Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Int J Pharm ; 661: 124458, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996823

RESUMO

Leukemia, particularly acute myeloid leukemia (AML) is considered a serious health condition with high prevalence among adults. Accordingly, finding new therapeutic modalities for AML is urgently needed. This study aimed to develop a biocompatible nanoformulation for effective oral delivery of the phytomedicine; baicalin (BAC) for AML treatment. Lipid nanocapsules (LNCs) based on bioactive natural components; rhamnolipids (RL) as a biosurfactant and the essential oil linalool (LIN), were prepared using a simple phase-inversion method. The elaborated BAC-LNCs displayed 61.1 nm diameter and 0.2 PDI. Entrapment efficiency exceeded 98 % with slow drug release and high storage-stability over 3 months. Moreover, BAC-LNCs enhanced BAC oral bioavailability by 2.3-fold compared to BAC suspension in rats with higher half-life and mean residence-time. In vitro anticancer studies confirmed the prominent cytotoxicity of BAC-LNCs on the human leukemia monocytes (THP-1). BAC-LNCs exerted higher cellular association, apoptotic capability and antiproliferative activity with DNA synthesis-phase arrest. Finally, a mechanistic study performed through evaluation of various tumor biomarkers revealed that BAC-LNCs downregulated the angiogenic marker, vascular endothelial growth-factor (VEGF) and the anti-apoptotic marker (BCl-2) and upregulated the apoptotic markers (Caspase-3 and BAX). The improved efficacy of BAC bioactive-LNCs substantially recommends their pharmacotherapeutic potential as a promising nanoplatform for AML treatment.

2.
Food Chem ; 457: 140167, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909451

RESUMO

Essential oils, well-known for their antifungal properties, are widely utilized to combat fruit decay. However, their application faces big challenges due to their high volatility and hydrophobic traits, which leads to strong odor, short effective time and poor dispersivity. This study aimed to address these challenges by formulating microemulsions consisting of essential oils and rhamnolipids. The optimized microemulsion, featuring a small particle size of 6.8 nm, exhibited higher stability and lower volatility than conventional emulsion. Notably, the prepared microemulsions demonstrated remarkable antimicrobial efficacy against E. coli, S. aureus, C. albicans, S. cerevisiae, and A. niger. The application of these microemulsions proved to be highly effective in preventing blueberry decay while preserving fruit's quality, particularly by minimizing the loss of essential nutrients such as anthocyanins. Consequently, essential oil microemulsions emerge as a highly effective postharvest preservative for fruits, offering a promising solution to extend their shelf life and enhance overall quality.

3.
Microb Pathog ; 193: 106743, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879138

RESUMO

Rhamnolipids, a major category of glycolipid biosurfactant, have recently gained enormous attention in medical field because of their relevance as effective antibacterial agents against a wide variety of pathogenic bacteria. Our previous studies have shown that rhamnolipids from an environmental isolate of Pseudomonas aeruginosa UKMP14T possess antibacterial, anti-adhesive and anti-biofilm activity against multidrug-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) pathogens. However, the mechanism of their antibacterial action remains unclear. Thus, this study aimed to elucidate the mechanism of the antibacterial action of P. aeruginosa UKMP14T rhamnolipids by studying the changes in cells of one of the ESKAPE pathogens, Acinetobacter baumannii, which is the most difficult strain to kill. Results revealed that rhamnolipid treatment rendered A. baumannii cells more hydrophobic as evaluated through contact angle measurements. It also induced the release of cellular proteins measuring 510 µg/mL at a rhamnolipid concentration of 1000 µg/mL. In addition, rhamnolipids were found to be bactericidal in their action as they could permeate the inner membranes, leading to a leak-out of nucleotides. More than 50 % of the cells were found to be killed upon 1000 µg/mL rhamnolipid treatment as observed through fluorescence microscopy. Other cellular changes such as irregular shape and size, membrane perturbations, clumping, shrinkage and physical damage were clearly visible in SEM, FESEM and laser micrographs. Furthermore, rhamnolipid treatment inhibited the levels of acyl-homoserine lactones (AHLs) in A. baumannii, which are vital for their biofilm formation and virulence. The obtained results indicate that P. aeruginosa UKMP14T rhamnolipids target outer and inner bacterial membranes through permeation, including physical damage to the cells, leading to cell leakage. Furthermore, AHL inhibition appears to be the mechanism behind their anti-biofilm action. All these observations can be correlated to rhamnolipids' antibacterial effect against A. baumannii.


Assuntos
Acinetobacter baumannii , Antibacterianos , Biofilmes , Farmacorresistência Bacteriana Múltipla , Glicolipídeos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Glicolipídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Viabilidade Microbiana/efeitos dos fármacos
4.
J Environ Manage ; 365: 121514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908152

RESUMO

Microbial fuel cells (MFCs) have been recently proven to synthesise biosurfactants from waste products. In classic bioreactors, the efficiency of biosynthesis process can be controlled by the concentration of nitrogen content in the electrolyte. However, it was not known whether a similar control mechanism could be applied in current-generating conditions. In this work, the effect of nitrogen concentration on biosurfactant production from waste cooking oil was investigated. The concentration of NH4Cl in the electrolyte ranged from 0 to 1 g L-1. The maximum power density equal to 17.5 W m-3 was achieved at a concentration of 0.5 g L-1 (C/N = 2.32) and was accompanied by the highest surface tension decrease (to 54.6 mN m-1) and an emulsification activity index of 95.4%. Characterisation of the biosurfactants produced by the LC-MS/MS method showed the presence of eleven compounds belonging to the mono- and di-rhamnolipids group, most likely produced by P. aeruginosa, which was the most abundant (19.6%) in the community. Importantly, we have found a strong correlation (R = -0.96) of power and biosurfactant activity in response to C/N ratio. This study shows that nitrogen plays an important role in the current-generating metabolism of waste cooking oil. To the best of our knowledge, this is the first study where the nitrogen optimisation was investigated to improve the synthesis of biosurfactants and power generation in a bioelectrochemical system.


Assuntos
Fontes de Energia Bioelétrica , Glicolipídeos , Nitrogênio , Tensoativos , Nitrogênio/metabolismo , Tensoativos/metabolismo , Glicolipídeos/metabolismo , Eletrodos , Reatores Biológicos
5.
Microbiol Res ; 285: 127765, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38805980

RESUMO

The growing biotechnology industry has focused a lot of attention on biosurfactants because of several advantages over synthetic surfactants. These benefits include worldwide public health, environmental sustainability, and the increasing demand from sectors for environmentally friendly products. Replacement with biosurfactants can reduce upto 8% lifetime CO2 emissions avoiding about 1.5 million tons of greenhouse gas released into the atmosphere. Therefore, the demand for biosurfactants has risen sharply occupying about 10% (∼10 million tons/year) of the world production of surfactants. Biosurfactants' distinct amphipathic structure, which is made up of both hydrophilic and hydrophobic components, enables these molecules to perform essential functions in emulsification, foam formation, detergency, and oil dispersion-all of which are highly valued characteristic in a variety of sectors. Today, a variety of biosurfactants are manufactured on a commercial scale for use in the food, petroleum, and agricultural industries, as well as the pharmaceutical and cosmetic industries. We provide a thorough analysis of the body of knowledge on microbial biosurfactants that has been gained over time in this research. We also discuss the benefits and obstacles that need to be overcome for the effective development and use of biosurfactants, as well as their present and future industrial uses.


Assuntos
Bactérias , Biotecnologia , Tensoativos , Tensoativos/metabolismo , Tensoativos/química , Biotecnologia/métodos , Bactérias/metabolismo , Microbiologia Industrial/métodos , Interações Hidrofóbicas e Hidrofílicas
6.
Environ Res ; 252(Pt 2): 118880, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582421

RESUMO

Persistent, aged hydrocarbons in soil hinder remediation, posing a significant environmental threat. While bioremediation offers an environmentally friendly and cost-effective approach, its efficacy for complex contaminants relies on enhancing pollutant bioavailability. This study explores the potential of immobilized bacterial consortia combined with biochar and rhamnolipids to accelerate bioremediation of aged total petroleum hydrocarbon (TPH)-contaminated soil. Previous research indicates that biochar and biosurfactants can increase bioremediation rates, while mixed consortia offer sequential degradation and higher hydrocarbon mineralization. The present investigation aimed to assess whether combining these strategies could further enhance degradation in aged, complex soil matrices. The bioaugmentation (BA) with bacterial consortium increased the TPHs degradation in aged soil (over 20% compared to natural attenuation - NA). However, co-application of BA with biochar and rhamnolipid higher did not show a statistically prominent synergistic effect. While biochar application facilitated the maintenance of hydrocarbon degrading bacterial consortium in soil, the present study did not identify a direct influence in TPHs degradation. The biochar application in contaminated soil contributed to TPHs adsorption. Rhamnolipid alone slightly increased the TPHs biodegradation with NA, while the combined bioaugmentation treatment with rhamnolipid and biochar increased the degradation between 27.5 and 29.8%. These findings encourage further exploration of combining bioaugmentation with amendment, like biochar and rhamnolipid, for remediating diverse environmental matrices contaminated with complex and aged hydrocarbons.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Glicolipídeos , Hidrocarbonetos , Poluentes do Solo , Poluentes do Solo/metabolismo , Glicolipídeos/metabolismo , Carvão Vegetal/química , Hidrocarbonetos/metabolismo , Microbiologia do Solo , Petróleo/metabolismo , Solo/química
7.
Front Microbiol ; 15: 1332448, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505547

RESUMO

Previously, we pointed out in P. aeruginosa PAO1 biofilm cells the accumulation of a hypothetical protein named PA3731 and showed that the deletion of the corresponding gene impacted its biofilm formation capacity. PA3731 belongs to a cluster of 4 genes (pa3732 to pa3729) that we named bac for "Biofilm Associated Cluster." The present study focuses on the PA14_16140 protein, i.e., the PA3732 (BacA) homolog in the PA14 strain. The role of BacA in rhamnolipid secretion, biofilm formation and virulence, was confirmed by phenotypic experiments with a bacA mutant. Additional investigations allow to advance that the bac system involves in fact 6 genes organized in operon, i.e., bacA to bacF. At a molecular level, quantitative proteomic studies revealed an accumulation of the BAC cognate partners by the bacA sessile mutant, suggesting a negative control of BacA toward the bac operon. Finally, a first crystallographic structure of BacA was obtained revealing a structure homologous to chaperones or/and regulatory proteins.

8.
Lett Appl Microbiol ; 77(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38366661

RESUMO

This study aims to isolate microbial strains for producing mono-rhamnolipids with high proportion. Oily sludge is rich in petroleum and contains diverse biosurfactant-producing strains. A biosurfactant-producing strain LP20 was isolated from oily sludge, identified as Pseudomonas aeruginosa based on phylogenetic analysis of 16S rRNA. High-performance liquid chromatography-mass spectrometry results indicated that biosurfactants produced from LP20 were rhamnolipids, mainly containing Rha-C8-C10, Rha-C10-C10, Rha-Rha-C8-C10, Rha-Rha-C10-C10, Rha-C10-C12:1, and Rha-C10-C12. Interestingly, more mono-rhamnolipids were produced by strain LP20 with a relative abundance of 64.5%. Pseudomonas aeruginosa LP20 optimally produced rhamnolipids at a pH of 7.0 and a salinity of 0.1% using glycerol and nitrate. The culture medium for rhamnolipids by strain LP20 was optimized by response surface methodology. LP20 produced rhamnolipids up to 6.9 g L-1, increased by 116%. Rhamnolipids produced from LP20 decreased the water surface tension to 28.1 mN m-1 with a critical micelle concentration of 60 mg L-1. The produced rhamnolipids emulsified many hydrocarbons with EI24 values higher than 56% and showed antimicrobial activity against Staphylococcus aureus and Cladosporium sp. with inhibition rates 48.5% and 17.9%, respectively. Pseudomonas aeruginosa LP20 produced more proportion of mono-rhamnolipids, and the LP20 rhamnolipids exhibited favorable activities and promising potential in microbial-enhanced oil recovery, bioremediation, and agricultural biocontrol.


Assuntos
Decanoatos , Pseudomonas aeruginosa , Ramnose/análogos & derivados , Esgotos , Pseudomonas aeruginosa/genética , Filogenia , RNA Ribossômico 16S/genética , Glicolipídeos , Tensoativos/farmacologia
9.
Infect Immun ; 92(3): e0040723, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38391248

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen that has developed multi- or even pan-drug resistance toward most frontline and last resort antibiotics, leading to increasing frequency of infections and deaths among hospitalized patients, especially those with compromised immune systems. Further complicating treatment, P. aeruginosa produces numerous virulence factors that contribute to host tissue damage and immune evasion, promoting bacterial colonization and pathogenesis. In this study, we demonstrate the importance of rhamnolipid production in host-pathogen interactions. Secreted rhamnolipids form micelles that exhibited highly acute toxicity toward murine macrophages, rupturing the plasma membrane and causing organellar membrane damage within minutes of exposure. While rhamnolipid micelles (RMs) were particularly toxic to macrophages, they also caused membrane damage in human lung epithelial cells, red blood cells, Gram-positive bacteria, and even noncellular models like giant plasma membrane vesicles. Most importantly, rhamnolipid production strongly correlated with P. aeruginosa virulence against murine macrophages in various panels of clinical isolates. Altogether, our findings suggest that rhamnolipid micelles are highly cytotoxic virulence factors that drive acute cellular damage and immune evasion during P. aeruginosa infections.


Assuntos
Antineoplásicos , Glicolipídeos , Infecções por Pseudomonas , Humanos , Animais , Camundongos , Virulência , Percepção de Quorum , Pseudomonas aeruginosa , Micelas , Fatores de Virulência/metabolismo
10.
Microbiol Spectr ; 12(3): e0369323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311809

RESUMO

The multidrug-resistant pathogen Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model that can be used to characterize the impact and molecular mechanisms of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model to use human bronchial epithelial (16HBE) cells. We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipids or genetic disruption of rhamnolipid biosynthesis abrogated the toxicity of the conditioned medium. Furthermore, we also examine the effects of exposure to purified pyoverdine on 16HBE cells. While pyoverdine accumulated within cells, it was largely sequestered within early endosomes, resulting in minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several pro-inflammatory genes. However, pyoverdine potentiated these iron chelators in activating pro-inflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection. IMPORTANCE: Multidrug-resistant Pseudomonas aeruginosa is a versatile bacterium that frequently causes lung infections. This pathogen is life-threatening to mechanically-ventilated patients in intensive care units and is a debilitating burden for individuals with cystic fibrosis. However, the role of P. aeruginosa virulence factors and their regulation during infection are not fully understood. Previous murine lung infection studies have demonstrated that the production of siderophores (e.g., pyoverdine and pyochelin) is necessary for full P. aeruginosa virulence. In this report, we provide further mechanistic insight into this phenomenon. We characterize distinct and novel ways these siderophores contribute to virulence using an in vitro human lung epithelial cell culture model.


Assuntos
Fibrose Cística , Fenóis , Infecções por Pseudomonas , Tiazóis , Humanos , Animais , Camundongos , Sideróforos/metabolismo , Pseudomonas aeruginosa/genética , Ferro/metabolismo , Meios de Cultivo Condicionados/metabolismo , Fibrose Cística/microbiologia , Quelantes de Ferro , Infecções por Pseudomonas/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Mamíferos
11.
Environ Int ; 184: 108448, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246038

RESUMO

Biosurfactants-based bioremediation is considered an efficient technology to eliminate environmental pollutants including polycyclic aromatic hydrocarbons (PAHs). However, the precise role of rhamnolipids or lipopeptide-biosurfactants in mixed PAH dissipation, shaping microbial community structure, and influencing metabolomic profile remained unclear. In this study, results showed that the maximum PAH degradation was achieved in lipopeptide-assisted treatment (SPS), where the pyrene and phenanthrene were substantially degraded up to 74.28 % and 63.05 % respectively, as compared to rhamnolipids (SPR) and un-aided biosurfactants (SP). Furthermore, the high throughput sequencing analysis revealed a significant change in the PAH-degrading microbial community, with Proteobacteria being the predominant phylum (>98 %) followed by Bacteroidota and Firmicutes in all the treatments. Moreover, Pseudomonas and Pannonibacter were found as highly potent bacterial genera for mixed PAH degradation in SPR, SPS, and SP treatments, nevertheless, the abundance of the genus Pseudomonas was significantly enhanced (>97 %) in SPR treatment groups. On the other hand, the non-targeted metabolomic profile through UHPLC-MS/MS exhibited a remarkable change in the metabolites of amino acids, carbohydrates, and lipid metabolisms by the input of rhamnolipids or lipopeptide-biosurfactants whereas, the maximum intensities of metabolites (more than two-fold) were observed in SPR treatment. The findings of this study suggested that the aforementioned biosurfactants can play an indispensable role in mixed PAH degradation as well as seek to offer new insights into shifts in PAH-degrading microbial communities and their metabolic function, which can guide the development of more efficient and targeted strategies for complete removal of organic pollutants such as PAH from the contaminated environment.


Assuntos
Poluentes Ambientais , Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Espectrometria de Massas em Tandem , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Lipopeptídeos , Microbiologia do Solo
12.
Compr Rev Food Sci Food Saf ; 23(1): e13252, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284602

RESUMO

Biosurfactants (surfactants synthesized by microorganisms) are produced by microorganisms and are suitable for use in different areas. Among biosurfactants, rhamnolipids are the most studied and popular, attracting scientists, and industries' interest. Due to their unique characteristics, the rhamnolipids have been used as synthetic surfactants' alternatives and explored in food applications. Besides the production challenges that need to be tackled to guarantee efficient production and low cost, their properties need to be adjusted to the final application, where the pH instability needs to be considered. Moreover, regulatory approval is needed to start being used in commercial applications. One characteristic of interest is their capacity to form oil-in-water nanosystems. Some of the most explored have been nanoemulsions, solid-lipid nanoparticles and nanostructured lipid carriers. This review presents an overview of the main properties of rhamnolipids, asserts the potential and efficiency of rhamnolipids to replace the synthetic surfactants in the development of nanosystems, and describes the rhamnolipids-based nanosystems used in food applications. It also discusses the main characteristics and methodologies used for their characterization and in the end, some of the main challenges are highlighted.


Assuntos
Glicolipídeos , Nanoestruturas , Glicolipídeos/química , Alimentos , Tensoativos/química
13.
Carbohydr Res ; 535: 108991, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065042

RESUMO

We present the isolation and structural characterization of a novel nonionic dirhamnolipid methyl ester produced by the bacterium Burkholderia lata. The structure and the absolute configuration of the isolated dirhamnolipid bearing a symmetrical C14-C14 methyl ester chain were thoroughly investigated through chemical degradation and spectroscopic methods including 1D and 2D NMR analysis, HR-ESI-TOF-MS, chiral GC-MS, and polarimetry. Our work represents the first mention in the literature of a rhamnolipid methyl ester from Burkholderia species.


Assuntos
Burkholderia , Glicolipídeos , Glicolipídeos/química , Burkholderia/química , Cromatografia Gasosa-Espectrometria de Massas , Ésteres/metabolismo
14.
Int J Pharm ; 649: 123655, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38043750

RESUMO

Helicobacter pylori (H. pylori) is a major factor in peptic ulcer disease and gastric cancer, and its infection rate is rising globally. The efficacy of traditional antibiotic treatment is less effective, mainly due to bacterial biofilms and the formation of antibiotic resistance. In addition, H. pylori colonizes the gastrointestinal epithelium covered by mucus layers, the drug must penetrate the double barrier of mucus layer and biofilm to reach the infection site and kill H. pylori. The ethanol injection method was used to synthesize nanoliposomes (EPI/R-AgNPs@RHL/PC) with a mixed lipid layer containing rhamnolipids (RHL) and phosphatidylcholine (PC) as a carrier, loaded with the urease inhibitor epiberberine (EPI) and the antimicrobial agent rubropunctatin silver nanoparticles (R-AgNPs). EPI/R-AgNPs@RHL/PC had the appropriate size, negative charge, and acid sensitivity to penetrate mucin-rich mucus layers and achieve acid-responsive drug release. In vitro experiments demonstrated that EPI/R-AgNPs@RHL/PC exhibited good antibacterial activity, effectively inhibited urease activity, removed the mature H. pylori biofilm, and inhibited biofilm regeneration. In vivo antibacterial tests showed that EPI/R-AgNPs@RHL/PC exhibited excellent activity in eradicating H. pylori and protecting the mucosa compared to the traditional clinical triple therapy, providing a new idea for the treatment of H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Urease/farmacologia , Urease/uso terapêutico , Antibacterianos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia
15.
Adv Healthc Mater ; 13(4): e2302596, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37935580

RESUMO

There is an urgent need for alternative antimicrobial materials due to the growing challenge of bacteria becoming resistant to conventional antibiotics. This study demonstrates the creation of a biocompatible pH-switchable antimicrobial material by combining bacteria-derived rhamnolipids (RL) and food-grade glycerol monooleate (GMO). The integration of RL into dispersed GMO particles, with an inverse-type liquid crystalline cubic structure in the core, leads to colloidally stable supramolecular materials. The composition and pH-triggered structural transformations are studied with small-angle X-ray scattering, cryogenic transmission electron microscopy, and dynamic light scattering. The composition-structure-activity relationship is analyzed and optimized to target bacteria at acidic pH values of acute wounds. The new RL/GMO dispersions reduce Staphylococcus aureus (S. aureus) populations by 7-log after 24 h of treatment with 64 µg mL-1 of RL and prevent biofilm formation at pH = 5.0, but have no activity at pH = 7.0. Additionally, the system is active against methicillin-resistant S. aureus (MRSA) with minimum inhibitory concentration of 128 µg mL-1 at pH 5.0. No activity is found against several Gram-negative bacteria at pH 5.0 and 7.0. The results provide a fundamental understanding of lipid self-assembly and the design of lipid-based biomaterials, which can further guide the development of alternative bio-based solutions to combat bacteria.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Glicolipídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana
16.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873290

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen that has developed multi- or even pan-drug resistance towards most frontline and last resort antibiotics, leading to increasing infections and deaths among hospitalized patients, especially those with compromised immune systems. Further complicating treatment, P. aeruginosa produces numerous virulence factors that contribute to host tissue damage and immune evasion, promoting bacterial colonization and pathogenesis. In this study, we demonstrate the importance of rhamnolipid production in host-pathogen interactions. Secreted rhamnolipids form micelles that exhibited highly acute toxicity towards murine macrophages, rupturing the plasma membrane and causing organellar membrane damage within minutes of exposure. While rhamnolipid micelles (RMs) were particularly toxic to macrophages, they also caused membrane damage in human lung epithelial cells, red blood cells, Gram-positive bacteria, and even non-cellular models like giant plasma membrane vesicles. Most importantly, rhamnolipid production strongly correlated to P. aeruginosa virulence against murine macrophages in various panels of clinical isolates. Altogether, our findings suggest that rhamnolipid micelles are highly cytotoxic virulence factors that drive acute cellular damage and immune evasion during P. aeruginosa infections.

17.
Front Bioeng Biotechnol ; 11: 1253652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885452

RESUMO

Biosurfactants are microbial products that have applications as cleaning agents, emulsifiers, and dispersants. Detection and quantification of biosurfactants can be done by various methods, including colorimetric tests, high performance liquid chromatography (HPLC) coupled to several types of detectors, and tests that take advantage of biosurfactants reducing surface tension of aqueous liquids, allowing for spreading and droplet formation of oils. We present a new and simple method for quantifying biosurfactants by their ability, on paper, to reduce surface tension of aqueous solutions, causing droplet dispersion on an oiled surface in correlation with biosurfactant content. We validated this method with rhamnolipids, surfactin, sophorolipids, and ananatoside B; all are anionic microbial surfactants. Linear ranges for quantification in aqueous solutions for all tested biosurfactants were between 10 and 500 µM. Our method showed time-dependent biosurfactant accumulation in cultures of Pseudomonas aeruginosa strains PA14 and PAO1, and Burkholderia thailandensis E264. Mutants in genes responsible for surfactant production showed negligible activity on oiled paper. In summary, our simple assay provides the opportunity to quantify biosurfactant contents of aqueous solutions, for a diversity of surfactants, by means readily available in any laboratory.

18.
Front Cell Infect Microbiol ; 13: 1245874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780859

RESUMO

The interactions between bacterial species during infection can have significant impacts on pathogenesis. Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic bacterial pathogens that can co-infect hosts and cause serious illness. The factors that dictate whether one species outcompetes the other or whether the two species coexist are not fully understood. We investigated the role of surfactants in the interactions between these two species on a surface that enables P. aeruginosa to swarm. We found that P. aeruginosa swarms are repelled by colonies of clinical S. aureus isolates, creating physical separation between the two strains. This effect was abolished in mutants of S. aureus that were defective in the production of phenol-soluble modulins (PSMs), which form amyloid fibrils around wild-type S. aureus colonies. We investigated the mechanism that establishes physical separation between the two species using Imaging of Reflected Illuminated Structures (IRIS), which is a non-invasive imaging method that tracks the flow of surfactants produced by P. aeruginosa. We found that PSMs produced by S. aureus deflected the surfactant flow, which in turn, altered the direction of P. aeruginosa swarms. These findings show that rhamnolipids mediate physical separation between P. aeruginosa and S. aureus, which could facilitate coexistence between these species. Additionally, we found that a number of molecules repelled P. aeruginosa swarms, consistent with a surfactant deflection mechanism. These include Bacillus subtilis surfactant, the fatty acids oleic acid and linoleic acid, and the synthetic lubricant polydimethylsiloxane. Lung surfactant repelled P. aeruginosa swarms and inhibited swarm expansion altogether at higher concentration. Our results suggest that surfactant interactions could have major impacts on bacteria-bacteria and bacteria-host relationships. In addition, our findings uncover a mechanism responsible for P. aeruginosa swarm development that does not rely solely on sensing but instead is based on the flow of surfactant.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Pseudomonas aeruginosa , Staphylococcus aureus/genética , Infecções Estafilocócicas/microbiologia , Biofilmes , Tensoativos
19.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836789

RESUMO

Bacillus cereus (B. cereus) is a common foodborne pathogen causing food poisoning incidents. This study aimed to evaluate the antibacterial activity and underlying mechanism of rhamnolipids (RLs) against B. cereus. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of RLs for B. cereus were determined to be 16.0 mg/L and 32.0 mg/L, respectively. Scanning electron microscopy and fluorescence microscope images, as well as data of membrane potential, relative electric conductivity, and leakage of intracellular components revealed that RLs disrupted the integrity of the cell membrane. Furthermore, the reactive oxygen species content, catalase (CAT) and superoxide dismutase (SOD) activity indicated that RLs activated the oxidative stress response of B. cereus in response to RLs. Fresh wet noodles (FWN) were used as a food model, and RLs showed a significant killing effect on B. cereus with a sustained inhibitory effect at the concentrations ranging from 128.0 to 1024.0 mg/kg. Additionally, RLs promoted the conversion of free water to bound water in FWN, which improved the storage of FWN and made the taste more resilient and chewy. These results suggest that RLs could be a potential alternative to antimicrobial agents and preservatives for applications in food processing.


Assuntos
Anti-Infecciosos , Bacillus cereus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Água/farmacologia
20.
Front Plant Sci ; 14: 1195718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674738

RESUMO

Plant pathogens and pests can cause significant losses in crop yields, affecting food security and the global economy. Many traditional chemical pesticides are used to combat these organisms. This can lead to the development of pesticide-resistant strains of pathogens/insects and negatively impact the environment. The development of new bioprotectants, which are less harmful to the environment and less likely to lead to pesticide-resistance, appears as a sustainable strategy to increase plant immunity. Natural Rhamnolipids (RL-Nat) are a class of biosurfactants with bioprotectant properties that are produced by an opportunistic human pathogen bacterium. RL-Nat can act as plant resistance inducers against a wide variety of pathogens. Recently, a series of bioinspired synthetic mono-RLs produced by green chemistry were also reported as phytoprotectants. Here, we explored their capacity to generate novel colloidal systems that might be used to encapsulate bioactive hydrophobic compounds to enhance their performance as plant bioprotectants. The synthetic mono-RLs showed good surfactant properties and emulsification power providing stable nanoemulsions capable of acting as bio-carriers with good wettability. Synthetic RLs-stabilized nanoemulsions were more effective than RLs suspensions at inducing plant immunity, without causing deleterious effects. These nanoemulsions were innocuous to native substrate microbiota and beneficial soil-borne microbes, making them promising safe bio-carriers for crop protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA