Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Rep ; 42(12): 113403, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979174

RESUMO

The inheritance of a functional endoplasmic reticulum (ER) is ensured by the ER stress surveillance (ERSU) pathway. Here, we made the unexpected discovery that reticulon 1 (Rtn1) and Yop1, well-known ER-curvature-generating proteins, each possess two sphingolipid-binding motifs within their transmembrane domains and that these motifs recognize the ER-stress-induced sphingolipid phytosphingosine (PHS), resulting in an ER inheritance block. Upon binding PHS, Rtn1/Yop1 accumulate on the ER tubule, poised to enter the emerging daughter cell, and cause its misdirection to the bud scars (i.e., previous cell division sites). Amino acid changes in the conserved PHS-binding motifs preclude Rtn1 or Yop1 from binding PHS and diminish their enrichment on the tubular ER, ultimately preventing the ER-stress-induced inheritance block. Conservation of these sphingolipid-binding motifs in human reticulons suggests that sphingolipid binding to Rtn1 and Yop1 represents an evolutionarily conserved mechanism that enables cells to respond to ER stress.


Assuntos
Saccharomyces cerevisiae , Esfingolipídeos , Humanos , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Retículo Endoplasmático/metabolismo , Pontos de Checagem do Ciclo Celular , Estresse do Retículo Endoplasmático
2.
Traffic ; 23(9): 462-473, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36040076

RESUMO

Endomembrane system compartments are significant elements in virtually all eukaryotic cells, supporting functions including protein synthesis, post-translational modifications and protein/lipid targeting. In terms of membrane area the endoplasmic reticulum (ER) is the largest intracellular organelle, but the origins of proteins defining the organelle and the nature of lineage-specific modifications remain poorly studied. To understand the evolution of factors mediating ER morphology and function we report a comparative genomics analysis of experimentally characterized ER-associated proteins involved in maintaining ER structure. We find that reticulons, REEPs, atlastins, Ufe1p, Use1p, Dsl1p, TBC1D20, Yip3p and VAPs are highly conserved, suggesting an origin at least as early as the last eukaryotic common ancestor (LECA), although many of these proteins possess additional non-ER functions in modern eukaryotes. Secondary losses are common in individual species and in certain lineages, for example lunapark is missing from the Stramenopiles and the Alveolata. Lineage-specific innovations include protrudin, Caspr1, Arl6IP1, p180, NogoR, kinectin and CLIMP-63, which are restricted to the Opisthokonta. Hence, much of the machinery required to build and maintain the ER predates the LECA, but alternative strategies for the maintenance and elaboration of ER shape and function are present in modern eukaryotes. Moreover, experimental investigations for ER maintenance factors in diverse eukaryotes are expected to uncover novel mechanisms.


Assuntos
Retículo Endoplasmático , Células Eucarióticas , Retículo Endoplasmático/metabolismo , Transporte Proteico
3.
J Clin Med ; 10(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34830564

RESUMO

Neurodegenerative diseases (NDs) belong to the top global causes of mortality. Diagnostic approaches to improve early diagnosis and differentiation of these diseases are constantly being sought. Therefore, we aimed to assess the cerebrospinal fluid (CSF) concentrations of Reticulon 4 (RTN4) in patients with neurodegenerative diseases and evaluate the potential clinical usefulness of this protein. RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. According to our best knowledge, this is the first investigation providing the data concerning the dynamic of CSF RTN4 protein levels in patients with different NDs. METHODS: Overall, 77 newly diagnosed patients with neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), as well as 21 controls, were enrolled in the study. The CSF concentrations of tested proteins were assessed using immunological assays. RESULTS: We revealed significantly higher CSF RTN4A levels in patients with AD, PD, and MS in comparison to the controls. Moreover, the comparative analysis of RTN4 concentration between different neurodegenerative diseases revealed the highest concentration of RTN4A in AD patients and a statistically significant difference between AD vs. PD, and AD vs. MS groups. The increased CSF level of the protein correlated with Tau, and pTau181 proteins in AD as well as in PD patients. CONCLUSIONS: Our study presents a previously not identified clinical utility of RTN4 in the differential diagnosis of neurodegenerative diseases.

4.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924890

RESUMO

Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Nogo/metabolismo , Animais , Humanos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/terapia
5.
Autophagy ; 17(4): 1037-1039, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33554711

RESUMO

Together with the proteasome, macroautophagy is a main pathway for the degradation of intracellular elements. Endoplasmic reticulum (ER)-autophagy i.e. reticulophagy/ER-phagy leads to the encapsulation of pieces of the ER in forming autophagosomes. This is generally followed by fusion with lysosomes and degradation of these ER components by lysosomal hydrolases. Recent work by our group shows that ER elements could also be incorporated into late endosomes and later be released by a secretory mechanism which we will herein refer to as secretory reticulophagy/ER-phagy (SERP). In the absence of macroautophagy, such as by knocking out Atg5, SERP is more efficient, leading to an increased secretion of MAP1LC3B-II and LC3-interacting region (LIR)-containing proteins of the ER, reticulons and atlastins. In this scenario, neurites grow longer and neuronal polarity is altered. In the absence of SERP, such as by knocking out Vamp7, secretion of MAP1LC3B-II, ER-LIR containing proteins and neurite growth are severely inhibited. We argue that SERP might be a main secretory mechanism bypassing the Golgi apparatus, and that it is particularly active and important in neurite growth.


Assuntos
Autofagia , Neuritos , Autofagossomos , Retículo Endoplasmático , Lisossomos
6.
Cell Mol Neurobiol ; 41(6): 1157-1174, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504327

RESUMO

In the last few decades, cytoplasmic organellar dysfunction, such as that of the endoplasmic reticulum (ER), has created a new area of research interest towards the development of serious health maladies including neurodegenerative diseases. In this context, the extensively dispersed family of ER-localized proteins, i.e. reticulons (RTNs), is gaining interest because of its regulative control over neural regeneration. As most neurodegenerative diseases are pathologically manifested with the accretion of misfolded proteins with subsequent induction of ER stress, the regulatory role of RTNs in neural dysfunction cannot be ignored. With the limited information available in the literature, delineation of the functional connection between rising consequences of neurodegenerative diseases and RTNs need to be elucidated. In this review, we provide a broad overview on the recently revealed regulatory roles of reticulons in the pathophysiology of several health maladies, with special emphasis on neurodegeneration. Additionally, we have also recapitulated the decisive role of RTN4 in neurite regeneration and highlighted how neurodegeneration and proteinopathies are mechanistically linked with each other through specific RTN paralogues. With the recent findings advocating zebrafish Rtn4b (a mammalian Nogo-A homologue) downregulation following central nervous system (CNS) lesion, RTNs provides new insight into the CNS regeneration. However, there are controversies with respect to the role of Rtn4b in zebrafish CNS regeneration. Given these controversies, the connection between the unique regenerative capabilities of zebrafish CNS by distinct compensatory mechanisms and Rtn4b signalling pathway could shed light on the development of new therapeutic strategies against serious neurodegenerative diseases.


Assuntos
Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Neurogênese/fisiologia , Animais , Humanos , Proteínas da Mielina/metabolismo , Proteínas Nogo/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
7.
Biochim Biophys Acta Mol Cell Res ; 1867(9): 118741, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32422153

RESUMO

Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases. SUMMARY STATEMENT: We show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.


Assuntos
Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação com Perda de Função/genética , Fatores de Transcrição/genética , Biomarcadores , Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Lisossomos/metabolismo , Transporte Proteico , Fatores de Transcrição/metabolismo
8.
Int J Mol Sci ; 20(9)2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31083507

RESUMO

Some single-stranded positive-sense RNA [ssRNA(+)] viruses, including Flavivirus, generate specific organelle-like structures in the host endoplasmic reticulum (ER). These structures are called virus replication organelles and consist of two distinct subdomains, the vesicle packets (VPs) and the convoluted membranes (CMs). The VPs are clusters of small vesicle compartments and are considered to be the site of viral genome replication. The CMs are electron-dense amorphous structures observed in proximity to the VPs, but the exact roles of CMs are mostly unknown. Several recent studies have revealed that flaviviruses recruit several host factors that are usually used for the biogenesis of other conventional organelles and usurp their function to generate virus replication organelles. In the current review, we summarize recent studies focusing on the role of host factors in the formation of virus replication organelles and discuss how these intricate membrane structures are organized.


Assuntos
Retículo Endoplasmático/metabolismo , Flavivirus/fisiologia , Biogênese de Organelas , RNA Viral/metabolismo , Replicação Viral/fisiologia , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Retículo Endoplasmático/ultraestrutura
9.
Adv Colloid Interface Sci ; 208: 153-60, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24607001

RESUMO

The endoplasmatic reticulum (ER) comprises flattened vesicles (cisternae) with worm holes dubbed with ribosomes coexisting with a network of interconnected tubes which can extend to the cell periphery or even penetrate nerve axons. The coexisting topologies enclose a continuous luminal space. The complex ER topology is specifically controlled by a group of ER-shaping proteins often called reticulons (discovered by the group of Tom Rapoport). They include atlastin, reticulon, REEP and the MT severing protein spastin. A generic ER shape controlling factor is the necessity to maximize the area-to-volume ratio of ER membranes in the highly crowded cytoplasmic space. I present a model of the ER-shaping function of the reticulons based on the Helfrich bending elasticity concept of soft shell shape changes. Common structural motifs of the reticulons are hydrophobic sequences forming wedge shaped hairpins which penetrate the lipid bilayer of the cell membranes. The wedge-like hydrophobic anchors can both induce the high curvature of the tubular ER fraction and ensure the preferred distribution of the reticulons along the tubules. Tubular junctions may be stabilized by the reticulons forming two forceps twisted by 90°. The ER extensions to the cell periphery and the axons are mediated by coupling of the tubes to the microtubules which is mediated by REEP and spastin. At the end I present a model of the tension driven homotype fusion of ER-membranes by atlastin, based on analogies to the SNARE-complexin-SNARE driven heterotype fusion process.


Assuntos
Retículo Endoplasmático/química , Proteínas de Membrana/química , Modelos Biológicos , Animais , Fenômenos Biofísicos , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Forma das Organelas , Propriedades de Superfície
10.
J Biol Chem ; 289(13): 9380-95, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24558039

RESUMO

Despite recent advances in understanding store-operated calcium entry (SOCE) regulation, the fundamental question of how ER morphology affects this process remains unanswered. Here we show that the loss of RTN4, is sufficient to alter ER morphology and severely compromise SOCE. Mechanistically, we show this to be the result of defective STIM1-Orai1 coupling because of loss of ER tubulation and redistribution of STIM1 to ER sheets. As a functional consequence, RTN4-depleted cells fail to sustain elevated cytoplasmic Ca(2+) levels via SOCE and therefor are less susceptible to Ca(2+) overload induced apoptosis. Thus, for the first time, our results show a direct correlation between ER morphology and SOCE and highlight the importance of RTN4 in cellular Ca(2+) homeostasis.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas da Mielina/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Apoptose , Linhagem Celular , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Técnicas de Inativação de Genes , Homeostase , Camundongos , Proteínas da Mielina/deficiência , Proteínas da Mielina/genética , Receptor Nogo 1 , Proteína ORAI1 , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Molécula 1 de Interação Estromal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA