , Exonucleases/genética , Exonucleases/metabolismo , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Front Cell Dev Biol ; 9: 630777, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681209

RESUMO

The coordination of DNA replication and repair is critical for the maintenance of genome stability. It has been shown that the Mrc1-mediated S phase checkpoint inhibits DNA double-stranded break (DSB) repair through homologous recombination (HR). How the replication checkpoint inhibits HR remains only partially understood. Here we show that replication stress induces the suppression of both Sgs1/Dna2- and Exo1-mediated resection pathways in an Mrc1-dependent manner. As a result, the loading of the single-stranded DNA binding factor replication protein A (RPA) and Rad51 and DSB repair by HR were severely impaired under replication stress. Notably, the deletion of MRC1 partially restored the recruitment of resection enzymes, DSB end resection, and the loading of RPA and Rad51. The role of Mrc1 in inhibiting DSB end resection is independent of Csm3, Tof1, or Ctf4. Mechanistically, we reveal that replication stress induces global chromatin compaction in a manner partially dependent on Mrc1, and this chromatin compaction limits the access of chromatin remodeling factors and HR proteins, leading to the suppression of HR. Our study reveals a critical role of the Mrc1-dependent chromatin structure change in coordinating DNA replication and recombination under replication stress.

10.
Curr Genet ; 67(3): 369-382, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33427950

RESUMO

DNA replication checkpoint is a cell signaling pathway that is activated in response to perturbed replication. Although it is crucial for maintaining genomic integrity and cell survival, the exact mechanism of the checkpoint signaling remains to be understood. Emerging evidence has shown that RecQ helicases, a large family of helicases that are conserved from bacteria to yeasts and humans, contribute to the replication checkpoint as sensors, adaptors, or regulation targets. Here, we highlight the multiple functions of RecQ helicases in the replication checkpoint in four model organisms and present additional evidence that fission yeast RecQ helicase Rqh1 may participate in the replication checkpoint as a sensor.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , DNA Helicases/genética , Replicação do DNA/genética , RecQ Helicases/genética , Proteínas de Schizosaccharomyces pombe/genética , Humanos , Schizosaccharomyces/genética , Transdução de Sinais/genética
11.
Mol Cell Biol ; 40(17)2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32541066

RESUMO

Rad3 is the orthologue of ATR and the sensor kinase of the DNA replication checkpoint in Schizosaccharomyces pombe Under replication stress, it initiates checkpoint signaling at the forks necessary for maintaining genome stability and cell survival. To better understand the checkpoint initiation process, we have carried out a genetic screen in fission yeast by random mutation of the genome, looking for mutants defective in response to the replication stress induced by hydroxyurea. In addition to the previously reported mutant with a C-to-Y change at position 307 encoded by tel2 (tel2-C307Y mutant) (Y.-J. Xu, S. Khan, A. C. Didier, M. Wozniak, et al., Mol Cell Biol 39:e00175-19, 2019, https://doi.org/10.1128/MCB.00175-19), this screen has identified six mutations in rqh1 encoding a RecQ DNA helicase. Surprisingly, these rqh1 mutations, except for a start codon mutation, are all in the helicase domain, indicating that the helicase activity of Rqh1 plays an important role in the replication checkpoint. In support of this notion, integration of two helicase-inactive mutations or deletion of rqh1 generated a similar Rad3 signaling defect, and heterologous expression of human RECQ1, BLM, and RECQ4 restored the Rad3 signaling and partially rescued a rqh1 helicase mutant. Therefore, the replication checkpoint function of Rqh1 is highly conserved, and mutations in the helicase domain of these human enzymes may cause the checkpoint defect and contribute to the cancer predisposition syndromes.


Assuntos
Quinase do Ponto de Checagem 2/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , DNA Fúngico/biossíntese , Proteínas de Schizosaccharomyces pombe/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , DNA Helicases/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Instabilidade Genômica , Hidroxiureia/farmacologia , Proteínas Quinases/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais/efeitos dos fármacos
12.
Prep Biochem Biotechnol ; 50(2): 198-203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31755848

RESUMO

In Saccharomyces cerevisiae, Mrc1 (homolog of human Claspin and mediator of replication checkpoint) is not only a part of the replication machine, but also participates in the replication stress response when DNA replication is blocked by hydroxyurea. Since Mrc1 is expressed in a small amount in cells and has many proteins interacting with it as a mediator, it is difficult to obtain Mrc1 with high concentration and purity. This article reports the purification of a stable truncation of Mrc1 and the full length Mrc1. High concentration and high purity of Mrc1 was obtained and the three-dimensional structure of Mrc1 was analyzed, which is a ring with a hole in the center. At the same time, we found that Mrc1 has an interaction with Rad24-RFC a clamp loader in the replication checkpoint, and can form a complex with it, implying that we can assemble large replication checkpoint complexes in vitro. These results initially reveal the ring structure of Mrc1 and its interaction with Rad24-RFC in replication checkpoints in S. cerevisiae.


Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
13.
Curr Genet ; 66(1): 79-84, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31332476

RESUMO

During cell proliferation, the genome is constantly threatened by cellular and external factors. When the DNA is damaged, or when its faithful duplication is delayed by DNA polymerase stalling, the cells induce a coordinated response termed the DNA damage response (DDR) or checkpoint. Elg1 forms an RFC-like complex in charge of unloading the DNA polymerase processively factor PCNA during DNA replication and DNA repair. Using checkpoint-inducible strains, a recently published paper (Sau et al. in mBio 10(3):e01159-19. https://doi.org/10.1128/mbio.01159-19, 2019) uncovered a role for Elg1 in eliciting the DNA damage checkpoint (DC), one of the branches of the DDR. The apical kinase Mec1/ATR phosphorylates Elg1, as well as the adaptor proteins Rad9/53BP1 and Dpb11/TopBP1, which are recruited to the site of DNA damage to amplify the checkpoint signal. In the absence of Elg1, Rad9 and Dpb11 are recruited but fail to be phosphorylated and the signal is therefore not amplified. Thus, Elg1 appears to coordinate DNA repair and the induction of the DNA damage checkpoint.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , Proteínas Fúngicas/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Leveduras/genética , Leveduras/metabolismo , Reparo do DNA , Replicação do DNA
14.
Cell Cycle ; 18(21): 2817-2827, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31544596

RESUMO

Deoxyribonucleotide metabolites (dNTPs) are the substrates for DNA synthesis. It has been proposed that their availability influences the progression of the cell cycle during development and pathological situations such as tumor growth. The mechanism has remained unclear for the link between cell cycle and dNTP levels beyond their role as substrates. Here, we review recent studies concerned with the dynamics of dNTP levels in early embryos and the role of DNA replication checkpoint as a sensor of dNTP levels.


Assuntos
Ciclo Celular/fisiologia , Desoxirribonucleotídeos/biossíntese , Desoxirribonucleotídeos/química , Drosophila/embriologia , Animais , Divisão Celular/fisiologia , Replicação do DNA/genética , Drosophila/genética , Redes e Vias Metabólicas/fisiologia , Óvulo/crescimento & desenvolvimento
15.
Mol Cell Biol ; 39(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31332096

RESUMO

In response to perturbed DNA replication, ATR (ataxia telangiectasia and Rad3-related) kinase is activated to initiate the checkpoint signaling necessary for maintaining genome integrity and cell survival. To better understand the signaling mechanism, we carried out a large-scale genetic screen in fission yeast looking for mutants with enhanced sensitivity to hydroxyurea. From a collection of ∼370 primary mutants, we found a few mutants in which Rad3 (ATR ortholog)-mediated phospho-signaling was significantly compromised. One such mutant carried an uncharacterized mutation in tel2, a gene encoding an essential and highly conserved eukaryotic protein. Previous studies in various biological models have shown that Tel2 mainly functions in Tel2-Tti1-Tti2 (TTT) complex that regulates the steady-state levels of all phosphatidylinositol 3-kinase-like protein kinases, including ATR. We show here that although the levels of Rad3 and Rad3-mediated phospho-signaling in DNA damage checkpoint were moderately reduced in the tel2 mutant, the phospho-signaling in the DNA replication checkpoint was almost completely eliminated. In addition, the tel2 mutation caused telomere shortening. Since the interactions of Tel2 with Tti1 and Tti2 were significantly weakened by the mutation, destabilization of the TTT complex likely contributes to the observed checkpoint and telomere defects.


Assuntos
Quinase do Ponto de Checagem 2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Encurtamento do Telômero , Proteínas de Ligação a Telômeros/genética , Quinase do Ponto de Checagem 2/genética , Dano ao DNA/efeitos dos fármacos , Replicação do DNA , Hidroxiureia/farmacologia , Complexos Multiproteicos , Mutação de Sentido Incorreto , Schizosaccharomyces/metabolismo , Transdução de Sinais , Proteínas de Ligação a Telômeros/metabolismo
16.
Cancers (Basel) ; 11(6)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200459

RESUMO

Wee1 kinase is an inhibitor of cyclin-dependent kinase (cdk)s, crucial cell cycle progression drivers. By phosphorylating cdk1 at tyrosine 15, Wee1 inhibits activation of cyclin B-cdk1 (Cdk1), preventing cells from entering mitosis with incompletely replicated or damaged DNA. Thus, inhibiting Wee1, alone or in combination with DNA damaging agents, can kill cancer cells by mitotic catastrophe, a tumor suppressive response that follows mitosis onset in the presence of under-replicated or damaged DNA. AZD1775, an orally available Wee1 inhibitor, has entered clinical trials for cancer treatment following this strategy, with promising results. Recently, however, AZD1775 has been shown to inhibit also the polo-like kinase homolog Plk1 in vitro, casting doubts on its mechanism of action. Here we asked whether, in the clinically relevant concentration range, AZD1775 inhibited Wee1 or Plk1 in transformed and non-transformed human cells. We found that in the clinically relevant, nanomolar, concentration range AZD1775 inhibited Wee1 rather than Plk1. In addition, AZD1775 treatment accelerated mitosis onset overriding the DNA replication checkpoint and hastened Plk1-dependent phosphorylation. On the contrary selective Plk1 inhibition exerted opposite effects. Thus, at therapeutic concentrations, AZD1775 inhibited Wee1 rather than Plk1. This information will help to better interpret results obtained by using AZD1775 both in the clinical and experimental settings and provide a stronger rationale for combination therapies.

17.
Mol Cell Oncol ; 6(4): 1607455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31211234

RESUMO

Oncogene-induced replication stress (RS) plays an active role in tumorigenesis by promoting genomic instability but is also a challenge for cell proliferation. Recent evidence indicates that different types of cancer cells adapt to RS by overexpressing components of the ATR-CHK1 pathway that promote fork progression in a checkpoint-independent manner.

18.
Biochem Biophys Res Commun ; 510(4): 629-635, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30745106

RESUMO

Target of rapamycin complex 1 (TORC1) protein kinase, a master controller of cell growth, is thought to be involved in genome integrity. However, the molecular mechanisms associated with this are unclear. Here, we show that TORC1 inactivation causes decreases in the levels of a wide range of proteins involved in the DNA damage checkpoint (DDC) signaling including Tel1, Mre11, Rad9, Mrc1, and Chk1 in budding yeast. Furthermore, TORC1 inactivation compromised DDC activation, DNA repair, and cell survival after DNA damage. TORC1 inactivation promoted proteasomal degradation of Rad9 and Mre11 in a manner dependent on Skp1-Cullin-F-box protein (SCF). Finally, CDK promoted the degradation of Rad9. This study revealed that TORC1 is essential for genome integrity via the maintenance of DDC signaling.


Assuntos
Dano ao DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Replicação do DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Saccharomyces cerevisiae/genética
19.
Genes (Basel) ; 10(2)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30700024

RESUMO

DNA replication in eukaryotes is achieved by the activation of multiple replication origins which needs to be precisely coordinated in space and time. This spatio-temporal replication program is regulated by many factors to maintain genome stability, which is frequently threatened through stresses of exogenous or endogenous origin. Intra-S phase checkpoints monitor the integrity of DNA synthesis and are activated when replication forks are stalled. Their activation leads to the stabilization of forks, to the delay of the replication program by the inhibition of late firing origins, and the delay of G2/M phase entry. In some cell cycles during early development these mechanisms are less efficient in order to allow rapid cell divisions. In this article, we will review our current knowledge of how the intra-S phase checkpoint regulates the replication program in budding yeast and metazoan models, including early embryos with rapid S phases. We sum up current models on how the checkpoint can inhibit origin firing in some genomic regions, but allow dormant origin activation in other regions. Finally, we discuss how numerical and theoretical models can be used to connect the multiple different actors into a global process and to extract general rules.


Assuntos
Pontos de Checagem da Fase S do Ciclo Celular , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Modelos Teóricos , Leveduras
20.
Elife ; 82019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31889509

RESUMO

Replication checkpoint is essential for maintaining genome integrity in response to various replication stresses as well as during the normal growth. The evolutionally conserved ATR-Claspin-Chk1 pathway is induced during replication checkpoint activation. Cdc7 kinase, required for initiation of DNA replication at replication origins, has been implicated in checkpoint activation but how it is involved in this pathway has not been known. Here, we show that Cdc7 is required for Claspin-Chk1 interaction in human cancer cells by phosphorylating CKBD (Chk1-binding-domain) of Claspin. The residual Chk1 activation in Cdc7-depleted cells is lost upon further depletion of casein kinase1 (CK1γ1), previously reported to phosphorylate CKBD. Thus, Cdc7, in conjunction with CK1γ1, facilitates the interaction between Claspin and Chk1 through phosphorylating CKBD. We also show that, whereas Cdc7 is predominantly responsible for CKBD phosphorylation in cancer cells, CK1γ1 plays a major role in non-cancer cells, providing rationale for targeting Cdc7 for cancer cell-specific cell killing.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem/genética , Replicação do DNA/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Células HeLa , Humanos , Neoplasias/genética , Fosforilação/genética , Ligação Proteica/genética , Domínios Proteicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA