RESUMO
The ability of bacteria to colonize diverse environmental niches is often linked to their competence in biofilm formation. It depends on the individual characteristics of a strain, the nature of the colonized surface (abiotic or biotic), or the availability of certain nutrients. Pseudomonas donghuensis P482 efficiently colonizes the rhizosphere of various plant hosts, but a connection between plant tissue colonization and the biofilm formation ability of this strain has not yet been established. We demonstrate here that the potential of P482 to form biofilms on abiotic surfaces and the structural characteristics of the biofilm are influenced by the carbon source available to the bacterium, with glycerol promoting the process. Also, the type of substratum, polystyrene or glass, impacts the ability of P482 to attach to the surface. Moreover, P482 mutants in genes associated with motility or chemotaxis, the synthesis of polysaccharides, and encoding proteases or regulatory factors, which affect biofilm formation on glass, were fully capable of colonizing the root tissue of both tomato and maize hosts. Investigating the role of cellular factors in biofilm formation using these plant-associated bacteria shows that the ability of bacteria to form biofilm on abiotic surfaces does not necessarily mirror its ability to colonize plant tissues. Our research provides a broader perspective on the adaptation of these bacteria to various environments.
Assuntos
Biofilmes , Carbono , Pseudomonas , Biofilmes/crescimento & desenvolvimento , Pseudomonas/fisiologia , Pseudomonas/metabolismo , Pseudomonas/genética , Carbono/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Solanum lycopersicum/microbiologia , Zea mays/microbiologia , Vidro , Aderência Bacteriana , Glicerol/metabolismo , PoliestirenosRESUMO
Azospirillum sp. is a plant growth-promoting rhizobacteria largely recognized for its potential to increase the yield of different important crops. In this work, we present a thorough genomic and phenotypic analysis of A. argentinense Az39T to provide new insights into the beneficial mechanisms of this microorganism. Phenotypic analyses revealed the following in vitro abilities: growth at 20-38 °C (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 6.8), and in the presence of 1% (w/v) NaCl; production of variable amounts of PHB as intracellular granules; nitrogen fixation under microaerophilic conditions; IAA synthesis in the presence of L-tryptophan. Through biochemical (API 20NE) and carbon utilization profiling (Biolog) assays, we proved that A. argentinense Az39T is able to use 15 substrates and metabolize 19 different carbon substrates. Lipid composition indicated a predominance of medium and long-chain saturated fatty acids. A total of 6 replicons classified as one main chromosome, three chromids, and two plasmids, according to their tRNA and core essential genes contents, were identified. Az39T genome includes genes associated with multiple plant growth-promoting (PGP) traits such as nitrogen fixation and production of auxins, cytokinin, abscisic acid, ethylene, and polyamines. In addition, Az39T genome harbor genetic elements associated with physiological features that facilitate its survival in the soil and competence for rhizospheric colonization; this includes motility, secretion system, and quorum sensing genetic determinants. A metadata analysis of Az39T agronomic performance in the pampas region, Argentina, demonstrated significant grain yield increases in wheat and maize, proving its potential to provide better growth conditions for dryland cereals. In conclusion, our data provide a detailed insight into the metabolic profile of A. argentinense Az39T, the strain most widely used to formulate non-legume inoculants in Argentina, and allow a better understanding of the mechanisms behind its field performance.
Assuntos
Azospirillum , Azospirillum/fisiologia , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal , Carbono , América do SulRESUMO
Among the key diseases affecting the asparagus crop (Asparagus officinalis L.), vascular wilting of asparagus caused by Fusarium oxysporum f. sp. asparagi stands out worldwide. This disease significantly shortens the longevity of the crop and limits economic production. Traditional control measures have been largely ineffective, and chemical control methods are difficult to apply, making biological control approaches, specifically the use of Trichoderma, an economical, effective, and risk-free alternative. This study aimed to identify the main factors that affect the efficacy of biopesticides studied as Biological Control Agents (BCAs) against Fusarium wilt in asparagus and to assess the efficacy of Trichoderma-based biopesticides under greenhouse and semi-field conditions. We evaluated the response of three Trichoderma spp. (T. atroviride, T. asperellum, and T. saturnisporum) to environmental variables, such as temperature and water activity, and their antagonistic capacity against Fusarium oxysporum f. sp. asparagi. All three Trichoderma species inhibited the growth of the pathogen in vitro. A decrease in water activity led to a greater reduction in the growth rate. The efficacy of the three biological control agents decreased with higher temperatures, resulting in minimal inhibition, particularly under conditions of restricted available water in the environment. The effect of the fungal inoculum density was also analyzed at two different temperatures. A direct correlation between the amount of inoculum and the score on the Disease Severity Index (DSI) was observed. A notable reduction in DSI was evident in treatments with high inoculum density (106 conidium/mL) for all three species of Trichoderma tested at both temperatures. In greenhouse and semi-field tests, we observed less disease control than expected, although T. asperellum and T. atroviride showed lower disease severity indices and increased the dry weight of seedlings and crowns, whereas T. saturnisporum resulted in the highest disease rate and lowest dry weight. This work highlights that the efficacy of Trichoderma as BCAs is influenced by various factors, including the quantity of soil inocula, and environmental conditions. The study findings have strong implications for selecting appropriate Trichoderma species for controlling specific pathogens under specific environmental conditions.
RESUMO
Plants can recruit beneficial microbes to help improve their fitness under abiotic or biotic stress. Our previous studies found that Panax notoginseng could enrich beneficial Burkholderia sp. B36 in the rhizosphere soil under autotoxic ginsenoside stress. Here, we clarified that ginsenoside stress activated the phenylpropanoid biosynthesis and α-linolenic acid metabolism pathways of roots to increase the secretion of cinnamic acid, 2-dodecenoic acid, and 12-oxo-phytodienoic acid. These metabolites could promote the growth of B36. Importantly, cinnamic acid could simultaneously promote the chemotaxis and growth of B36, enhance the colonization of B36 in the rhizosphere, and eventually increase the survival rate of P. notoginseng. Overall, the plants could promote the growth and colonization of beneficial bacteria through key metabolites in root exudates under autotoxin stress. This finding will facilitate the practical application of beneficial bacteria in agricultural production and lead to successful and reproducible biocontrol efficacy by the exogenous addition of key metabolites.
Assuntos
Ginsenosídeos , Transcriptoma , Ginsenosídeos/metabolismo , Raízes de Plantas/metabolismo , Bactérias , Plantas , Exsudatos e Transudatos , Rizosfera , Microbiologia do SoloRESUMO
Bacilli are used as biocontrol agents (BCAs) against phytopathogens and most of them can produce poly-γ-glutamic acid (γ-PGA) as one of the major extracellular polymeric substances (EPSs). However, the role of γ-PGA in plant biocontrol is still unclear. In this study, Bacillus atrophaeus NX-12 (γ-PGA yield: 16.8 g/l) was screened, which formed a strong biofilm and has been proved to be a promising BCA against Cucumber Fusarium wilt. Then, the γ-PGA synthesis gene cluster pgsBCA was knocked out by CRISPR-Cas9n. Interestingly, the antifungal ability of γ-PGA synthetase-deficient strain NX-12Δpgs (γ-PGA yield: 1.65 g/l) was improved in vitro, while the biocontrol ability of NX-12Δpgs was greatly diminished in situ. Data proved that γ-PGA produced by NX-12 contributes to the biofilm formation and rhizosphere colonization, which effectively improved biocontrol capability. Taken together, these findings prove that the mechanism of γ-PGA promotes the colonization of NX-12 and thus assists in controlling plant diseases, which highlight the key role of γ-PGA produced by BCA in biocontrol.
RESUMO
It is widely recognized that plant-symbiotic fungi are supported by photosynthates; however, little is known about the molecular mechanisms underlying the utilization of plant-derived sugars by rhizospheric fungi. In the insect-pathogenic and plant-symbiotic fungus Metarhizium robertsii, we previously showed that the utilization of oligosaccharides by the transporter MRT (Metarhizium raffinose transporter) is important for rhizosphere competency. In this study, we identified a novel monosaccharide transporter (MST1) that is involved in the colonization of the rhizoplane and acts additively with MRT to colonize the rhizosphere. MST1 is not involved in infection of insects by M. robertsii. MST1 is an H+ symporter and is able to transport a broad spectrum of monosaccharides, including glucose, sorbose, mannose, rhamnose, and fructose. Deletion of the Mst1 gene impaired germination and mycelial growth in medium containing the sugars that it can transport. Homologs of MST1 were widely found in many fungi, including plant symbionts such as Trichoderma spp. and mycorrhizal fungi and plant pathogens such as Fusarium spp. This work significantly advances insights into the development of symbiotic relationships between plants and fungi. IMPORTANCE Over 90% of all vascular plant species develop an intimate symbiosis with fungi, which has an enormous impact on terrestrial ecosystems. It is widely recognized that plant-symbiotic fungi are supported by photosynthates, but little is known about the mechanisms for fungi to utilize plant-derived carbon sources. In the fungus Metarhizium robertsii, we identified a novel monosaccharide transporter (MST1) that is an H+ symporter and can transport a broad spectrum of monosaccharides, including glucose, sorbose, mannose, rhamnose, and fructose. MST1 is involved in the colonization of the rhizoplane and acts additively with the previously characterized oligosaccharide transporter MRT to colonize the rhizosphere. Homologs of MST1 were found in many fungi, including plant symbionts and plant pathogens, suggesting that the utilization of plant-derived sugars by MST1 homologs could also be important for other fungi to develop a symbiotic or parasitic relationship with their respective plant hosts.
RESUMO
Since sugarcane is a ratoon crop, genome analysis of plant growth-promoting bacteria that exist in its soil rhizosphere, can provide opportunity to better understand their characteristics and use of such bacteria in turn, may especially improve perennial crop productivity. In the present study, genome of two bacterial strains, one each of B. megaterium (BM89) and B. subtilis (BS87), isolated and reported earlier (Chandra et al., 2018), were sequenced and characterized. Though both strains have demonstrated plant growth promoting properties and enhanced in-vitro plant growth responses, functional annotation and analysis of genes indicated superiority of BS87 as it possessed more plant growth promotion attributable genes over BM89. Apart from some common genes, trehalose metabolism, glycine betaine production, peroxidases, super oxide dismutase, cold shock proteins and phenazine production associated genes were selectively identified in BS87 genome indicating better plant growth performances and survival potential under harsh environmental conditions. Genes for chitinase, d-cysteine desulfhydrase and γ-aminobutyric acid (GABA), as found in BM89, propose its selective utilization in defense and bio-control measures. Concomitant with better settlings' growth, scanning electron micrographs indicated these isolated and characterized bacteria exhibiting healthy colonization within root of sugarcane crop. Kegg pathways' assignment also revealed added pathways namely carbohydrate and amino acid metabolism attached to B. subtilis strain BS87, a preferable candidate for bio-fertilizer and its utilization to promote growth of both plant and ratoon crops of sugarcane usually experiencing harsh environmental conditions.
Assuntos
Bacillus megaterium/genética , Bacillus subtilis/genética , Desenvolvimento Vegetal , Rizosfera , Saccharum/crescimento & desenvolvimento , Saccharum/microbiologia , Sequenciamento Completo do Genoma , Bacillus megaterium/classificação , Bacillus megaterium/isolamento & purificação , Bacillus megaterium/fisiologia , Bacillus subtilis/classificação , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/fisiologia , Proteínas e Peptídeos de Choque Frio , Produção Agrícola , Produtos Agrícolas/microbiologia , Fertilizantes , Genoma Bacteriano , Filogenia , Solo , Microbiologia do SoloRESUMO
The persistence of pathogenic Agrobacterium strains as soil-associated saprophytes may cause an inconsistency in the efficacy of the biocontrol inoculants under field condition. The study of the interaction occurring in the rhizosphere between the beneficial and the pathogenic microbes is thus interesting for the development of effective biopesticides for the management of crown gall disease. However, very little is still known about the influence of these complex interactions on the biocontrol determinants of beneficial bacteria, especially Bacillus strains. This study aimed to evaluate the effect of the soil borne pathogen Agrobacterium tumefaciens C58 on root colonization and lipopeptide production by Bacillus velezensis strain 32a during interaction with tomato plants. Results show that the presence of A. tumefaciens C58 positively impacted the root colonization level of the Bacillus strain. However, negative impact on surfactin production was observed in Agrobacterium-treated seedling, compared with control. Further investigation suggests that these modulations are due to a modified tomato root exudate composition during the tripartite interaction. Thus, this work contributes to enhance the knowledge on the impact of interspecies interaction on the ecological fitness of Bacillus cells living in the rhizosphere.
Assuntos
Bacillus , Solanum lycopersicum , Agrobacterium tumefaciens , RizosferaRESUMO
Pseudomonas chlororaphis subsp. aurantiaca strain JD37 is a plant growth-promoting rhizobacterium (PGPR), which has important biotechnological features such as plant growth promotion, rhizosphere colonization and biocontrol activities. In present study, the genome sequence of JD37 was obtained and comparative genomic analysis were performed to explore unique features of the JD37 genome and its relationship with other Pseudomonas PGPR: P. chlororaphis PA23, P. protegens Pf-5 and P. aeruginosa M18. JD37 possessed a single circular chromosome of 6,702,062 bp in length with an average GC content of 62.75 %. No plasmid was detected in JD37. A total of 5003 functional proteins of JD37 were predicted according to the clusters of orthologous groups (COGs) database. The JD37 genome consisted of various genes involved in plant growth promotion, biocontrol activities and defense responses. Genes involved in the rhizosphere colonization and motility were also found in the genome of JD37, suggesting the common plant growth-promoting traits in PGPR. The identified resistance genes (e.g. those related to metal resistance, antibiotics, and osmotic and temperature-shock) and secondary metabolite biosynthesis revealed the pathways for metabolites it produced. Data presented in present study further provided valuable information on its molecular genetics and adaptive capacity in the rhizosphere niche.
Assuntos
Genoma Bacteriano , Pseudomonas , Resistência à Doença/genética , Resistência Microbiana a Medicamentos/genética , Ontologia Genética , Genes Bacterianos , Genômica , Filogenia , Desenvolvimento Vegetal , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/metabolismo , Rizosfera , Metabolismo Secundário/genéticaRESUMO
Cerato-platanins (CPs) form a family of fungal small secreted cysteine-rich proteins (SSCPs) and are of particular interest not only because of their surface activity but also their abundant secretion by fungi. We performed an evolutionary analysis of 283 CPs from 157 fungal genomes with the focus on the environmental opportunistic plant-beneficial and mycoparasitic fungus Trichoderma Our results revealed a long evolutionary history of CPs in Dikarya fungi that have undergone several events of lateral gene transfer and gene duplication. Three genes were maintained in the core genome of Trichoderma, while some species have up to four CP-encoding genes. All Trichoderma CPs evolve under stabilizing natural selection pressure. The functional genomic analysis of CPs in Trichoderma guizhouense and Trichoderma harzianum revealed that only epl1 is active at all stages of development but that it plays a minor role in interactions with other fungi and bacteria. The deletion of this gene results in increased colonization of tomato roots by Trichoderma spp. Similarly, biochemical tests of EPL1 heterologously produced by Pichia pastoris support the claims described above. Based on the results obtained, we conclude that the function of CPs is probably linked to their surfactant properties and the ability to modify the hyphosphere of submerged mycelia and, thus, facilitate the nutritional versatility of fungi. The effector-like functions do not sufficiently describe the diversity and evolution of these proteins in fungi, as they are also maintained, duplicated, or laterally transferred in the genomes of nonherbivore fungi.IMPORTANCE Cerato-platanins (CPs) are surface-active small proteins abundantly secreted by filamentous fungi. Consequently, immune systems of plants and other organisms recognize CPs and activate defense mechanisms. Some CPs are toxic to plants and act as virulence factors in plant-pathogenic fungi. Our analysis, however, demonstrates that the interactions with plants do not explain the origin and evolution of CPs in the fungal kingdom. We revealed a long evolutionary history of CPs with multiple cases of gene duplication and events of interfungal lateral gene transfers. In the mycoparasitic Trichoderma spp., CPs evolve under stabilizing natural selection and hamper the colonization of roots. We propose that the ability to modify the hydrophobicity of the fungal hyphosphere is a key to unlock the evolutionary and functional paradox of these proteins.
Assuntos
Evolução Molecular , Proteínas Fúngicas/genética , Família Multigênica , Trichoderma/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/metabolismo , Transferência Genética Horizontal , Genoma Fúngico , Solanum lycopersicum/microbiologia , Raízes de Plantas/microbiologia , Trichoderma/metabolismoRESUMO
Plant growth-promoting rhizobacteria (PGPR) are known for growth promotion and mitigating environmental stresses. Here, we examined the propitiousness of three indigenous salt-tolerant PGPR, i.e., Bacillus subtilis (NBRI 28B), B. subtilis (NBRI 33 N), and B. safensis (NBRI 12 M) for plant growth promotion and salt stress amelioration in Zea mays. Results of the in vitro plant growth-promoting attribute revealed NBRI 12 M demonstrated the highest values at 1 M salt (NaCl) concentration. Furthermore, the greenhouse experiment using three Bacillus strains confirmed plant growth-promoting and salt stress-ameliorating ability, through colonizing successfully and mitigating the adverse effects of ethylene by modulating 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation, ACC-oxidase (ACO), and ACC-synthase (ACS) activities under salt stress. Bacillus sp. inoculation has also induced plant response for defense enzymes, chlorophyll, proline and soluble sugar under salt stress. Among three Bacillus strains, NBRI 12 M not only demonstrated higher values for plant growth-promoting (PGP) attributes but also the same was observed in the greenhouse experiment. Thus, the outcomes of this comparative study represent for the first time that salt-tolerant Bacillus strains exhibiting multiple PGP attributes under salt stress along with high rhizosphere competence can alleviate salt stress by reducing the stress ethylene level in the host plant.
RESUMO
1-aminocyclopropane-1-carboxylic acid (ACC) is a strong metabolism-dependent chemoattractant for the plant beneficial rhizobacterium Pseudomonas sp. UW4. It is unknown whether enhancing the metabolic rate of ACC can intensify the chemotaxis activity towards ACC and rhizocompetence. In this study, we selected four promoters to transcribe the UW4 ACC deaminase (AcdS) gene in the UW4 ΔAcdS mutant. PA is the UW4 AcdS gene promoter, PB20, PB10 and PB1 are synthetic promoters. The order of the AcdS gene expression level and AcdS activity of the four strains harboring the promoters were PB20 > PA > PB10 > PB1. Interestingly, the AcdS activity of the four strains and their parent strain UW4 was significantly positively correlated with their chemotactic activity towards ACC, rhizosphere colonization, roots elongation and dry weight promotion. The results released that enhancing the AcdS activity of PGPRenable them to achieve strong chemotactic responses to ACC, rhizocompetence and plant growth promotion.
RESUMO
The rhizobacterium Pseudomonas pseudoalcaligenes AVO110, isolated by the enrichment of competitive avocado root tip colonizers, controls avocado white root rot disease caused by Rosellinia necatrix Here, we applied signature-tagged mutagenesis (STM) during the growth and survival of AVO110 in fungal exudate-containing medium with the goal of identifying the molecular mechanisms linked to the interaction of this bacterium with R. necatrix A total of 26 STM mutants outcompeted by the parental strain in fungal exudate, but not in rich medium, were selected and named growth-attenuated mutants (GAMs). Twenty-one genes were identified as being required for this bacterial-fungal interaction, including membrane transporters, transcriptional regulators, and genes related to the metabolism of hydrocarbons, amino acids, fatty acids, and aromatic compounds. The bacterial traits identified here that are involved in the colonization of fungal hyphae include proteins involved in membrane maintenance (a dynamin-like protein and ColS) or cyclic-di-GMP signaling and chemotaxis. In addition, genes encoding a DNA helicase (recB) and a regulator of alginate production (algQ) were identified as being required for efficient colonization of the avocado rhizosphere.IMPORTANCE Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens.
Assuntos
Doenças das Plantas/microbiologia , Pseudomonas pseudoalcaligenes/fisiologia , Xylariales/fisiologia , Antibiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Persea/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas pseudoalcaligenes/genética , Pseudomonas pseudoalcaligenes/crescimento & desenvolvimento , Xylariales/genética , Xylariales/crescimento & desenvolvimentoRESUMO
High soil nitrate concentrations can lead to the secondary salinization of soils. Bacillus megaterium NCT-2 is a wild-type strain isolated from secondary salinized soil and is very effective in reducing nitrate. Laboratory and greenhouse experiments were carried out to investigate its nitrate reduction capabilities, colonization pattern, and plant growth promotion responses to nitrate content in the soil. B. megaterium NCT-2 was marked with a green fluorescent protein (gfp) gene and was left to successfully colonize maize roots and the rhizosphere. Inoculation with gfp-tagged NCT-2 significantly promoted nitrate removal from the soil and improved plant growth. Confocal microscopy results revealed that NCT-2 is an endophyte that can colonize the meristematic and elongation zones of the root tip, and the middle segment of the root. Soil nitrate concentration had no significant effect on NCT-2 distribution. The gfp-tagged NCT-2 populations in the roots and rhizosphere soil first increased, but then decreased, and at the end of the experiment, colonization levels in the rhizosphere soil stabilized at â¼5â¯×â¯104â¯CFUâ¯g-1 soil. However, the levels in the roots increased again to 1-3â¯×â¯104â¯CFUâ¯g-1 root in the different treatments. The NCT-2 population in the roots was significantly affected by nitrate content. A nitrate-nitrogen concentration of 72â¯mgâ¯kg-1 was the optimum concentration for NCT-2 colonization of maize roots. This study will improve the agricultural application of NCT-2 as a biofertilizer for nitrate removal and plant growth promotion.
Assuntos
Bacillus megaterium/fisiologia , Nitratos/isolamento & purificação , Nitratos/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Agricultura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Rizosfera , Zea mays/efeitos dos fármacos , Zea mays/microbiologiaRESUMO
A wide variety of plant-associated soil bacteria (rhizobacteria) communicate with each other by quorum sensing (QS). Plants are able to detect and produce mimics and inhibitor molecules of the QS bacterial communicative process. Arachis hypogaea L. (peanut) establishes a nitrogen-fixing symbiosis with rhizobia belonging to the genus Bradyrhizobium. These bacteria use a QS mechanism dependent on the synthesis of N-acyl homoserine lactones (AHLs). Given the relevance that plant-rhizobacteria interactions have at the ecological level, this work addresses the involvement of peanut in taking part in the QS mechanism. By using biosensor bacterial strains capable of detecting AHLs, a series of standard and original bioassays were performed in order to determine both (i) the production of QS-like molecules in vegetal materials and (ii) the expression of the QS mechanism throughout plant-bacteria interaction. Mimic QS-like molecules (mQS) linked to AHLs with long acyl chains (lac-AHL), and inhibitor QS-like molecules (iQS) linked to AHLs with short acyl chains (sac-AHL) were detected in seed and root exudates. The results revealed that synthesis of specific signaling molecules by the plant (such as mQS and iQS) probably modulates the function and composition of the bacterial community established in its rhizosphere. Novel bioassays of QS detection during peanut-Bradyrhizobium interaction showed an intense production of QS signals in the contact zone between root and bacteria. It is demonstrated that root exudates stimulate the root colonization and synthesis of lac-AHL by Bradyrhizobium strains in the plant rhizosphere, which leads to the early stages of the development of beneficial plant-bacteria interactions.
Assuntos
Acil-Butirolactonas/metabolismo , Arachis/metabolismo , Percepção de Quorum , Rizosfera , Bactérias/crescimento & desenvolvimento , BradyrhizobiumRESUMO
Pseudomonas chlororaphis HT66, a plant growth-promoting rhizobacterium that produces phenazine-1-carboxamide with high yield, was compared with three genomic sequenced P. chlororaphis strains, GP72, 30-84 and O6. The genome sizes of four strains vary from 6.66 to 7.30 Mb. Comparisons of predicted coding sequences indicated 4833 conserved genes in 5869-6455 protein-encoding genes. Phylogenetic analysis showed that the four strains are closely related to each other. Its competitive colonization indicates that P. chlororaphis can adapt well to its environment. No virulence or virulence-related factor was found in P. chlororaphis. All of the four strains could synthesize antimicrobial metabolites including different phenazines and insecticidal protein FitD. Some genes related to the regulation of phenazine biosynthesis were detected among the four strains. It was shown that P. chlororaphis is a safe PGPR in agricultural application and could also be used to produce some phenazine antibiotics with high-yield.
RESUMO
Root exudates play important roles in root-soil microorganism interactions and can mediate tripartite interactions of beneficial microorganisms-plant-pathogen in the rhizosphere. However, the roles of organic acid components in this process have not been well studied. In this study the colonization of a plant growth-promoting rhizobacterium, Bacillus amyloliquefaciens SQR9, on cucumber root infected by Fusarium oxysporum f. sp. cucumerinum J. H. Owen (FOC) was investigated. Chemotaxis and biofilm formation response of SQR9 to root exudates and their organic acid components were analysed. Infection of FOC on cucumber had a positive effect (3.30-fold increase) on the root colonization of SQR9 compared with controls. Root secretion of citric acid (2.3 ± 0.2 µM) and fumaric acid (5.7 ± 0.5 µM) was enhanced in FOC-infected cucumber plants. Bacillus amyloliquefaciens SQR9 exhibited enhanced chemotaxis to root exudates of FOC-infected cucumber seedlings. Further experiments demonstrated that citric acid acts as a chemoattractant and fumaric acid as a stimulator of biofilm formation in this process. These results suggest that root exudates mediate the interaction of cucumber root and rhizosphere strain B. amyloliquefaciens SQR9 and enhance its root colonization.
Assuntos
Bacillus/fisiologia , Biofilmes/crescimento & desenvolvimento , Rizosfera , Quimiotaxia/efeitos dos fármacos , Cucumis sativus/metabolismo , Cucumis sativus/microbiologia , Fusarium/patogenicidade , Exsudatos de Plantas/farmacologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologiaRESUMO
Methods for screening isolates of the nematophagous fungus, V. chlamydosporium, for their ability to colonize the surface of plant roots are described. Significant differences in the extent of colonization were observed in sterile conditions and in soil; plant species and cultivars also differed in their ability to support a selected isolate of the fungus. Although fungal density could be estimated using a semi-selective medium, it was not possible to separate differences in vegetative growth from differences in sporulation. There was a weak positive correlation between estimates of fungal density on the roots of plants grown in sterile conditions and the extent of hyphal growth measured by direct observation.