Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(26): e2308690, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38682484

RESUMO

Spindle assembly checkpoint (SAC) is a crucial safeguard mechanism of mitosis fidelity that ensures equal division of duplicated chromosomes to the two progeny cells. Impaired SAC can lead to chromosomal instability (CIN), a well-recognized hallmark of cancer that facilitates tumor progression; paradoxically, high CIN levels are associated with better therapeutic response and prognosis. However, the mechanism by which CIN determines tumor cell survival and therapeutic response remains poorly understood. Here, using a cross-omics approach, YY2 is identified as a mitotic regulator that promotes SAC activity by activating the transcription of budding uninhibited by benzimidazole 3 (BUB3), a component of SAC. While both conditions induce CIN, a defect in YY2/SAC activity enhances mitosis and tumor growth. Meanwhile, hyperactivation of SAC mediated by YY2/BUB3 triggers a delay in mitosis and suppresses growth. Furthermore, it is revealed that YY2/BUB3-mediated excessive CIN causes higher cell death rates and drug sensitivity, whereas residual tumor cells that survived DNA damage-based therapy have moderate CIN and increased drug resistance. These results provide insights into the role of SAC activity and CIN levels in influencing tumor cell survival and drug response, as well as suggest a novel anti-tumor therapeutic strategy that combines SAC activity modulators and DNA-damage agents.


Assuntos
Instabilidade Cromossômica , Neoplasias Colorretais , Progressão da Doença , Instabilidade Cromossômica/genética , Humanos , Camundongos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Animais , Linhagem Celular Tumoral , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Modelos Animais de Doenças
2.
Mater Today Bio ; 23: 100889, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149015

RESUMO

Aggressive benign, malignant and metastatic bone tumors can greatly decrease the quality of patients' lives and even lead to substantial mortality. Several clinical therapeutic strategies have been developed to treat bone tumors, including preoperative chemotherapy, surgical resection of the tumor tissue, and subsequent systemic chemo- or radiotherapy. However, those strategies are associated with inevitable drawbacks, such as severe side effects, substantial local tumor recurrence, and difficult-to-treat bone defects after tumor resection. To overcome these shortcomings and achieve satisfactory clinical outcomes, advanced bifunctional biomaterials which simultaneously promote bone regeneration and combat bone tumor growth are increasingly advocated. These bifunctional bone substitute materials fill bone defects following bone tumor resection and subsequently exert local anticancer effects. Here we describe various types of the most prevalent bone tumors and provide an overview of common treatment options. Subsequently, we review current progress regarding the development of bifunctional bone substitute materials combining osteogenic and anticancer efficacy. To this end, we categorize these biomaterials based on their anticancer mechanism deriving from i) intrinsic biomaterial properties, ii) local drug release of anticancer agents, and iii) oxidative stress-inducing and iv) hyperthermia-inducing biomaterials. Consequently, this review offers researchers, surgeons and oncologists an up-to-date overview of our current knowledge on bone tumors, their treatment options, and design of advanced bifunctional biomaterials with strong potential for clinical application in oncological orthopedics.

3.
Chemistry ; 29(8): e202203196, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36331360

RESUMO

As promising photonic material, phototheranostics can be activated in the laser irradiation range of tumor with sensitivity and spatiotemporal precision. However, it is difficult to completely eradicate solid tumors due to their irregularity and limited laser irradiation area. Herein, multi-stimulus responsive HA-Ce6@SWNHs were constructed with single-walled carbon nanohorns (SWNHs) and chlorine e6 (Ce6) modified hyaluronic acid (HA) via non-covalent binding. This SWNHs-based phototheranostics not only exhibited water dispersion but also could target tumor and be activated by near-infrared light for photodynamic therapy (PDT) and photothermal therapy (PTT). Additionally, HA-Ce6@SWNHs could be degraded by hyaluronidase in residual tumor cells, causing HA-Ce6 to fall off the SWNHs surfaces to restore autofluorescence, thus precisely guiding the programmed photodynamic treatments for residual tumor cells after the initial phototherapy. Thus, this work provides a rationally designed multiple-stimulus-response strategy to develop smart SWNHs-based phototheranostics for precise PDT/PTT and post-treatment imaging-guided PDT of residual tumor cells.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Humanos , Carbono , Neoplasia Residual/tratamento farmacológico , Fototerapia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/uso terapêutico
5.
Cancers (Basel) ; 13(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672204

RESUMO

The treatment of primary breast cancer has evolved over the past 50 years based on the concept that breast cancer is a systemic disease, with the escalation of adjuvant and neoadjuvant therapies and de-escalation of breast cancer surgery. Despite the development of these therapies, recurrence with distant metastasis during the 10 years after surgical treatment is observed, albeit infrequently. Recent advances in genomic analysis based on circulating tumor cells and circulating tumor DNA have enabled the development of targeted therapies based on genetic mutations in residual tumor cells. A paradigm shift involving the application of neoadjuvant chemotherapy (NAC) has enabled the prediction of treatment response and long-term prognoses; additional adjuvant chemotherapy targeting remaining tumor cells after NAC improves survival. The activation of antitumor immunity by anticancer agents may be involved in the eradication of residual tumor cells. Elucidation of the manner in which antitumor immunity is induced by anticancer agents and unknown factors, and the overcoming of drug resistance via the targeted eradication of residual tumor cells based on genomic profiles, will inevitably lead to the achievement of 0% distant recurrence and a complete cure for primary breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA