RESUMO
Classical swine fever (CSF) is caused by the classical swine fever virus (CSFV), which poses a threat to swine production. The activation of host innate immunity through linker proteins such as tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) is crucial for the induction of the NF-κB pathway. Recent research has revealed the involvement of mitochondrial antiviral-signaling protein (MAVS) in the interaction with TRAF2, 3, 5, and 6 to activate both the NF-κB and IRF3 pathways. This study revealed that CSFV infection led to the upregulation of TRAF1 mRNA and protein levels; moreover, TRAF1 overexpression inhibited CSFV replication, while TRAF1 knockdown promoted replication, highlighting its importance in the host response to CSFV infection. Additionally, the expression of RIG-I, MAVS, TRAF1, IRF1, and ISG15 were detected in PK-15 cells infected with CSFV, revealing that TRAF1 plays a role in regulating IRF1 and ISG15 within the RIG-I pathway. Furthermore, Co-IP, GST pull-down, and IFA analyses demonstrated that TRAF1 interacted with MAVS and co-localized in the cytoplasm during CSFV infection. Ultimately, TRAF1 acted as a novel member of the TRAF family, bound to MAVS as a linker molecule, and functioned as a mediator downstream of MAVS in the RIG-I/MAVS pathway against CSFV replication.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Vírus da Febre Suína Clássica , Fator Regulador 1 de Interferon , Fator 1 Associado a Receptor de TNF , Regulação para Cima , Animais , Vírus da Febre Suína Clássica/fisiologia , Fator 1 Associado a Receptor de TNF/metabolismo , Fator 1 Associado a Receptor de TNF/genética , Suínos , Regulação para Cima/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Transdução de Sinais , Peste Suína Clássica/virologia , Peste Suína Clássica/metabolismo , Peste Suína Clássica/genética , Replicação Viral , Linhagem Celular , Citocinas/metabolismo , Ligação ProteicaRESUMO
Pyrogallol, a natural polyphenol compound (1,2,3-trihydroxybenzene), has shown efficacy in the therapeutic treatment of disorders associated with inflammation. Nevertheless, the mechanisms underlying the protective properties of pyrogallol against influenza A virus infection are not yet established. We established in this study that pyrogallol effectively alleviated H1N1 influenza A virus-induced lung injury and reduced mortality. Treatment with pyrogallol was found to promote the expression and nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Notably, the activation of Nrf2 by pyrogallol was involved in elevating the expression of PPAR-γ, both of which act synergistically to enhance heme oxygenase-1 (HO-1) synthesis. Blocking HO-1 by zinc protoporphyrin (ZnPP) reduced the suppressive impact of pyrogallol on H1N1 virus-mediated aberrant retinoic acid-inducible gene-I-nuclear factor kappa B (RIG-I-NF-κB) signaling, which thus abolished the dampening effects of pyrogallol on excessive proinflammatory mediators and cell death (including apoptosis, necrosis, and ferroptosis). Furthermore, the HO-1-independent inactivation of janus kinase 1/signal transducers and activators of transcription (JAK1/STATs) and the HO-1-dependent RIG-I-augmented STAT1/2 activation were both abrogated by pyrogallol, resulting in suppression of the enhanced transcriptional activity of interferon-stimulated gene factor 3 (ISGF3) complexes, thus prominently inhibiting the amplification of the H1N1 virus-induced proinflammatory reaction and apoptosis in interferon-beta (IFN-ß)-sensitized cells. The study provides evidence that pyrogallol alleviates excessive proinflammatory responses and abnormal cell death via HO-1 induction, suggesting it could be a potential agent for treating influenza.
RESUMO
Pharmacological activation of the retinoic acid-inducible gene I (RIG-I) pathway holds promise for increasing tumor immunogenicity and improving the response to immune checkpoint inhibitors (ICIs). However, the potency and clinical efficacy of 5'-triphosphate RNA (3pRNA) agonists of RIG-I are hindered by multiple pharmacological barriers, including poor pharmacokinetics, nuclease degradation, and inefficient delivery to the cytosol where RIG-I is localized. Here, we address these challenges through the design and evaluation of ionizable lipid nanoparticles (LNPs) for the delivery of 3p-modified stem-loop RNAs (SLRs). Packaging of SLRs into LNPs (SLR-LNPs) yielded surface charge-neutral nanoparticles with a size of â¼100 nm that activated RIG-I signaling in vitro and in vivo. SLR-LNPs were safely administered to mice via both intratumoral and intravenous routes, resulting in RIG-I activation in the tumor microenvironment (TME) and the inhibition of tumor growth in mouse models of poorly immunogenic melanoma and breast cancer. Significantly, we found that systemic administration of SLR-LNPs reprogrammed the breast TME to enhance the infiltration of CD8+ and CD4+ T cells with antitumor function, resulting in enhanced response to αPD-1 ICI in an orthotopic EO771 model of triple-negative breast cancer. Therapeutic efficacy was further demonstrated in a metastatic B16.F10 melanoma model, with systemically administered SLR-LNPs significantly reducing lung metastatic burden compared to combined αPD-1 + αCTLA-4 ICI. Collectively, these studies have established SLR-LNPs as a translationally promising immunotherapeutic nanomedicine for potent and selective activation of RIG-I with the potential to enhance response to ICIs and other immunotherapeutic modalities.
Assuntos
Imunoterapia , Nanopartículas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Lipídeos/química , Camundongos Endogâmicos C57BL , Nanopartículas/química , Microambiente Tumoral/efeitos dos fármacosRESUMO
In 2012, the threshold radiation dose (0.5 Gy) for cardiovascular and cerebrovascular diseases was revised, and this threshold dose may be exceeded during procedures involving radiation such as interventional radiology. Therefore, in addition to regulating radiation dose, it is necessary to develop strategies to prevent and mitigate the development of cardiovascular disease. Cellular senescence is irreversible arrest of cell proliferation. Although cellular senescence is one of the mechanisms for suppressing cancer, it also has adverse effects. For example, senescence of vascular endothelial cells is involved in development of vascular disorders. However, the mechanisms underlying induction of cellular senescence are not fully understood. Therefore, the present study explored the factors involved in the radiation-induced senescence in human umbilical vein endothelial cells (HUVECs). The present study reanalyzed the gene expression data of senescent normal human endothelial cells and fibroblast after irradiation (NCBI Gene Expression Omnibus accession no. GSE130727) and microarray data of HUVECs 24 h after irradiation (NCBI Gene Expression Omnibus accession no. GSE76484). Numerous genes related to viral infection and inflammation were upregulated in radiation-induced senescent cells. In addition, the gene group involved in the retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) signaling pathway, which plays an important role to induce anti-viral response, was altered in irradiated HUVECs. Therefore, to investigate the involvement of RIG-I and melanoma differentiation-associated gene 5 (MDA5), which are RLRs, in radiation-induced senescence of HUVECs, the protein expression of RIG-I and MDA5 and the activity of senescence-associated ß-galactosidase (SA-ß-gal), a representative senescence marker, were analyzed. Of note, knockdown of RIG-I in HUVECs significantly decreased radiation-increased proportion of cells with high SA-ß-gal activity (i.e., senescent cells), whereas this phenomenon was not observed in MDA5-knockdown cells. Taken together, the present results suggested that RIG-I, but not MDA5, was associated with radiation-induced senescence in HUVECs.
RESUMO
Previous studies have shown that interferon gene-stimulating protein (STING) is essential for IFN-γ-inducible protein 16 (IFI16) as the DNA sensor and RNA sensor to induce transcription of type I interferon (IFN-I) and is essential for IFI16 to synergize with DNA sensor GMP-AMP (cGAMP) synthase (cGAS) in induction of IFN-I transcription. While other and our previous studies have shown that IFI16 enhanced retinoic acid-inducible gene I (RIG-I)-, which was an RNA sensor, and mitochondrial antiviral signaling (MAVS)-, which was the adaptor protein of RIG-I, induced production of IFN-I, so we wonder whether IFI16 regulates the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-dependent manner. We used HEK 293T cells, which did not express endogenous STING and were unable to mount an innate immune response upon DNA transfection and found that IFI16 could enhance RIG-I- and MAVS-mediated induction of IFN-I in a STING-independent way. Furthermore, we found that upregulation of the expression of NF-kappa-B essential modulator (NEMO) by IFI16 was not the mechanism that IFI16 regulated the induction of IFN-I. In conclusion, we found that IFI16 regulated the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-independent manner.
Assuntos
Imunidade Inata , Interferon Tipo I , Proteína DEAD-box 58/genética , DNA , Interferon Tipo I/genética , Receptores Imunológicos/genética , RNA , HumanosRESUMO
Rabies virus (RABV) is a lethal neurotropic virus that causes 60,000 human deaths every year globally. RABV infection is characterized by the suppression of the interferon (IFN)-mediated antiviral response. However, molecular mechanisms leading to RABV sensing by RIG-I-like receptors (RLR) that initiates IFN signaling currently remain elusive. Here, we showed that RABV RNAs are primarily recognized by the RIG-I RLR, resulting in an IFN response in the infected cells, but this response varied according to the type of RABV used. Pathogenic RABV strain RNAs, Tha, were poorly detected in the cytosol by RIG-I and therefore caused a weak antiviral response. However, we revealed a strong IFN activity triggered by the attenuated RABV vaccine strain RNAs, SAD, mediated by RIG-I. We characterized two major 5' copy-back defective interfering (5'cb DI) genomes generated during SAD replication. Furthermore, we identified an interaction between 5'cb DI genomes, and RIG-I correlated with a high stimulation of the type I IFN signaling. This study indicates that wild-type RABV RNAs poorly activate the RIG-I pathway, while the presence of 5'cb DIs in the live-attenuated vaccine strain serves as an intrinsic adjuvant that strengthens its efficiency by enhancing RIG-I detection thus strongly stimulates the IFN response.
Assuntos
Proteína DEAD-box 58 , Vírus da Raiva , Humanos , Linhagem Celular , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Raiva/imunologia , Raiva/virologia , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Vírus da Raiva/genética , Vírus da Raiva/patogenicidade , Receptores Imunológicos/metabolismo , RNA Viral/genética , Transdução de Sinais , Replicação ViralRESUMO
Type 2 diabetes mellitus (T2DM) was reported to be associated with impaired immune response and alterations in microbial composition and function. However, the underlying mechanism remains elusive. To investigate the association among retinoic acid-inducible gene-I-like receptors (RLRs) signaling pathway, intestinal bacterial microbiome, microbial tryptophan metabolites, inflammation, and a longer course of T2DM, 14 patients with T2DM and 7 healthy controls were enrolled. 16S rRNA amplicon sequencing and untargeted metabolomics were utilized to analyze the stool samples. RNA sequencing (RNA-seq) was carried out on the peripheral blood samples. Additionally, C57BL/6J specific pathogen-free (SPF) mice were used. It was found that the longer course of T2DM could lead to a decrease in the abundance of probiotics in the intestinal microbiome. In addition, the production of microbial tryptophan derivative skatole declined as a consequence of the reduced abundance of related intestinal microbes. Furthermore, low abundances of probiotics, such as Bacteroides and Faecalibacterium, could trigger the inflammatory response by activating the RLRs signaling pathway. The increased level of the member of TNF receptor-associated factors (TRAF) family, nuclear factor kappa-B (NF-κB) activator (TANK), in the animal colon activated nuclear factor kappa B subunit 2 (NFκB2), resulting in inflammatory damage. In summary, it was revealed that the low abundances of probiotics could activate the RLR signaling pathway, which could in turn activate its downstream signaling pathway, NF-κB, highlighting a relationship among gut microbes, inflammation, and a longer course of T2DM. KEY POINTS: Hyperglycemia may suppress tryptophanase activity. The low abundance of Bacteroides combined with the decrease of Dopa decarboxylase (DDC) activity may lead to the decrease of the production of tryptophan microbial derivative skatole, and the low abundance of Bacteroides or reduced skatole may further lead to the increase of blood glucose by downregulating the expression of glucagon-like peptide-1 (GLP1). A low abundance of anti-inflammatory bacteria may induce an inflammatory response by triggering the RLR signaling pathway and then activating its downstream NF-κB signaling pathway in prolonged T2DM.
Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Animais , Humanos , Camundongos Endogâmicos C57BL , NF-kappa B , RNA Ribossômico 16S/genética , Escatol , Triptofano , Inflamação , Bacteroides/genéticaRESUMO
IMPORTANCE: A common hypothesis holds that bats (order Chiroptera) are outstanding reservoirs for zoonotic viruses because of a special antiviral interferon (IFN) system. However, functional studies about key components of the bat IFN system are rare. RIG-I is a cellular sensor for viral RNA signatures that activates the antiviral signaling chain to induce IFN. We cloned and functionally characterized RIG-I genes from two species of the suborders Yangochiroptera and Yinpterochiroptera. The bat RIG-Is were conserved in their sequence and domain organization, and similar to human RIG-I in (i) mediating virus- and IFN-activated gene expression, (ii) antiviral signaling, (iii) temperature dependence, and (iv) recognition of RNA ligands. Moreover, RIG-I of Rousettus aegyptiacus (suborder Yinpterochiroptera) and of humans were found to recognize SARS-CoV-2 infection. Thus, members of both bat suborders encode RIG-Is that are comparable to their human counterpart. The ability of bats to harbor zoonotic viruses therefore seems due to other features.
Assuntos
Quirópteros , Receptores do Ácido Retinoico , SARS-CoV-2 , Animais , Humanos , Quirópteros/metabolismo , COVID-19 , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , SARS-CoV-2/fisiologia , Vírus , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismoRESUMO
Retinoic acid-inducible gene-I (RIG-I) like receptor (RLR) pathway is one of the most significant pathways supervising aberrant RNA in cells. In predominant conditions, the RLR pathway initiates anti-infection function via activating inflammatory effects, while recently it is discovered to be involved in cancer development as well, acting as a virus-mimicry responder. On one hand, the product IFNs induces tumor elimination. On the other hand, the NF-κB pathway is activated which may lead to tumor progression. Emerging evidence demonstrates that a wide range of modifications are involved in regulating RLR pathways in cancer, which either boost tumor suppression effect or prompt tumor development. This review summarized current epigenetic modulations including DNA methylation, histone modification, and ncRNA interference, as well as post-transcriptional modification like m6A and A-to-I editing of the upstream ligand dsRNA in cancer cells. The post-translational modulations like phosphorylation and ubiquitylation of the pathway's key components were also discussed. Ultimately, we provided an overview of the current therapeutic strategies targeting the RLR pathway in cancers.
Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fosforilação , Metilação de DNA , RNA de Cadeia Dupla , TretinoínaRESUMO
BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by genetic heterogeneity and an interferon (IFN) signature. The overall landscapes of the heritability of SLE remains unclear. OBJECTIVES: To identify and elucidate the biological functions of rare variants underlying SLE, we conducted analyses of patient-derived induced pluripotent stem cells (iPSCs) in combination with genetic analysis. METHODS: Two familial SLE patient- and two healthy donor (HD)-derived iPSCs were established. Type 1 IFN-secreting dendritic cells (DCs) were differentiated from iPSCs. Genetic analyses of SLE-iPSCs, and 117 SLE patients and 107 HDs in the ImmuNexUT database were performed independently. Genome editing of the variants on iPSCs was performed with the CRISPR/Cas9 system. RESULTS: Type 1 IFN secretion was significantly increased in DCs differentiated from SLE-iPSCs compared to HD-iPSCs. Genetic analyses revealed a rare variant in the 2'-5'-Oligoadenylate Synthetase Like (OASL) shared between SLE-iPSCs and another independent SLE patient, and significant accumulation of OASL variants among SLE patients (HD 0.93%, SLE 6.84%, OR 8.387) in the database. Genome editing of mutated OASL 202Q to wild-type 202 R or wild-type OASL 202 R to mutated 202Q resulted in reduced or enhanced Type 1 IFN secretion of DCs. Three other OASL variants (R60W, T261S and A447V) accumulated in SLE patients had also capacities to enhance Type 1 IFN secretion in response to dsRNA. CONCLUSIONS: We established a patient-derived iPSC-based strategy to investigate the linkage of genotype and phenotype in autoimmune diseases. Detailed case-based investigations using patient-derived iPSCs provide information to unveil the heritability of the pathogenesis of autoimmune diseases.
Assuntos
Células-Tronco Pluripotentes Induzidas , Lúpus Eritematoso Sistêmico , Humanos , Interferons , Nucleotídeos de Adenina , Lúpus Eritematoso Sistêmico/genéticaRESUMO
The rapid mutation and spread of SARS-CoV-2 variants recently, especially through the emerging variants Omicron BA5, BF7, XBB and BQ1, necessitate the development of universal vaccines to provide broad spectrum protection against variants. For the SARS-CoV-2 universal recombinant protein vaccines, an effective approach is necessary to design broad-spectrum antigens and combine them with novel adjuvants that can induce high immunogenicity. In this study, we designed a novel targeted retinoic acid-inducible gene-I (RIG-I) receptor 5'triphosphate double strain RNA (5'PPP dsRNA)-based vaccine adjuvant (named AT149) and combined it with the SARS-CoV-2 Delta and Omicron chimeric RBD-dimer recombinant protein (D-O RBD) to immunize mice. The results showed that AT149 activated the P65 NF-κB signaling pathway, which subsequently activated the interferon signal pathway by targeting the RIG-I receptor. The D-O RBD + AT149 and D-O RBD + aluminum hydroxide adjuvant (Al) + AT149 groups showed elevated levels of neutralizing antibodies against the authentic Delta variant, and Omicron subvariants, BA1, BA5, and BF7, pseudovirus BQ1.1, and XBB compared with D-O RBD + Al and D-O RBD + Al + CpG7909/Poly (I:C) groups at 14 d after the second immunization, respectively. In addition, D-O RBD + AT149 and D-O RBD + Al + AT149 groups presented higher levels of the T-cell-secreted IFN-γ immune response. Overall, we designed a novel targeted RIG-I receptor 5'PPP dsRNA-based vaccine adjuvant to significantly improve the immunogenicity and broad spectrum of the SARS-CoV-2 recombinant protein vaccine.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Camundongos , Adjuvantes de Vacinas , SARS-CoV-2/genética , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Sistema ABO de Grupos Sanguíneos , Anticorpos Neutralizantes , Proteínas Recombinantes/genética , Anticorpos Antivirais , Glicoproteína da Espícula de CoronavírusRESUMO
Background & Aims: Pegylated interferon alpha (pegIFNα) is commonly used for the treatment of people infected with HDV. However, its mode of action in HDV-infected cells remains elusive and only a minority of people respond to pegIFNα therapy. Herein, we aimed to assess the responsiveness of three different cloned HDV strains to pegIFNα. We used a previously cloned HDV genotype 1 strain (dubbed HDV-1a) that appeared insensitive to interferon-α in vitro, a new HDV strain (HDV-1p) we isolated from an individual achieving later sustained response to IFNα therapy, and one phylogenetically distant genotype 3 strain (HDV-3). Methods: PegIFNα was administered to human liver chimeric mice infected with HBV and the different HDV strains or to HBV/HDV infected human hepatocytes isolated from chimeric mice. Virological parameters and host responses were analysed by qPCR, sequencing, immunoblotting, RNA in situ hybridisation and immunofluorescence staining. Results: PegIFNα treatment efficiently reduced HDV RNA viraemia (â¼2-log) and intrahepatic HDV markers both in mice infected with HBV/HDV-1p and HBV/HDV-3. In contrast, HDV parameters remained unaffected by pegIFNα treatment both in mice (up to 9 weeks) and in isolated cells infected with HBV/HDV-1a. Notably, HBV viraemia was efficiently lowered (â¼2-log) and human interferon-stimulated genes similarly induced in all three HBV/HDV-infected mouse groups receiving pegIFNα. Genome sequencing revealed highly conserved ribozyme and L-hepatitis D antigen post-translational modification sites among all three isolates. Conclusions: Our comparative study indicates the ability of pegIFNα to lower HDV loads in stably infected human hepatocytes in vivo and the existence of complex virus-specific determinants of IFNα responsiveness. Impact and implications: Understanding factors counteracting HDV infections is paramount to develop curative therapies. We compared the responsiveness of three different cloned HDV strains to pegylated interferon alpha in chronically infected mice. The different responsiveness of these HDV isolates to treatment highlights a previously underestimated heterogeneity among HDV strains.
RESUMO
Duck hepatitis A virus type 1 (DHAV-1) is an acute, highly lethal infectious agent that infects ducklings and causes up to 95% mortality in ducklings up to 1 week of age, posing a significant economic threat to the duck farming industry. Previous studies have found that the proteolytic enzyme 3 C encoded by DHAV-1 can inhibit the IRF7 protein from blocking the upstream signaling pathway of the type I interferon to promote viral replication. However, there are still few studies on the mechanism of DHAV-1 in immune evasion. Here, we demonstrate that the DHAV-1 3CD protein can interact with IRF7 protein and reduce IRF7 protein expression without directly affecting IRF7 protein nuclear translocation. Further studies showed that the 3CD protein could reduce the expression of RIG-I protein without affecting its transcription level. Furthermore, we found that the 3CD protein interacted with the N-terminal structural domain of RIG-I protein, interfered with the interaction between RIG-I and MAVS, and degraded RIG-I protein through the proteasomal degradation pathway, thereby inhibiting its mediated antiviral innate immunity to promote DHAV-1 replication. These data suggest a novel immune evasion mechanism of DHAV-1 mediated by the 3CD protein, and the results of this experiment are expected to improve the understanding of the biological functions of the viral precursor protein and provide scientific data to elucidate the mechanism of DHAV-1 infection and pathogenesis.
Assuntos
Vírus da Hepatite do Pato , Interferon Tipo I , Animais , Imunidade Inata , Transdução de Sinais , Proteínas Virais , PatosRESUMO
Background & Aims: Increased expression of IFN-stimulated gene 15 (ISG15) and subsequently increased ISGylation are key factors in the host response to viral infection. In this study, we sought to characterize the expression of ISG15, ISGylation, and associated enzymes at each stage of differentiation from induced pluripotent stem cells (iPSCs) to hepatocytes. Methods: To study the regulation of ISGylation, we utilized patient samples and in vitro cell culture models including iPSCs, hepatocytes-like cells, immortalized cell lines, and primary human hepatocytes. Protein/mRNA expression were measured following treatment with poly(I:C), IFNα and HCV infection. Results: When compared to HLCs, we observed several novel aspects of the ISGylation pathway in iPSCs. These include a lower baseline expression of the ISGylation-activating enzyme, UBE1L, a lack of IFN-induced expression of the ISGylation-conjugation enzyme UBE2L6, an attenuated activation of the transcription factor STAT1 and constitutive expression of SOCS1. ISGylation was observed in iPSCs following downregulation of SOCS1, which facilitated STAT1 activation and subsequently increased expression of UBE2L6. Intriguingly, HCV permissive transformed hepatoma cell lines demonstrated higher intrinsic expression of SOCS1 and weaker ISGylation following IFN treatment. SOCS1 downregulation in HCV-infected Huh 7.5.1 cells led to increased ISGylation. Conclusions: Herein, we show that high basal levels of SOCS1 inhibit STAT1 activation and subsequently IFN-induced UBE2L6 and ISGylation in iPSCs. Furthermore, as iPSCs differentiate into hepatocytes, epigenetic mechanisms regulate ISGylation by modifying UBE1L and SOCS1 expression levels. Overall, this study demonstrates that the development of cell-intrinsic innate immunity during the differentiation of iPSCs to hepatocytes provides insight into cell type-specific regulation of host defense responses and related oncogenic processes. Impact and implications: To elucidate the mechanism underlying regulation of ISGylation, a key process in the innate immune response, we studied changes in ISGylation-associated genes at the different stages of differentiation from iPSCs to hepatocytes. We found that high basal levels of SOCS1 inhibit STAT1 activation and subsequently IFN-induced UBE2L6 and ISGylation in iPSCs. Importantly, epigenetic regulation of SOCS1 and subsequently ISGylation may be important factors in the development of cell type-specific host defense responses in hepatocytes that should be considered when studying chronic infections and oncogenic processes in the liver.
RESUMO
Viruses have evolved various strategies to evade the host innate immune system. The relationship between nairoviruses and the interferon (IFN) system is poorly understood. We investigated whether and how nairoviruses antagonize host innate immunity using Hazara orthonairovirus (HAZV) as a surrogate model for Crimean-Congo hemorrhagic fever virus. HAZV nucleoprotein (N) was found to interact with the tripartite motif-containing protein 25 (TRIM25). The N-terminal region of N protein and the C-terminal region of TRIM25 are important for their interaction. Overexpression of N protein results in weakened interaction of TRIM25 with retinoic acid-inducible gene I (RIG-I). Furthermore, K63-linked polyubiquitination of RIG-I is inhibited in the presence of N protein. Our data collectively suggest that HAZV N protein interferes with the binding of TRIM25 to RIG-I and subsequent K63-linked polyubiquitination of RIG-I, which leads to inhibition of type I IFN production.
Assuntos
Interferon Tipo I , Nairovirus , Proteína DEAD-box 58/genética , Imunidade Inata , Interferon Tipo I/metabolismo , Nucleoproteínas/metabolismo , Tretinoína , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
Some patients with colon cancer eventually develop metastasis during treatment, and the 5year survival rate of patients with metastatic colon cancer remains relatively low, which is most likely due to the ineffectiveness of the current standard treatment. Systemic treatment for patients with colon cancer has expanded from chemotherapy to targeted therapy and immunotherapy. Immunotherapy holds promise in the treatment of colon cancer. The present study revealed the role of innate immune receptor helicase DExD/Hbox helicase 58 (DDX58), which encodes retinoic acidinducible geneI (RIGI), in colon cancer. It was demonstrated that colon cancer patients with a low protein expression of DDX58/RIGI had a worse 5year survival rate of patients compared with patients with a high expression of DDX58/RIGI. The activation of DDX58/RIGI inhibited the proliferation, migration and invasion of colon cancer cells, as well as tumor growth in a nude mouse xenograft model of colon cancer. To investigate the mechanisms of action of DDX58/RIGI in colon cancer, the role of signal transducer and activator of transcription 3 (STAT3)/cystathionineγlyase (CSE) signaling in the up or downregulation of DDX58 was examined. The data demonstrated that DDX58 regulated the STAT3/CSE signaling pathway by interacting with STAT3 and consequently affecting the proliferation of tumor cells in colon cancer. In addition, the RIGI agonist, SB9200, induced proliferation, migration and invasion of human colon cancer. On the whole, the present study demonstrates that DDX58/RIGI affects the proliferation of tumor cells by regulating STAT3/CSE signaling in colon cancer. The findings presented herein suggest that DDX58/RIGI activation may be an effective treatment strategy, and DDX58/RIGI agonists may be potential therapeutic candidates for colon cancer.
Assuntos
Neoplasias do Colo , Fator de Transcrição STAT3 , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias do Colo/patologia , Cistationina gama-Liase/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Humanos , Camundongos , Receptores Imunológicos/metabolismo , Receptores do Ácido Retinoico/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de SinaisRESUMO
DEAD-box RNA helicase 21 (DDX21), also known as RHII/Gu, is an ATP-dependent RNA helicase. In addition to playing a vital role in regulating cellular RNA splicing, transcription, and translation, accumulated evidence has suggested that DDX21 is also involved in the regulation of innate immunity. However, whether DDX21 induces or antagonizes type I interferon (IFN-I) production has not been clear and most studies have been performed through ectopic overexpression or RNA interference-mediated knockdown. In this study, we generated DDX21 knockout cell lines and found that knockout of DDX21 enhanced Sendai virus (SeV)-induced IFN-ß production and IFN-stimulated gene (ISG) expression, suggesting that DDX21 is a negative regulator of IFN-ß. Mechanistically, DDX21 competes with retinoic acid-inducible gene I (RIG-I) for binding to double-stranded RNA (dsRNA), thereby attenuating RIG-I-mediated IFN-ß production. We also identified that the 217-784 amino acid region of DDX21 is essential for binding dsRNA and associated with its ability to antagonize IFN production. Taken together, our results clearly demonstrated that DDX21 negatively regulates IFN-ß production and functions to maintain immune homeostasis.
Assuntos
Interferon beta , RNA de Cadeia Dupla , RNA Helicases DEAD-box , Imunidade Inata , Vírus SendaiRESUMO
The clinical and immunological spectrum of acute and post-active COVID-19 syndrome overlaps with criteria used to characterize autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Indeed, following SARS-Cov2 infection, the innate immune response is altered with an initial delayed production of interferon type I (IFN-I), while the NF-kappa B and inflammasome pathways are activated. In lung and digestive tissues, an alternative and extrafollicular immune response against SARS-Cov2 takes place with, consequently, an altered humoral and memory T cell response leading to breakdown of tolerance with the emergence of autoantibodies. However, the risk of developing severe COVID-19 among SLE and RA patients did not exceed the general population except in those having pre-existing neutralizing autoantibodies against IFN-I. Treatment discontinuation rather than COVID-19 infection or vaccination increases the risk of developing flares. Last but not least, a limited number of case reports of individuals having developed SLE or RA following COVID-19 infection/vaccination have been reported. Altogether, the SARS-Cov2 pandemic represents an unique opportunity to investigate the dangerous interplay between the immune response against infectious agents and autoimmunity, and to better understand the triggering role of infection as a risk factor in autoimmune and chronic inflammatory disease development.
RESUMO
The RNA-binding protein RIG-I is a key initiator of the antiviral innate immune response. The signaling that mediates the antiviral response downstream of RIG-I is transduced through the adaptor protein MAVS and results in the induction of type I and III interferons (IFNs). This signal transduction occurs at endoplasmic reticulum (ER)mitochondrial contact sites, to which RIG-I and other signaling proteins are recruited following their activation. RIG-I signaling is highly regulated to prevent aberrant activation of this pathway and dysregulated induction of IFN. Previously, we identified UFL1, the E3 ligase of the ubiquitin-like modifier conjugation system called ufmylation, as one of the proteins recruited to membranes at ERmitochondrial contact sites in response to RIG-I activation. Here, we show that UFL1, as well as the process of ufmylation, promote IFN induction in response to RIG-I activation. We found that following RNA virus infection, UFL1 is recruited to the membrane-targeting protein 143-3ε and that this complex is then recruited to activated RIG-I to promote downstream innate immune signaling. Importantly, we found that 143-3ε has an increase in UFM1 conjugation following RIG-I activation. Additionally, loss of cellular ufmylation prevents the interaction of 143-3ε with RIG-I, which abrogates the interaction of RIG-I with MAVS and thus the downstream signal transduction that induces IFN. Our results define ufmylation as an integral regulatory component of the RIG-I signaling pathway and as a posttranslational control for IFN induction.
Assuntos
Proteína DEAD-box 58 , Interferons , Infecções por Vírus de RNA , RNA Viral , Receptores Imunológicos , Ubiquitina-Proteína Ligases , Proteínas 14-3-3/metabolismo , Proteína DEAD-box 58/metabolismo , Humanos , Imunidade Inata , Interferons/metabolismo , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/imunologia , RNA Viral/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Studies have indicated that RIG-I may act as a tumor suppressor and participate in the tumorigenesis of some malignant diseases. However, RIG-I induces distinct cellular responses via different downstream signaling pathways depending on the cell type. To investigate the biological function and underlying molecular mechanism of RIG-I in the tumorigenesis of melanoma, we constructed RIG-I knockout, RIG-I-overexpressing B16-F10 and RIG-I knockdown A375 melanoma cell lines, and analyzed the RIG-I-mediated change in the biological behavior of tumor cells in spontaneous and poly (I:C)-induced RIG-I activation. Cell proliferation, cell cycling, apoptosis and migration were detected by CCK-8 assay, BrdU incorporation assay, Annexin V-PI staining assay and Transwell assay, respectively. In vivo tumorigenicity was evaluated by tumor xenograft growth in nude mice and subsequently by Ki67 staining and TUNEL assays. Furthermore, Western blotting was utilized to explore the underlying mechanism of RIG-I in melanoma cells. Our data showed that RIG-I promotes apoptosis and inhibits proliferation by G1 phase cell cycle arrest in the melanoma cell lines. Mechanistically, RIG-I induced the phosphorylation of p38 MAPK and MAPK kinases MKK3 and MKK4. In conclusion, the current study demonstrated that RIG-I suppressed the development of melanoma by regulating the activity of the MKK/p38 MAPK signaling pathway, which is relevant to research on novel therapeutic targets for this malignant disease.