RESUMO
In response to the challenge of low accuracy in retinal vessel segmentation attributed to the minute nature of the vessels, this paper proposes a retinal vessel segmentation model based on an improved U-Net, which combines multi-scale feature extraction and fusion techniques. An improved dilated residual module was first used to replace the original convolutional layer of U-Net, and this module, coupled with a dual attention mechanism and diverse expansion rates, facilitates the extraction of multi-scale vascular features. Moreover, an adaptive feature fusion module was added at the skip connections of the model to improve vessel connectivity. To further optimize network training, a hybrid loss function is employed to mitigate the class imbalance between vessels and the background. Experimental results on the DRIVE dataset and CHASE_DB1 dataset show that the proposed model has an accuracy of 96.27% and 96.96%, sensitivity of 81.32% and 82.59%, and AUC of 98.34% and 98.70%, respectively, demonstrating superior segmentation performance.
RESUMO
Recent advancements in retinal vessel segmentation, which employ transformer-based and domain-adaptive approaches, show promise in addressing the complexity of ocular diseases such as diabetic retinopathy. However, current algorithms face challenges in effectively accommodating domain-specific variations and limitations of training datasets, which fail to represent real-world conditions comprehensively. Manual inspection by specialists remains time-consuming despite technological progress in medical imaging, underscoring the pressing need for automated and robust segmentation techniques. Additionally, these methods have deficiencies in handling unlabeled target sets, requiring extra preprocessing steps and manual intervention, which hinders their scalability and practical application in clinical settings. This research introduces a novel framework that employs semi-supervised domain adaptation and contrastive pre-training to address these limitations. The proposed model effectively learns from target data by implementing a novel pseudo-labeling approach and feature-based knowledge distillation within a temporal convolutional network (TCN) and extracts robust, domain-independent features. This approach enhances cross-domain adaptation, significantly enhancing the model's versatility and performance in clinical settings. The semi-supervised domain adaptation component overcomes the challenges posed by domain shifts, while pseudo-labeling utilizes the data's inherent structure for enhanced learning, which is particularly beneficial when labeled data is scarce. Evaluated on the DRIVE and CHASE_DB1 datasets, which contain clinical fundus images, the proposed model achieves outstanding performance, with accuracy, sensitivity, specificity, and AUC values of 0.9792, 0.8640, 0.9901, and 0.9868 on DRIVE, and 0.9830, 0.9058, 0.9888, and 0.9950 on CHASE_DB1, respectively, outperforming current state-of-the-art vessel segmentation methods. The partitioning of datasets into training and testing sets ensures thorough validation, while extensive ablation studies with thorough sensitivity analysis of the model's parameters and different percentages of labeled data further validate its robustness.
RESUMO
Deep learning plays a pivotal role in retinal blood vessel segmentation for medical diagnosis. Despite their significant efficacy, these techniques face two major challenges. Firstly, they often neglect the severe class imbalance in fundus images, where thin vessels in the foreground are proportionally minimal. Secondly, they are susceptible to poor image quality and blurred vessel edges, resulting in discontinuities or breaks in vascular structures. In response, this paper proposes the Skeleton-guided Multi-scale Dual-coordinate Attention Aggregation (SMDAA) network for retinal vessel segmentation. SMDAA comprises three innovative modules: Dual-coordinate Attention (DCA), Unbalanced Pixel Amplifier (UPA), and Vessel Skeleton Guidance (VSG). DCA, integrating Multi-scale Coordinate Feature Aggregation (MCFA) and Scale Coordinate Attention Decoding (SCAD), meticulously analyzes vessel structures across various scales, adept at capturing intricate details, thereby significantly enhancing segmentation accuracy. To address class imbalance, we introduce UPA, dynamically allocating more attention to misclassified pixels, ensuring precise extraction of thin and small blood vessels. Moreover, to preserve vessel structure continuity, we integrate vessel anatomy and develop the VSG module to connect fragmented vessel segments. Additionally, a Feature-level Contrast (FCL) loss is introduced to capture subtle nuances within the same category, enhancing the fidelity of retinal blood vessel segmentation. Extensive experiments on three public datasets (DRIVE, STARE, and CHASE_DB1) demonstrate superior performance in comparison to current methods. The code is available at https://github.com/wangwxr/SMDAA_NET.
Assuntos
Aprendizado Profundo , Vasos Retinianos , Humanos , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodosRESUMO
Retinal vessel segmentation is crucial for the diagnosis of ophthalmic and cardiovascular diseases. However, retinal vessels are densely and irregularly distributed, with many capillaries blending into the background, and exhibit low contrast. Moreover, the encoder-decoder-based network for retinal vessel segmentation suffers from irreversible loss of detailed features due to multiple encoding and decoding, leading to incorrect segmentation of the vessels. Meanwhile, the single-dimensional attention mechanisms possess limitations, neglecting the importance of multidimensional features. To solve these issues, in this paper, we propose a detail-enhanced attention feature fusion network (DEAF-Net) for retinal vessel segmentation. First, the detail-enhanced residual block (DERB) module is proposed to strengthen the capacity for detailed representation, ensuring that intricate features are efficiently maintained during the segmentation of delicate vessels. Second, the multidimensional collaborative attention encoder (MCAE) module is proposed to optimize the extraction of multidimensional information. Then, the dynamic decoder (DYD) module is introduced to preserve spatial information during the decoding process and reduce the information loss caused by upsampling operations. Finally, the proposed detail-enhanced feature fusion (DEFF) module composed of DERB, MCAE and DYD modules fuses feature maps from both encoding and decoding and achieves effective aggregation of multi-scale contextual information. The experiments conducted on the datasets of DRIVE, CHASEDB1, and STARE, achieving Sen of 0.8305, 0.8784, and 0.8654, and AUC of 0.9886, 0.9913, and 0.9911 on DRIVE, CHASEDB1, and STARE, respectively, demonstrate the performance of our proposed network, particularly in the segmentation of fine retinal vessels.
RESUMO
Retinal vessel segmentation is crucial for diagnosing and monitoring various eye diseases such as diabetic retinopathy, glaucoma, and hypertension. In this study, we examine how sharpness-aware minimization (SAM) can improve RF-UNet's generalization performance. RF-UNet is a novel model for retinal vessel segmentation. We focused our experiments on the digital retinal images for vessel extraction (DRIVE) dataset, which is a benchmark for retinal vessel segmentation, and our test results show that adding SAM to the training procedure leads to notable improvements. Compared to the non-SAM model (training loss of 0.45709 and validation loss of 0.40266), the SAM-trained RF-UNet model achieved a significant reduction in both training loss (0.094225) and validation loss (0.08053). Furthermore, compared to the non-SAM model (training accuracy of 0.90169 and validation accuracy of 0.93999), the SAM-trained model demonstrated higher training accuracy (0.96225) and validation accuracy (0.96821). Additionally, the model performed better in terms of sensitivity, specificity, AUC, and F1 score, indicating improved generalization to unseen data. Our results corroborate the notion that SAM facilitates the learning of flatter minima, thereby improving generalization, and are consistent with other research highlighting the advantages of advanced optimization methods. With wider implications for other medical imaging tasks, these results imply that SAM can successfully reduce overfitting and enhance the robustness of retinal vessel segmentation models. Prospective research avenues encompass verifying the model on vaster and more diverse datasets and investigating its practical implementation in real-world clinical situations.
Assuntos
Algoritmos , Vasos Retinianos , Humanos , Vasos Retinianos/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Retinopatia Diabética/diagnóstico por imagemRESUMO
Accurate segmentation of retinal vessels is of great significance for computer-aided diagnosis and treatment of many diseases. Due to the limited number of retinal vessel samples and the scarcity of labeled samples, and since grey theory excels in handling problems of "few data, poor information", this paper proposes a novel grey relational-based method for retinal vessel segmentation. Firstly, a noise-adaptive discrimination filtering algorithm based on grey relational analysis (NADF-GRA) is designed to enhance the image. Secondly, a threshold segmentation model based on grey relational analysis (TS-GRA) is designed to segment the enhanced vessel image. Finally, a post-processing stage involving hole filling and removal of isolated pixels is applied to obtain the final segmentation output. The performance of the proposed method is evaluated using multiple different measurement metrics on publicly available digital retinal DRIVE, STARE and HRF datasets. Experimental analysis showed that the average accuracy and specificity on the DRIVE dataset were 96.03% and 98.51%. The mean accuracy and specificity on the STARE dataset were 95.46% and 97.85%. Precision, F1-score, and Jaccard index on the HRF dataset all demonstrated high-performance levels. The method proposed in this paper is superior to the current mainstream methods.
Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Vasos Retinianos , Vasos Retinianos/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodosRESUMO
Accurate segmentation of retinal vessels in fundus images is of great importance for the diagnosis of numerous ocular diseases. However, due to the complex characteristics of fundus images, such as various lesions, image noise and complex background, the pixel features of some vessels have significant differences, which makes it easy for the segmentation networks to misjudge these vessels as noise, thus affecting the accuracy of the overall segmentation. Therefore, accurately segment retinal vessels in complex situations is still a great challenge. To address the problem, a partial class activation mapping guided graph convolution cascaded U-Net for retinal vessel segmentation is proposed. The core idea of the proposed network is first to use the partial class activation mapping guided graph convolutional network to eliminate the differences of local vessels and generate feature maps with global consistency, and subsequently these feature maps are further refined by segmentation network U-Net to achieve better segmentation results. Specifically, a new neural network block, called EdgeConv, is stacked multiple layers to form a graph convolutional network to realize the transfer an update of information from local to global, so as gradually enhance the feature consistency of graph nodes. Simultaneously, in an effort to suppress the noise information that may be transferred in graph convolution and thus reduce adverse effects of noise on segmentation results, the partial class activation mapping is introduced. The partial class activation mapping can guide the information transmission between graph nodes and effectively activate vessel feature through classification labels, thereby improving the accuracy of segmentation. The performance of the proposed method is validated on four different fundus image datasets. Compared with existing state-of-the-art methods, the proposed method can improve the integrity of vessel to a certain extent when the pixel features of local vessels are significantly different, caused by objective factors such as inappropriate illumination and exudates. Moreover, the proposed method shows robustness when segmenting complex retinal vessels.
Assuntos
Redes Neurais de Computação , Vasos Retinianos , Humanos , Vasos Retinianos/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Interpretação de Imagem Assistida por Computador/métodosRESUMO
BACKGROUND: The retinal vasculature, a crucial component of the human body, mirrors various illnesses such as cardiovascular disease, glaucoma, and retinopathy. Accurate segmentation of retinal vessels in funduscopic images is essential for diagnosing and understanding these conditions. However, existing segmentation models often struggle with images from different sources, making accurate segmentation in crossing-source fundus images challenging. METHODS: To address the crossing-source segmentation issues, this paper proposes a novel Multi-level Adversarial Learning and Pseudo-label Denoising-based Self-training Framework (MLAL&PDSF). Expanding on our previously proposed Multiscale Context Gating with Breakpoint and Spatial Dual Attention Network (MCG&BSA-Net), MLAL&PDSF introduces a multi-level adversarial network that operates at both the feature and image layers to align distributions between the target and source domains. Additionally, it employs a distance comparison technique to refine pseudo-labels generated during the self-training process. By comparing the distance between the pseudo-labels and the network predictions, the framework identifies and corrects inaccuracies, thus enhancing the accuracy of the fine vessel segmentation. RESULTS: We have conducted extensive validation and comparative experiments on the CHASEDB1, STARE, and HRF datasets to evaluate the efficacy of the MLAL&PDSF. The evaluation metrics included the area under the operating characteristic curve (AUC), sensitivity (SE), specificity (SP), accuracy (ACC), and balanced F-score (F1). The performance results from unsupervised domain adaptive segmentation are remarkable: for DRIVE to CHASEDB1, results are AUC: 0.9806, SE: 0.7400, SP: 0.9737, ACC: 0.9874, and F1: 0.8851; for DRIVE to STARE, results are AUC: 0.9827, SE: 0.7944, SP: 0.9651, ACC: 0.9826, and F1: 0.8326. CONCLUSION: These results demonstrate the effectiveness and robustness of MLAL&PDSF in achieving accurate segmentation results from crossing-domain retinal vessel datasets. The framework lays a solid foundation for further advancements in cross-domain segmentation and enhances the diagnosis and understanding of related diseases.
Assuntos
Vasos Retinianos , Humanos , Vasos Retinianos/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , AlgoritmosRESUMO
Retinal vessels play a pivotal role as biomarkers in the detection of retinal diseases, including hypertensive retinopathy. The manual identification of these retinal vessels is both resource-intensive and time-consuming. The fidelity of vessel segmentation in automated methods directly depends on the fundus images' quality. In instances of sub-optimal image quality, applying deep learning-based methodologies emerges as a more effective approach for precise segmentation. We propose a heterogeneous neural network combining the benefit of local semantic information extraction of convolutional neural network and long-range spatial features mining of transformer network structures. Such cross-attention network structure boosts the model's ability to tackle vessel structures in the retinal images. Experiments on four publicly available datasets demonstrate our model's superior performance on vessel segmentation and the big potential of hypertensive retinopathy quantification.
RESUMO
Many major diseases of the retina often show symptoms of lesions in the fundus of the eye. The extraction of blood vessels from retinal fundus images is essential to assist doctors. Some of the existing methods do not fully extract the detailed features of retinal images or lose some information, making it difficult to accurately segment capillaries located at the edges of the images. In this paper, we propose a multi-scale retinal vessel segmentation network (SCIE_Net) based on skip connection information enhancement. Firstly, the network processes retinal images at multiple scales to achieve network capture of features at different scales. Secondly, the feature aggregation module is proposed to aggregate the rich information of the shallow network. Further, the skip connection information enhancement module is proposed to take into account the detailed features of the shallow layer and the advanced features of the deeper network to avoid the problem of incomplete information interaction between the layers of the network. Finally, SCIE_Net achieves better vessel segmentation performance and results on the publicly available retinal image standard datasets DRIVE, CHASE_DB1, and STARE.
Assuntos
Vasos Retinianos , Vasos Retinianos/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Redes Neurais de Computação , Fundo de OlhoRESUMO
Retinal vessel segmentation plays a crucial role in medical image analysis, aiding ophthalmologists in disease diagnosis, monitoring, and treatment guidance. However, due to the complex boundary structure and rich texture features in retinal blood vessel images, existing methods have challenges in the accurate segmentation of blood vessel boundaries. In this study, we propose the texture-driven Swin-UNet with enhanced boundary-wise perception. Firstly, we designed a Cross-level Texture Complementary Module (CTCM) to fuse feature maps at different scales during the encoding stage, thereby recovering detailed features lost in the downsampling process. Additionally, we introduced a Pixel-wise Texture Swin Block (PT Swin Block) to improve the model's ability to localize vessel boundary and contour information. Finally, we introduced an improved Hausdorff distance loss function to further enhance the accuracy of vessel boundary segmentation. The proposed method was evaluated on the DRIVE and CHASEDB1 datasets, and the experimental results demonstrate that our model obtained superior performance in terms of Accuracy (ACC), Sensitivity (SE), Specificity (SP), and F1 score (F1), and the accuracy of vessel boundary segmentation was significantly improved.
RESUMO
Blood vessel segmentation is a crucial stage in extracting morphological characteristics of vessels for the clinical diagnosis of fundus and coronary artery disease. However, traditional convolutional neural networks (CNNs) are confined to learning local vessel features, making it challenging to capture the graph structural information and fail to perceive the global context of vessels. Therefore, we propose a novel graph neural network-guided vision transformer enhanced network (G2ViT) for vessel segmentation. G2ViT skillfully orchestrates the Convolutional Neural Network, Graph Neural Network, and Vision Transformer to enhance comprehension of the entire graphical structure of blood vessels. To achieve deeper insights into the global graph structure and higher-level global context cognizance, we investigate a graph neural network-guided vision transformer module. This module constructs graph-structured representation in an unprecedented manner using the high-level features extracted by CNNs for graph reasoning. To increase the receptive field while ensuring minimal loss of edge information, G2ViT introduces a multi-scale edge feature attention module (MEFA), leveraging dilated convolutions with different dilation rates and the Sobel edge detection algorithm to obtain multi-scale edge information of vessels. To avoid critical information loss during upsampling and downsampling, we design a multi-level feature fusion module (MLF2) to fuse complementary information between coarse and fine features. Experiments on retinal vessel datasets (DRIVE, STARE, CHASE_DB1, and HRF) and coronary angiography datasets (DCA1 and CHUAC) indicate that the G2ViT excels in robustness, generality, and applicability. Furthermore, it has acceptable inference time and computational complexity and presents a new solution for blood vessel segmentation.
Assuntos
Algoritmos , Redes Neurais de Computação , Vasos Retinianos , Humanos , Vasos Retinianos/diagnóstico por imagem , Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologiaRESUMO
Retinal vessel segmentation based on deep learning is an important auxiliary method for assisting clinical doctors in diagnosing retinal diseases. However, existing methods often produce mis-segmentation when dealing with low contrast images and thin blood vessels, which affects the continuity and integrity of the vessel skeleton. In addition, existing deep learning methods tend to lose a lot of detailed information during training, which affects the accuracy of segmentation. To address these issues, we propose a novel dual-decoder based Cross-patch Feature Interactive Net with Edge Refinement (CFI-Net) for end-to-end retinal vessel segmentation. In the encoder part, a joint refinement down-sampling method (JRDM) is proposed to compress feature information in the process of reducing image size, so as to reduce the loss of thin vessels and vessel edge information during the encoding process. In the decoder part, we adopt a dual-path model based on edge detection, and propose a Cross-patch Interactive Attention Mechanism (CIAM) in the main path to enhancing multi-scale spatial channel features and transferring cross-spatial information. Consequently, it improve the network's ability to segment complete and continuous vessel skeletons, reducing vessel segmentation fractures. Finally, the Adaptive Spatial Context Guide Method (ASCGM) is proposed to fuse the prediction results of the two decoder paths, which enhances segmentation details while removing part of the background noise. We evaluated our model on two retinal image datasets and one coronary angiography dataset, achieving outstanding performance in segmentation comprehensive assessment metrics such as AUC and CAL. The experimental results showed that the proposed CFI-Net has superior segmentation performance compared with other existing methods, especially for thin vessels and vessel edges. The code is available at https://github.com/kita0420/CFI-Net.
Assuntos
Aprendizado Profundo , Vasos Retinianos , Vasos Retinianos/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , AlgoritmosRESUMO
The intricate task of precisely segmenting retinal vessels from images, which is critical for diagnosing various eye diseases, presents significant challenges for models due to factors such as scale variation, complex anatomical patterns, low contrast, and limitations in training data. Building on these challenges, we offer novel contributions spanning model architecture, loss function design, robustness, and real-time efficacy. To comprehensively address these challenges, a new U-Net-like, lightweight Transformer network for retinal vessel segmentation is presented. By integrating MobileViT+ and a novel local representation in the encoder, our design emphasizes lightweight processing while capturing intricate image structures, enhancing vessel edge precision. A novel joint loss is designed, leveraging the characteristics of weighted cross-entropy and Dice loss to effectively guide the model through the task's challenges, such as foreground-background imbalance and intricate vascular structures. Exhaustive experiments were performed on three prominent retinal image databases. The results underscore the robustness and generalizability of the proposed LiViT-Net, which outperforms other methods in complex scenarios, especially in intricate environments with fine vessels or vessel edges. Importantly, optimized for efficiency, LiViT-Net excels on devices with constrained computational power, as evidenced by its fast performance. To demonstrate the model proposed in this study, a freely accessible and interactive website was established (https://hz-t3.matpool.com:28765?token=aQjYR4hqMI), revealing real-time performance with no login requirements.
RESUMO
The incidence of blinding eye diseases is highly correlated with changes in retinal morphology, and is clinically detected by segmenting retinal structures in fundus images. However, some existing methods have limitations in accurately segmenting thin vessels. In recent years, deep learning has made a splash in the medical image segmentation, but the lack of edge information representation due to repetitive convolution and pooling, limits the final segmentation accuracy. To this end, this paper proposes a pixel-level retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion. Here, a multiple dimension attention enhancement (MDAE) block is proposed to acquire more local edge information. Meanwhile, a deep guidance fusion (DGF) block and a cross-pooling semantic enhancement (CPSE) block are proposed simultaneously to acquire more global contexts. Further, the predictions of different decoding stages are learned and aggregated by an adaptive weight learner (AWL) unit to obtain the best weights for effective feature fusion. The experimental results on three public fundus image datasets show that proposed network could effectively enhance the segmentation performance on retinal blood vessels. In particular, the proposed method achieves AUC of 98.30%, 98.75%, and 98.71% on the DRIVE, CHASE_DB1, and STARE datasets, respectively, while the F1 score on all three datasets exceeded 83%. The source code of the proposed model is available at https://github.com/gegao310/VesselSeg-Pytorch-master.
Assuntos
Algoritmos , Retina , Retina/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem , Fundo de Olho , Software , Processamento de Imagem Assistida por Computador/métodosRESUMO
Retinal vessel segmentation is very important for diagnosing and treating certain eye diseases. Recently, many deep learning-based retinal vessel segmentation methods have been proposed; however, there are still many shortcomings (e.g., they cannot obtain satisfactory results when dealing with cross-domain data or segmenting small blood vessels). To alleviate these problems and avoid overly complex models, we propose a novel network based on a multi-scale feature and style transfer (MSFST-NET) for retinal vessel segmentation. Specifically, we first construct a lightweight segmentation module named MSF-Net, which introduces the selective kernel (SK) module to increase the multi-scale feature extraction ability of the model to achieve improved small blood vessel segmentation. Then, to alleviate the problem of model performance degradation when segmenting cross-domain datasets, we propose a style transfer module and a pseudo-label learning strategy. The style transfer module is used to reduce the style difference between the source domain image and the target domain image to improve the segmentation performance for the target domain image. The pseudo-label learning strategy is designed to be combined with the style transfer module to further boost the generalization ability of the model. Moreover, we trained and tested our proposed MSFST-NET in experiments on the DRIVE and CHASE_DB1 datasets. The experimental results demonstrate that MSFST-NET can effectively improve the generalization ability of the model on cross-domain datasets and achieve improved retinal vessel segmentation results than other state-of-the-art methods.
Assuntos
Processamento de Imagem Assistida por Computador , Vasos Retinianos , Vasos Retinianos/diagnóstico por imagem , AlgoritmosRESUMO
Optical coherence tomography angiography (OCTA) offers critical insights into the retinal vascular system, yet its full potential is hindered by challenges in precise image segmentation. Current methodologies struggle with imaging artifacts and clarity issues, particularly under low-light conditions and when using various high-speed CMOS sensors. These challenges are particularly pronounced when diagnosing and classifying diseases such as branch vein occlusion (BVO). To address these issues, we have developed a novel network based on topological structure generation, which transitions from superficial to deep retinal layers to enhance OCTA segmentation accuracy. Our approach not only demonstrates improved performance through qualitative visual comparisons and quantitative metric analyses but also effectively mitigates artifacts caused by low-light OCTA, resulting in reduced noise and enhanced clarity of the images. Furthermore, our system introduces a structured methodology for classifying BVO diseases, bridging a critical gap in this field. The primary aim of these advancements is to elevate the quality of OCTA images and bolster the reliability of their segmentation. Initial evaluations suggest that our method holds promise for establishing robust, fine-grained standards in OCTA vascular segmentation and analysis.
Assuntos
Oclusão da Veia Retiniana , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Reprodutibilidade dos Testes , Oclusão da Veia Retiniana/diagnóstico , Vasos Retinianos/diagnóstico por imagem , AngiografiaRESUMO
Objective.The high-precision segmentation of retinal vessels in fundus images is important for the early diagnosis of ophthalmic diseases. However, the extraction for microvessels is challenging due to their characteristics of low contrast and high structural complexity. Although some works have been developed to improve the segmentation ability in thin vessels, they have only been successful in recognizing small vessels with relatively high contrast.Approach.Therefore, we develop a deep learning (DL) framework with a multi-stage and dual-channel network model (MSDC_NET) to further improve the thin-vessel segmentation with low contrast. Specifically, an adaptive image enhancement strategy combining multiple preprocessing and the DL method is firstly proposed to elevate the contrast of thin vessels; then, a two-channel model with multi-scale perception is developed to implement whole- and thin-vessel segmentation; and finally, a series of post-processing operations are designed to extract more small vessels in the predicted maps from thin-vessel channels.Main results.Experiments on DRIVE, STARE and CHASE_DB1 demonstrate the superiorities of the proposed MSDC_NET in extracting more thin vessels in fundus images, and quantitative evaluations on several parameters based on the advanced ground truth further verify the advantages of our proposed DL model. Compared with the previous multi-branch method, the specificity and F1score are improved by about 2.18%, 0.68%, 1.73% and 2.91%, 0.24%, 8.38% on the three datasets, respectively.Significance.This work may provide richer information to ophthalmologists for the diagnosis and treatment of vascular-related ophthalmic diseases.
Assuntos
Algoritmos , Aprendizado Profundo , Compostos de Espiro , Vasos Retinianos/diagnóstico por imagem , Aumento da Imagem , Processamento de Imagem Assistida por Computador/métodosRESUMO
Retinal vessel segmentation plays a crucial role in the diagnosis and treatment of ocular pathologies. Current methods have limitations in feature fusion and face challenges in simultaneously capturing global and local features from fundus images. To address these issues, this study introduces a hybrid network named CoVi-Net, which combines convolutional neural networks and vision transformer. In our proposed model, we have integrated a novel module for local and global feature aggregation (LGFA). This module facilitates remote information interaction while retaining the capability to effectively gather local information. In addition, we introduce a bidirectional weighted feature fusion module (BWF). Recognizing the variations in semantic information across layers, we allocate adjustable weights to different feature layers for adaptive feature fusion. BWF employs a bidirectional fusion strategy to mitigate the decay of effective information. We also incorporate horizontal and vertical connections to enhance feature fusion and utilization across various scales, thereby improving the segmentation of multiscale vessel images. Furthermore, we introduce an adaptive lateral feature fusion (ALFF) module that refines the final vessel segmentation map by enriching it with more semantic information from the network. In the evaluation of our model, we employed three well-established retinal image databases (DRIVE, CHASEDB1, and STARE). Our experimental results demonstrate that CoVi-Net outperforms other state-of-the-art techniques, achieving a global accuracy of 0.9698, 0.9756, and 0.9761 and an area under the curve of 0.9880, 0.9903, and 0.9915 on DRIVE, CHASEDB1, and STARE, respectively. We conducted ablation studies to assess the individual effectiveness of the three modules. In addition, we examined the adaptability of our CoVi-Net model for segmenting lesion images. Our experiments indicate that our proposed model holds promise in aiding the diagnosis of retinal vascular disorders.
Assuntos
Redes Neurais de Computação , Vasos Retinianos , Vasos Retinianos/diagnóstico por imagem , Bases de Dados Factuais , Fundo de Olho , Semântica , Processamento de Imagem Assistida por ComputadorRESUMO
Objective.Retinal vessel segmentation from optical coherence tomography angiography (OCTA) volumes is significant in analyzing blood supply structures and the diagnosing ophthalmic diseases. However, accurate retinal vessel segmentation in 3D OCTA remains challenging due to the interference of choroidal blood flow signals and the variations in retinal vessel structure.Approach.This paper proposes a layer attention network (LA-Net) for 3D-to-2D retinal vessel segmentation. The network comprises a 3D projection path and a 2D segmentation path. The key component in the 3D path is the proposed multi-scale layer attention module, which effectively learns the layer features of OCT and OCTA to attend to the retinal vessel layer while suppressing the choroidal vessel layer. This module also efficiently captures 3D multi-scale information for improved semantic understanding during projection. In the 2D path, a reverse boundary attention module is introduced to explore and preserve boundary and shape features of retinal vessels by focusing on non-salient regions in deep features.Main results.Experimental results in two subsets of the OCTA-500 dataset showed that our method achieves advanced segmentation performance with Dice similarity coefficients of 93.04% and 89.74%, respectively.Significance.The proposed network provides reliable 3D-to-2D segmentation of retinal vessels, with potential for application in various segmentation tasks that involve projecting the input image. Implementation code:https://github.com/y8421036/LA-Net.