Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.456
Filtrar
1.
J Environ Manage ; 366: 121696, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39013313

RESUMO

The dune ecosystem plays a significant role in the global carbon cycle. The Horqin Sandy Land is a typical semi-arid fragile ecosystem in northern China. Understanding the magnitudes and dynamics of carbon dioxide fluxes within this region is essential for understanding the carbon balance. Used 6 years (2013-2018) measurements from an eddy-covariance system, we analyzed the dynamic patterns of net ecosystem carbon exchange (NEE), gross primary production (GPP), and ecosystem respiration (Reco) of the dune ecosystem in Horqin Sandy Land and examined their responses to climate factors with a focus on the precipitation. The results showed that the NEE of the dune ecosystem fluctuated from -166 to 100 gCO2·m-2·year-1 across the 6 growing seasons, with an average of -56 gCO2·m-2·year-1. The precipitation was not a key factor influencing the carbon flux variability. During the mid-growth stage, GPP was primarily affected by the effective precipitation frequency (R2 ranging from 0.65 to 0.85, P < 0.05), followed by fractional vegetation cover (R2 ranging from 0.65 to 0.68, P < 0.05). However, in the early and late growth stages, temperature predominantly drove the carbon flux (R2 = 0.75, P < 0.01). The interannual variability of carbon flux can be predominantly elucidated by phenological indicators such as CO2 uptake (CUstart), end of CO2 uptake (CUend), CO2 uptake period (CUP), and Spring lag. The results demonstrated the dune ecosystem is a weak carbon sink in semi-arid ecosystems. Furthermore, we emphasized the significance of effective precipitation frequency in regulating carbon fluxes. Our results provide a foundational understanding of the carbon balance in semi-arid ecosystems.

2.
Respir Care ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013571

RESUMO

BACKGROUND: The first aim of this study was to evaluate the capacity of electrical impedance tomography (EIT) to identify the effect of PEEP on regional ventilation distribution and the regional risk of collapse, overdistention, hypoventilation, and pendelluft in mechanically ventilated patients. The second aim was to evaluate the feasibility of EIT for estimating airway opening pressure (AOP). METHODS: The EIT signal was recorded both during baseline cyclic ventilation and slow insufflation for one breath for 9 subjects with moderate-to-severe ARDS. From these data, the AOP and volumes insufflated to lung regions with or without the risk of either collapse, overdistention, hypoventilation, or pendelluft were assessed at 3 PEEP levels (5, 10, and 15 cm H2O). PEEP levels were compared by Friedman analysis of variance and the AOP measured by EIT evaluated using an F-test and the Bland and Altman method. RESULTS: The volume for which there was no specific risk significantly decreased at the highest PEEP from 55 ± 31% tidal volume (VT) at PEEP 5 or 82 ± 18% VT at PEEP 10 to 10 ± 30% VT at PEEP 15 (P = .038 between PEEP 5 vs PEEP 15; P = .01 between PEEP 10 vs PEEP 15). The volume associated with overdistention significantly increased with increasing PEEP, whereas that associated with atelectrauma significantly decreased. Pendelluft significantly decreased with increasing PEEP: VT of 8.9 ± 18.6%, 3.6 ± 7.0%, and 3.2 ± 7.1% for PEEP 5, PEEP 10, and PEEP 15, respectively. The center of ventilation tended to increase in the dependent direction with higher PEEP. The AOPs assessed by EIT and from the pressure-volume curve were in good agreement (bias 0.48 cm H2O). CONCLUSIONS: Our results suggest that EIT could aid clinicians in making personalized and reasoned choices in setting the PEEP for subjects with ARDS.

3.
mSystems ; : e0078424, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980050

RESUMO

Campylobacter jejuni and Arcobacter butzleri are microaerobic food-borne human gastrointestinal pathogens that mainly cause diarrheal disease. These related species of the Campylobacteria class face variable atmospheric environments during infection and transmission, ranging from nearly anaerobic to aerobic conditions. Consequently, their lifestyles require that both pathogens need to adjust their metabolism and respiration to the changing oxygen concentrations of the colonization sites. Our transcriptomic and proteomic studies revealed that C. jejuni and A. butzleri, lacking a Campylobacteria-specific regulatory protein, C. jejuni Cj1608, or a homolog, A. butzleri Abu0127, are unable to reprogram tricarboxylic acid cycle or respiration pathways, respectively, to produce ATP efficiently and, in consequence, adjust growth to changing oxygen supply. We propose that these Campylobacteria energy and metabolism regulators (CemRs) are long-sought transcription factors controlling the metabolic shift related to oxygen availability, essential for these bacteria's survival and adaptation to the niches they inhabit. Besides their significant universal role in Campylobacteria, CemRs, as pleiotropic regulators, control the transcription of many genes, often specific to the species, under microaerophilic conditions and in response to oxidative stress. IMPORTANCE: C. jejuni and A. butzleri are closely related pathogens that infect the human gastrointestinal tract. In order to infect humans successfully, they need to change their metabolism as nutrient and respiratory conditions change. A regulator called CemR has been identified, which helps them adapt their metabolism to changing conditions, particularly oxygen availability in the gastrointestinal tract so that they can produce enough energy for survival and spread. Without CemR, these bacteria, as well as a related species, Helicobacter pylori, produce less energy, grow more slowly, or, in the case of C. jejuni, do not grow at all. Furthermore, CemR is a global regulator that controls the synthesis of many genes in each species, potentially allowing them to adapt to their ecological niches as well as establish infection. Therefore, the identification of CemR opens new possibilities for studying the pathogenicity of C. jejuni and A. butzleri.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38981606

RESUMO

Lower oxidative capacity in skeletal muscles (SKMs) is a prevailing cause of metabolic diseases. Exercise not only enhances the fatty acid oxidation (FAO) capacity of SKMs but also increases lactate levels. Given that lactate may contribute to tricarboxylic acid cycle (TCA) flux and impact monocarboxylate transporter 1 in the SKMs, we hypothesize that lactate can influence glucose and fatty acid (FA) metabolism. To test this hypothesis, we investigated the mechanism underlying lactate-driven FAO regulation in the SKM of mice with diet-induced obesity (DIO). Lactate was administered to DIO mice immediately after exercise over three weeks. We found that increased lactate levels enhanced energy expenditure mediated by fat metabolism during exercise recovery and decreased triglyceride levels in DIO mice SKMs. To determine the lactate-specific effects without exercise, we administered lactate to mice on a high-fat diet (HFD) for eight weeks. Similar to our exercise conditions, lactate increased FAO, TCA cycle activity, and mitochondrial respiration in the SKMs of HFD-fed mice. Additionally, under sufficient FA conditions, lactate increased uncoupling protein-3 abundance via the NADH/NAD+ shuttle. Conversely ATP synthase abundance decreased in the SKMs of HFD mice. Taken together, our results suggest that lactate amplifies the adaptive increase in FAO capacity mediated by the TCA cycle and mitochondrial respiration in SKMs under sufficient FA abundance.

5.
Front Microbiol ; 15: 1388961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993499

RESUMO

In oxidative phosphorylation, respiratory complex I serves as an entry point in the electron transport chain for electrons generated in catabolic processes in the form of NADH. An ancestral version of the complex, lacking the NADH-oxidising module, is encoded in a significant number of bacterial genomes. Amongst them is Desulfitobacterium hafniense, a strict anaerobe capable of conserving energy via organohalide respiration. This study investigates the role of the complex I-like enzyme in D. hafniense energy metabolism using rotenone as a specific complex I inhibitor under different growth conditions. The investigation revealed that the complex I-like enzyme was essential for growth with lactate and pyruvate but not in conditions involving H2 as an electron donor. In addition, a previously published proteomic dataset of strain DCB-2 was analysed to reveal the predominance of the complex under different growth conditions and to identify potential redox partners. This approach revealed seven candidates with expression patterns similar to Nuo homologues, suggesting the use of diverse electron sources. Based on these results, we propose a model where the complex I-like enzyme serves as an electron entry point into the respiratory chain for substrates delivering electrons within the cytoplasm, such as lactate or pyruvate, with ferredoxins shuttling electrons to the complex.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39002080

RESUMO

We evaluated the physiological characteristics of chemical-tolerant cladocerans. Over the course of 26 generations (F25), Daphnia magna was continuously exposed to pirimicarb (carbamate) solutions (0, 3.8, 7.5, and 15 µg/L) in sub-lethal or lethal levels. The 48 h EC50 values (29.2-29.9 µg/L) for 7.5 and 15 µg/L exposure groups were found to be nearly two times higher than that in the control (17.2 µg/L). Subsequently, we investigated whether the extinction probability changed when the chemical-tolerant daphnids were fed two different types of food, Chlorella vulgaris and Synechococcus leopoliensis. Furthermore, we ascertained how chemical tolerance influences respiration and depuration rates. The 48 h EC50 value was positively related to the extinction probability when the daphnids were fed S. leopoliensis. Because the measured lipid content of S. leopoliensis was three times lower than that of C. vulgaris, the tolerant daphnids struggled under nutrient-poor conditions. Respiration rates across all pirimicarb treatment groups were higher than those in the control group, suggesting that they may produce large amounts of energy through respiration to maintain the chemical tolerance. Since the pirimicarb depuration rate for 7.5 µg/L exposure groups was higher than that in the control, the altered metabolic/excretion rate may be one factor for acquiring chemical tolerance. These altered physiological characteristics are crucial parameters for evaluating the mechanisms of chemical tolerance and associated fitness costs.

7.
Sensors (Basel) ; 24(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39001094

RESUMO

Breathing is one of the body's most basic functions and abnormal breathing can indicate underlying cardiopulmonary problems. Monitoring respiratory abnormalities can help with early detection and reduce the risk of cardiopulmonary diseases. In this study, a 77 GHz frequency-modulated continuous wave (FMCW) millimetre-wave (mmWave) radar was used to detect different types of respiratory signals from the human body in a non-contact manner for respiratory monitoring (RM). To solve the problem of noise interference in the daily environment on the recognition of different breathing patterns, the system utilised breathing signals captured by the millimetre-wave radar. Firstly, we filtered out most of the static noise using a signal superposition method and designed an elliptical filter to obtain a more accurate image of the breathing waveforms between 0.1 Hz and 0.5 Hz. Secondly, combined with the histogram of oriented gradient (HOG) feature extraction algorithm, K-nearest neighbours (KNN), convolutional neural network (CNN), and HOG support vector machine (G-SVM) were used to classify four breathing modes, namely, normal breathing, slow and deep breathing, quick breathing, and meningitic breathing. The overall accuracy reached up to 94.75%. Therefore, this study effectively supports daily medical monitoring.


Assuntos
Algoritmos , Redes Neurais de Computação , Radar , Respiração , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Humanos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação
8.
Neurobiol Dis ; 199: 106592, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971479

RESUMO

Failure to recover from repeated hypercapnia and hypoxemia (HH) challenges caused by severe GCS and postictal apneas may contribute to sudden unexpected death in epilepsy (SUDEP). Our previous studies found orexinergic dysfunction contributes to respiratory abnormalities in a preclinical model of SUDEP, Kcna1-/- mice. Here, we developed two gas challenges consisting of repeated HH exposures and used whole body plethysmography to determine whether Kcna1-/- mice have detrimental ventilatory responses. Kcna1-/- mice exhibited an elevated ventilatory response to a mild repeated hypercapnia-hypoxia (HH) challenge compared to WT. Moreover, 71% of Kcna1-/- mice failed to survive a severe repeated HH challenge, whereas all WT mice recovered. We next determined whether orexin was involved in these differences. Pretreating Kcna1-/- mice with a dual orexin receptor antagonist rescued the ventilatory response during the mild challenge and all subjects survived the severe challenge. In ex vivo extracellular recordings in the lateral hypothalamus of coronal brain slices, we found reducing pH either inhibits or stimulates putative orexin neurons similar to other chemosensitive neurons; however, a significantly greater percentage of putative orexin neurons from Kcna1-/-mice were stimulated and the magnitude of stimulation was increased resulting in augmentation of the calculated chemosensitivity index relative to WT. Collectively, our data suggest that increased chemosensitive activity of orexin neurons may be pathologic in the Kcna1-/- mouse model of SUDEP, and contribute to elevated ventilatory responses. Our preclinical data suggest that those at high risk for SUDEP may be more sensitive to HH challenges, whether induced by seizures or other means; and the depth and length of the HH exposure could dictate the probability of survival.

9.
Bull Exp Biol Med ; 177(1): 22-25, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38954297

RESUMO

We studied the respiratory activity of mitochondria in peripheral blood leukocytes from 36 patients with coronary heart disease (CHD) and a history of ventricular tachyarrhythmias required cardioverter-defibrillator implantation. The measurements were carried out in incubation buffers with different oxidation substrates (succinate and pyruvate-malate mixture). In pyruvate-malate incubation buffer, oxygen consumption rate and respiratory control coefficients in patients with triggered device did not differ significantly from those in patients without cardioverter-defibrillator triggering. At the same time, respiratory control coefficients were below the reference values. In succinate buffer, values of mitochondrial parameters were significantly lower in patients with triggered devices. Our findings indicate that mitochondria of patients with non-triggered cardioverters-defibrillators have better functional and metabolic plasticity. It was concluded that activity of respiratory processes in mitochondria could be an indicator that should be taken into the account when assessing the risk of developing ventricular tachyarrhythmias.


Assuntos
Doença das Coronárias , Desfibriladores Implantáveis , Consumo de Oxigênio , Humanos , Masculino , Pessoa de Meia-Idade , Doença das Coronárias/fisiopatologia , Doença das Coronárias/terapia , Consumo de Oxigênio/fisiologia , Feminino , Mitocôndrias/metabolismo , Idoso , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/terapia , Ácido Pirúvico/metabolismo , Ácido Succínico/metabolismo , Malatos/metabolismo , Mitocôndrias Cardíacas/metabolismo
10.
bioRxiv ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38979229

RESUMO

Over the past 15 years, hundreds of previously undiscovered bacterial small open reading frame (sORF)-encoded polypeptides (SEPs) of fewer than fifty amino acids have been identified, and biological functions have been ascribed to an increasing number of SEPs from intergenic regions and small RNAs. However, despite numbering in the dozens in Escherichia coli, and hundreds to thousands in humans, same-strand nested sORFs that overlap protein coding genes in alternative reading frames remain understudied. In order to provide insight into this enigmatic class of unannotated genes, we characterized GndA, a 36-amino acid, heat shock-regulated SEP encoded within the +2 reading frame of the gnd gene in E. coli K-12 MG1655. We show that GndA pulls down components of respiratory complex I (RCI) and is required for proper localization of a RCI subunit during heat shock. At high temperature GndA deletion (ΔGndA) cells exhibit perturbations in cell growth, NADH+/NAD ratio, and expression of a number of genes including several associated with oxidative stress. These findings suggest that GndA may function in maintenance of homeostasis during heat shock. Characterization of GndA therefore supports the nascent but growing consensus that functional, overlapping genes occur in genomes from viruses to humans.

11.
Am J Primatol ; : e23661, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951734

RESUMO

Respiration is an invaluable signal that facilitates the real-time observation of physiological dynamics. In recent years, the advancement of noncontact measurement technology has gained momentum in capturing physiological activities in natural settings. This technology is anticipated to be found not only in humans but also in nonhuman primates. Currently, the predominant noncontact approach for nonhuman animals involves measuring vital signs through subtle variations in skin color. However, this approach is limited when addressing areas of the body covered with hair or when working in outdoor settings under fluctuating sunlight. To overcome this issue, we focused on noncontact respiratory measurements using millimeter-wave radar. Millimeter-wave radar systems, which employ millimeter waves that can penetrate animal fur and estimate respiration-derived periodic body motion, exhibit minimal susceptibility to sunlight interference. Thus, this method shows potential for conducting noncontact vital measurements in natural and outdoor settings. In this study, we validated a millimeter-wave radar methodology for capturing respiration in outdoor-housed rhesus macaques (Macaca mulatta). The radar was positioned beyond the captive enclosure and maintained at a distance >5 m from the target. Millimeter waves were transmitted to the target, and the reflected waves were used to estimate skin surface displacement associated with respiration. The results revealed periodic skin surface displacement, and the estimated respiratory rates weres within the reported range of respiratory rates for rhesus macaques. These results suggest the potential applicability of millimeter-wave radar for noncontact respiration monitoring in outdoor-living macaques without anesthesia or immobilization. The continued advancement of noncontact vital measurement technology will contribute to understanding primate mental and physical dynamics during their daily life.

12.
Front Physiol ; 15: 1406635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974521

RESUMO

The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during ß-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.

13.
Front Mol Biosci ; 11: 1378536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983247

RESUMO

Mitochondrial function analysis is a well-established method used in preclinical and clinical investigations to assess pathophysiological changes in various disease states, including traumatic brain injury (TBI). Although there are multiple approaches to assess mitochondrial function, one common method involves respirometric assays utilizing either Clark-type oxygen electrodes or fluorescent-based Seahorse analysis (Agilent). However, these functional analysis methods are typically limited to the availability of freshly isolated tissue samples due to the compromise of the electron transport chain (ETC) upon storage, caused by freeze-thaw-mediated breakdown of mitochondrial membranes. In this study, we propose and refine a method for evaluating electron flux through the ETC, encompassing complexes I, II, and IV, in frozen homogenates or mitochondrial samples within a single well of a Seahorse plate. Initially, we demonstrate the impact of TBI on freshly isolated mitochondria using the conventional oxidative phosphorylation protocol (OxPP), followed by a comparison with ETC analysis conducted on frozen tissue samples within the context of a controlled cortical impact (CCI) model of TBI. Additionally, we explore the effects of mitochondrial isolation from fresh versus snap-frozen brain tissues and their storage at -80°C, assessing its impact on electron transport chain protocol (ETCP) activity. Our findings indicate that while both sets of samples were frozen at a single time point, mitochondria from snap-frozen tissues exhibited reduced injury effects compared to preparations from fresh tissues, which were either homogenized or isolated into mitochondria and subsequently frozen for later use. Thus, we demonstrate that the preparation of homogenates or isolated mitochondria can serve as an appropriate method for storing brain samples, allowing for later analysis of mitochondrial function, following TBI using ETCP.

14.
Glob Chang Biol ; 30(7): e17394, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988095

RESUMO

Water-logged peatlands store tremendous amounts of soil carbon (C) globally, accumulating C over millennia. As peatlands become disturbed by human activity, these long-term C stores are getting destabilized and ultimately released as greenhouse gases that may exacerbate climate change. Oxidation of the dissolved organic carbon (DOC) mobilized from disturbed soils to streams and canals may be one avenue for the transfer of previously stored, millennia-aged C to the atmosphere. However, it remains unknown whether aged peat-derived DOC undergoes oxidation to carbon dioxide (CO2) following disturbance. Here, we use a new approach to measure the radiocarbon content of CO2 produced from the oxidation of DOC in canals overlying peatland soils that have undergone widespread disturbance in Indonesia. This work shows for the first time that aged DOC mobilized from drained and burned peatland soils is susceptible to oxidation by both microbial respiration and photomineralization over aquatic travel times for DOC. The bulk radiocarbon age of CO2 produced during canal oxidation ranged from modern to ~1300 years before present. These ages for CO2 were most strongly influenced by canal water depth, which was proportional to the water table level where DOC is mobilized from disturbed soils to canals. Canal microbes preferentially respired older or younger organic C pools to CO2, and this may have been facilitated by the use of a small particulate organic C pool over the dissolved pool. Given that high densities of canals are generally associated with lower water tables and higher fire risk, our findings suggest that peatland areas with high canal density may be a hotspot for the loss of aged C on the landscape. Taken together, the results of this study show how and why aquatic processing of organic C on the landscape can enhance the transfer of long-term peat C stores to the atmosphere following disturbance.


Assuntos
Dióxido de Carbono , Carbono , Solo , Solo/química , Dióxido de Carbono/análise , Carbono/análise , Indonésia , Oxirredução
15.
Adv Biol (Weinh) ; : e2300445, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979843

RESUMO

Aging and regeneration are opposite cellular processes. Aging refers to progressive dysfunction in most cells and tissues, and regeneration refers to the replacement of damaged or dysfunctional cells or tissues with existing adult or somatic stem cells. Various studies have shown that aging is accompanied by decreased regenerative abilities, indicating a link between them. The performance of any cellular process needs to be supported by the energy that is majorly produced by mitochondria. Thus, mitochondria may be a link between aging and regeneration. It should be interesting to discuss how mitochondria behave during aging and regeneration. The changes of mitochondria in aging and regeneration discussed in this review can provide a timely and necessary study of the causal roles of mitochondrial homeostasis in longevity and health.

16.
Sci Total Environ ; 946: 174423, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969114

RESUMO

Exploring the influences of nitrogen deposition on soil carbon (C) flux is necessary for predicting C cycling processes; however, few studies have investigated the effects of nitrogen deposition on soil respiration (Rs), autotrophic respiration (Ra) and heterotrophic respiration (Rh) across urban-rural forests. In this study, a 4-year simulated nitrogen deposition experiment was conducted by treating the experimental plots with 0, 50, or 100 kg·ha-1·year-1 of nitrogen to check out the mechanisms of nitrogen deposition on Rs, Ra, and Rh in urban-rural forests. Our finding indicated a positive association between soil temperature and Rs. Soil temperature sensitivity was significantly suppressed in the experimental plots treated with 100 kg·ha-1·year-1 of nitrogen only in terms of the urban forest Rs and Ra and the rural forest Ra. Nitrogen treatment did not significantly increase Rs and had different influencing mechanisms. In urban forests, nitrogen addition contributed to Rh by increasing soil microbial biomass nitrogen and inhibited Ra by increasing soil ammonium­nitrogen concentration. In suburban forests, the lack of response of Rh under nitrogen addition was due to the combined effects of soil ammonium­nitrogen and microbial biomass nitrogen; the indirect effects from nitrate­nitrogen also contributed to a divergent effect on Ra. In rural forests, the soil pH, dissolved organic C, fine root biomass, and microbial biomass C concentration were the main factors mediating Rs and its components. In summary, the current rate of nitrogen deposition is unlikely to result in significant increases in soil C release in urban-rural forests, high nitrogen deposition is beneficial for reducing the temperature sensitivity of Rs in urban forests. The findings grant a groundwork for predicting responses of forest soil C cycling to global change in the context of urban expansion.

17.
Trials ; 25(1): 431, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956664

RESUMO

BACKGROUND: Use of sedatives and analgesics is associated with the occurrence of delirium in critically ill patients receiving mechanical ventilation. Dexmedetomidine reduces the occurrence of delirium but may cause hypotension, bradycardia, and insufficient sedation. This substudy aims to determine whether the combination of esketamine with dexmedetomidine can reduce the side effects and risk of delirium than dexmedetomidine alone in mechanically ventilated patients. METHODS: This single-center, randomized, active-controlled, superiority trial will be conducted at The First Affiliated Hospital of Nanjing Medical University. A total of 134 mechanically ventilated patients will be recruited and randomized to receive either dexmedetomidine alone or esketamine combined with dexmedetomidine, until extubation or for a maximum of 14 days. The primary outcome is the occurrence of delirium, while the second outcomes include the number of delirium-free days; subtype, severity, and duration of delirium; time to first onset of delirium; total dose of vasopressors and antipsychotics; duration of mechanical ventilation; ICU and hospital length of stay (LOS); accidental extubation, re-intubation, re-admission; and mortality in the ICU at 14 and 28 days. DISCUSSION: There is an urgent need for a new combination regimen of dexmedetomidine due to its evident side effects. The combination of esketamine and dexmedetomidine has been applied throughout the perioperative period. However, there is still a lack of evidence on the effects of this regimen on delirium in mechanically ventilated ICU patients. This substudy will evaluate the effects of the combination of esketamine and dexmedetomidine in reducing the risk of delirium for mechanically ventilated patients in ICU, thus providing evidence of this combination to improve the short-term prognosis. The study protocol has obtained approval from the Medical Ethics Committee (ID: 2022-SR-450). TRIAL REGISTRATION: ClinicalTrials.gov: NCT05466708, registered on 20 July 2022.


Assuntos
Delírio , Dexmedetomidina , Quimioterapia Combinada , Hipnóticos e Sedativos , Unidades de Terapia Intensiva , Ketamina , Ensaios Clínicos Controlados Aleatórios como Assunto , Respiração Artificial , Humanos , Dexmedetomidina/administração & dosagem , Dexmedetomidina/efeitos adversos , Dexmedetomidina/uso terapêutico , Ketamina/administração & dosagem , Ketamina/efeitos adversos , Hipnóticos e Sedativos/efeitos adversos , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/uso terapêutico , Delírio/prevenção & controle , Resultado do Tratamento , Tempo de Internação , Estado Terminal , China , Fatores de Tempo , Feminino , Masculino
18.
J Cancer Res Clin Oncol ; 150(7): 338, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976072

RESUMO

OBJECTIVE: Glioma is a leading cause of mortality worldwide, its recurrence poses a major challenge in achieving effective treatment outcomes. Cancer stem cells (CSCs) have emerged as key contributors to tumor relapse and chemotherapy resistance, making them attractive targets for glioma cancer therapy. This study investigated the potential of FERMT1 as a prognostic biomarker and its role in regulating stemness through cell cycle in glioma. METHODS: Using data from TCGA-GBM, GSE4290, GSE50161 and GSE147352 for analysis of FERMT1 expression in glioma tissues. Then, the effects of FERMT1 knockdown on cell cycle, proliferation, sphere formation ability, invasion and migration were investigated. The influences of FERMT1 on expression of glycolysis-related proteins and levels of ATP, glucose, lactate and G6PDH were also explored. Furthermore, the effects of FERMT1 knockdown on cellular metabolism were evidenced. RESULTS: Significant upregulation of FERMT1 in glioma tissues was observed. Silencing FERMT1 not only affected the cell cycle but also led to a notable reduction in proliferation, invasion and migration. The expression of glycolysis-associated proteins including GLUT1, GLUT3, GLUT4, and SCO2 were reduced by FERMT1 knockdown, resulted in increased ATP and glucose as well as decreased lactic acid and G6PDH levels. FERMT1 knockdown also inhibited cellular metabolism. Moreover, FERMT1 knockdown significantly reduced sphere diameter, along with inhibiting the expression of transcription factors associated with stemness in glioma cells. CONCLUSION: These findings demonstrated that FERMT1 could be an ideal target for the advancement of innovative strategies against glioma treatment via modulating cellular process involved in stemness regulation and metabolism.


Assuntos
Neoplasias Encefálicas , Proliferação de Células , Glioma , Proteínas de Membrana , Proteínas de Neoplasias , Células-Tronco Neoplásicas , Humanos , Glioma/patologia , Glioma/genética , Glioma/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular , Glicólise , Prognóstico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Ciclo Celular
19.
Biochim Biophys Acta Bioenerg ; : 149489, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009175

RESUMO

Cytochrome bds are bacterial terminal oxidases expressed under low oxygen conditions, and they are important for the survival of many pathogens and hence potential drug targets. The largest subunit CydA contains the three redox-active cofactors heme b558, heme b595 and the active site heme d. One suggested proton transfer pathway is found at the interface between the CydA and the other major subunit CydB. Here we have studied the O2 reduction mechanism in E. coli cyt. bd-I using the flow-flash technique and focused on the mechanism, kinetics and pathway for proton transfer. Our results show that the peroxy (P) to ferryl (F) transition, coupled to the oxidation of the low-spin heme b558 is pH dependent, with a maximum rate constant (~104 s-1) that is slowed down at higher pH. We assign this behavior to rate-limitation by internal proton transfer from a titratable residue with pKa ~ 9.7. Proton uptake from solution occurs with the same P➔F rate constant. Site-directed mutagenesis shows significant effects on catalytic turnover in the CydB variants Asp58B➔Asn and Asp105B➔Asn variants consistent with them playing a role in proton transfer. Furthermore, in the Asp105B➔Asn variant, the reactions up to P formation occur essentially as in the wildtype bd-I, but the P➔F transition is specifically inhibited, supporting a direct and specific role for Asp105B in the functional proton transfer pathway in bd-I. We further discuss the possible identity of the high pKa proton donor, and the conservation pattern of the Asp-105B in the cyt. bd superfamily.

20.
Reprod Domest Anim ; 59(7): e14664, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010850

RESUMO

In several mammalian species, the measurement of mitochondrial oxygen consumption (MITOX) under different metabolic conditions has demonstrated a positive correlation with sperm motility and may be a sensitive indicator of mitochondrial health. In general, the maintenance of sperm motility and many key sperm functions and fertilizing events are heavily energy-dependent processes, and some species-specific substrate preferences exist. Although canine sperm have been known to undergo capacitation and maintain motility with supplementation of a wide range of energy substrates, the relationship between mitochondrial function, and the maintenance of oxidative metabolism and sperm motility remain unclear. The objective of this study was to explore the metabolic flexibility of canine sperm, and to investigate the relationship between mitochondrial function, and maintenance of motility under differing nutrient conditions. We explored substrate preferences and the bioenergetics underlying maintenance of canine sperm motility by monitoring mitochondrial oxidative function and sperm kinematics in the presence of mitochondrial effector drug treatments: FCCP, antimycin (ANTI), and oligomycin (OLIGO). We hypothesized that canine sperm possess the ability to use compensatory pathways and utilize diverse nutrient sources in the maintenance of motility. Oxygen consumption (change in pO2, oxygen partial pressure) and sperm kinematics (CASA) were measured concurrently (t0-t30) to assess the relationship between oxidative metabolism and maintenance of sperm motility in dogs. Four media were tested: containing glucose, lactate, and pyruvate (GLP), containing glucose (G), fructose (F), or lactate and pyruvate (LP). In the absence of pharmacological inhibition of the electron transport chain, energetic substrate had no effect on sperm kinematics in fertile dogs. Following mitochondrial disruption by ANTI and OLIGO, mitochondrial oxygen consumption was negatively correlated with several sperm motility parameters in GLP, G, F, and LP media. In every media, FCCP treatment quickly induced significantly higher oxygen consumption than in untreated sperm, and spare respiratory capacity, the maximal inducible oxidative metabolism, was high. With respiratory control ratios RCR >1 there was no indication of bioenergetic dysfunction in any media type, indicating that sperm mitochondria of fertile dogs have a high capacity for substrate oxidation and ATP turnover regardless of substrate. Our results suggest MITOX assessment is a valuable tool for assessing mitochondrial functionality, and that canine sperm employ flexible energy management systems which may be exploited to improve sperm handling and storage.


Assuntos
Mitocôndrias , Consumo de Oxigênio , Motilidade dos Espermatozoides , Espermatozoides , Animais , Masculino , Cães , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Espermatozoides/fisiologia , Espermatozoides/efeitos dos fármacos , Metabolismo Energético , Antimicina A/farmacologia , Antimicina A/análogos & derivados , Fertilidade/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA