Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Methods Mol Biol ; 2790: 417-426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649584

RESUMO

Rubisco fixes CO2 through the carboxylation of ribulose 1,5-bisphosphate (RuBP) during photosynthesis, enabling the synthesis of organic compounds. The natural diversity of Rubisco properties represents an opportunity to improve its performance and there is considerable research effort focusing on better understanding the properties and regulation of the enzyme. This chapter describes a method for large-scale purification of Rubisco from leaves. After the extraction of Rubisco from plant leaves, the enzyme is separated from other proteins by fractional precipitation with polyethylene glycol followed by ion-exchange chromatography. This method enables the isolation of Rubisco in large quantities for a wide range of biochemical applications.


Assuntos
Folhas de Planta , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/isolamento & purificação , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Folhas de Planta/química , Folhas de Planta/enzimologia , Cromatografia por Troca Iônica/métodos , Polietilenoglicóis/química
2.
Environ Pollut ; 344: 123436, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38281573

RESUMO

Environmental pollutants interfere with plant photosynthesis, thus reduce the crop yield and carbon storage capacity of farmland. This study comparatively explored the effects and mechanisms of polycyclic aromatic hydrocarbons (PAHs, e.g., phenanthrene, pyrene, and benzo[a]pyrene) and cadmium (Cd) on the carbon fixation capacity of rice throughout the growth period. Cd posed severer inhibition on the net carbon fixation of rice than PAHs, with the inhibition rates of 1.40-14.8-fold over PAHs at the concentrations of 0.5 or 5 mg/kg soil. Ribulose diphosphate carboxylase/oxygenase (Rubisco) involved in the Calvin cycle was identified as the common target of these pollutants to inhibit the photosynthetic carbon fixation. Further investigation demonstrated that the different inhibitory effects of Cd and PAHs was resulted from their different interference on the dual catalysis function (carboxylation and oxygenation) of Rubisco. Cd disturbed the balance of the intercellular CO2/O2, thus promoting the oxygenation and inhibiting the carboxylation of the substrate of Rubisco. Under the stress of Cd, the downstream metabolites (e.g. glycolate, glyoxylate, and serine) of Rubisco oxygenation were upregulated by over 2.01-3.24-fold, whereas the carboxylation efficiency (Vcmax) was decreased by 5.58-29.3%. Comparatively, PAHs inhibited both the carboxylation and oxygenation by down-regulating the expression of Rubisco coding gene (OsRBCS2, Log2FC < -2). This study broadens the understanding of the mechanisms of different environmental pollutants on the carbon fixation, providing valuable information for the quantitative estimation of their impacts on the farmland carbon sink. The results would be constructive to develop strategies for eliminating the adverse effects of contaminants and assist the carbon-neutral programs.


Assuntos
Poluentes Ambientais , Oryza , Hidrocarbonetos Policíclicos Aromáticos , Cádmio/farmacologia , Oryza/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese , Carbono/metabolismo , Ciclo do Carbono , Poluentes Ambientais/farmacologia , Dióxido de Carbono/metabolismo
3.
Microb Cell Fact ; 22(1): 145, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537595

RESUMO

R. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R. toruloides grows on several pentose sugars and alcohols, further engineering of the native pathway is required for efficient conversion of biomass-derived sugars to higher value bioproducts. A previous high-throughput study inferred that R. toruloides possesses a non-canonical L-arabinose and D-xylose metabolism proceeding through D-arabitol and D-ribulose. In this study, we present a combination of genetic and metabolite data that refine and extend that model. Chiral separations definitively illustrate that D-arabitol is the enantiomer that accumulates under pentose metabolism. Deletion of putative D-arabitol-2-dehydrogenase (RTO4_9990) results in > 75% conversion of D-xylose to D-arabitol, and is growth-complemented on pentoses by heterologous xylulose kinase expression. Deletion of putative D-ribulose kinase (RTO4_14368) arrests all growth on any pentose tested. Analysis of several pentose dehydrogenase mutants elucidates a complex pathway with multiple enzymes mediating multiple different reactions in differing combinations, from which we also inferred a putative L-ribulose utilization pathway. Our results suggest that we have identified enzymes responsible for the majority of pathway flux, with additional unknown enzymes providing accessory activity at multiple steps. Further biochemical characterization of the enzymes described here will enable a more complete and quantitative understanding of R. toruloides pentose metabolism. These findings add to a growing understanding of the diversity and complexity of microbial pentose metabolism.


Assuntos
Arabinose , Xilose , Xilose/metabolismo , Arabinose/metabolismo , Pentoses/metabolismo
4.
Antonie Van Leeuwenhoek ; 116(9): 855-866, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37270429

RESUMO

The two novel bacterial strains, designated as VTT and ML, were isolated from roots of cinquefoil (Potentilla sp.) and leaves of meadow-grass (Poa sp.) on the flooded bank of lake, respectively. These isolates were Gram-negative, non-spore-forming, non-motile, rod-shaped cells, utilized methanol, methylamine, and polycarbon compounds as carbon and energy sources. In the whole-cell fatty acid pattern of strains prevailed C18:1ω7c and C19:0cyc. Based on the phylogenetic analysis of 16S rRNA gene sequences, strains VTT and ML were closely related to the representatives of the genus Ancylobacter (98.3-98.5%). The assembled genome of strain VTT has a total length of 4.22 Mbp, and a G + C content is 67.3%. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strain VTT and closely related type strains of genus Ancylobacter were 78.0-80.6%, 73.8-78.3% and 22.1-24.0%, respectively, that clearly lower than proposed thresholds for species. On the basis of the phylogenetic, phenotypic, and chemotaxonomic analysis, isolates VTT and ML represent a novel species of the genus Ancylobacter, for which the name Ancylobacter radicis sp. nov. is proposed. The type strain is VTT (= VKM B-3255T = CCUG 72400T). In addition, novel strains were able to dissolve insoluble phosphates, to produce siderophores and plant hormones (auxin biosynthesis). According to genome analysis genes involved in the biosynthesis of siderophores, polyhydroxybutyrate, exopolysaccharides and phosphorus metabolism, as well as the genes involved in the assimilation of C1-compounds (natural products of plant metabolism) were found in the genome of type strain VTT.


Assuntos
Alphaproteobacteria , Sideróforos , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Sideróforos/metabolismo , Alphaproteobacteria/genética , Ácidos Graxos/análise , Plantas , DNA/metabolismo , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Hibridização de Ácido Nucleico
5.
Plants (Basel) ; 12(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904009

RESUMO

In this study, the combined effect of plant growth under different light quality and the application of plant-growth-promoting microbes (PGPM) was considered on spinach (Spinacia oleracea L.) to assess the influence of these factors on the photosynthetic performance. To pursue this goal, spinach plants were grown in a growth chamber at two different light quality regimes, full-spectrum white light (W) and red-blue light (RB), with (I) or without (NI) PGPM-based inoculants. Photosynthesis-light response curves (LRC) and photosynthesis-CO2 response curves (CRC) were performed for the four growth conditions (W-NI, RB-NI, W-I, and RB-I). At each step of LRC and CRC, net photosynthesis (PN), stomatal conductance (gs), Ci/Ca ratio, water use efficiency (WUEi), and fluorescence indexes were calculated. Moreover, parameters derived from the fitting of LRC, such as light-saturated net photosynthesis (PNmax), apparent light efficiency (Qpp), and dark respiration (Rd), as well as the Rubisco large subunit amount, were also determined. In not-inoculated plants, the growth under RB- regime improved PN compared to W-light because it increased stomatal conductance and favored the Rubisco synthesis. Furthermore, the RB regime also stimulates the processes of light conversion into chemical energy through chloroplasts, as indicated by the higher values of Qpp and PNmax in RB compared to W plants. On the contrary, in inoculated plants, the PN enhancement was significantly higher in W (30%) than in RB plants (17%), which showed the highest Rubisco content among all treatments. Our results indicate that the plant-growth-promoting microbes alter the photosynthetic response to light quality. This issue must be considered when PGPMs are used to improve plant growth performance in a controlled environment using artificial lighting.

6.
Data Brief ; 47: 108944, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36845648

RESUMO

African yam bean (Sphenostylis stenocarpa (Hochst. ex A. Rich.) Harms.) (Fabaceae) is a versatile crop of nutritional, nutraceutical, and pharmacological value widely grown for its edible seeds and underground tubers. Its high-quality protein, rich mineral elements, and low cholesterol make it a suitable source of food for age groups. However, the crop is still under-exploited and constrained by factors such as intra-specific incompatibility, low yields, indeterminate growth pattern and long gestation period, hard-to-cook (HTC) seeds, and the presence of antinutritional factors (ANFs). To efficiently utilize its genetic resources for improvement and utilization, it is necessary to understand the crop's sequence information and select promising accessions for molecular hybridization trials and conservation purposes. A total of 24 accessions of AYB were collected from the Genetic Resources center of the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, and subjected to PCR amplification and Sanger sequencing. The dataset determines genetic relatedness among the twenty-four accessions of AYB. The data consist of partial rbcL gene sequences (24), estimates of intra-specific genetic diversity, the maximum likelihood of transition/transversion bias, and evolutionary relationships based on the UPMGA clustering method. The data identified 13 variables (segregating sites) as SNPs, 5 haplotypes, and codon usage of the species that can be explored further to advance the genetic utilization of AYB.

7.
EFSA J ; 21(2): e07752, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789357

RESUMO

The food enzyme d-tagatose 3-epimerase (EC 5.1.3.31) is produced with the genetically modified Escherichia coli strain PS-Sav-001 by SAVANNA Ingredients GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is considered free from viable cells of the production organism and its DNA. The food enzyme is used while retained inside a membrane reactor to convert d-fructose into the speciality carbohydrate d-allulose (syn. d-psicose). Since residual amounts of total organic solids (TOS) are removed by the purification steps applied during the production of d-allulose, dietary exposure was not calculated and toxicological studies were not considered necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that under the intended conditions of use, the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

8.
J Exp Bot ; 74(2): 510-519, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35689795

RESUMO

Rubisco is possibly the most important enzyme on Earth, certainly in terms of amount. This review describes the initial reports of ribulose 1,5-bisphosphate carboxylating activity. Discoveries of core concepts are described, including its quaternary structure, the requirement for post-translational modification, and its role as an oxygenase as well as a carboxylase. Finally, the requirement for numerous chaperonins for assembly of rubisco in plants is described.


Assuntos
Plantas , Ribulose-Bifosfato Carboxilase , Chaperoninas
9.
European J Org Chem ; 26(31): e202300339, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38505325

RESUMO

Fluorinated carbohydrates are valuable tools for enzymological studies due to their increased metabolic stability compared to their non-fluorinated analogues. Replacing different hydroxyl groups within the same monosaccharide by fluorine allows to influence a wide range of sugar-receptor interactions and enzymatic transformations. In the past, this principle was frequently used to study the metabolism of highly abundant carbohydrates, while the metabolic fate of rare sugars is still poorly studied. Rare sugars, however, are key intermediates of many metabolic routes, such as the pentose phosphate pathway (PPP). Here we present the design and purely chemical synthesis of a set of three deoxyfluorinated analogues of the rare sugars d-xylulose and d-ribulose: 1-deoxy-1-fluoro-d-ribulose (1DFRu), 3-deoxy-3-fluoro-d-ribulose (3DFRu) and 3-deoxy-3-fluoro-d-xylulose (3DFXu). Together with a designed set of potential late-stage radio-fluorination precursors, they have the potential to become useful tools for studies on the complex equilibria of the non-oxidative PPP.

10.
Metab Eng Commun ; 15: e00207, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36188638

RESUMO

Engineering bioenergy crops to accumulate coproducts in planta can increase the value of lignocellulosic biomass and enable a sustainable bioeconomy. In this study, we engineered sorghum with a bacterial gene encoding a chorismate pyruvate-lyase (ubiC) to reroute the plastidial pool of chorismate from the shikimate pathway into the valuable compound 4-hydroxybenzoic acid (4-HBA). A gene encoding a feedback-resistant version of 3-deoxy-d-arabino-heptulonate-7-phosphate synthase (aroG) was also introduced in an attempt to increase the carbon flux through the shikimate pathway. At the full maturity and senesced stage, two independent lines that co-express ubiC and aroG produced 1.5 and 1.7 dw% of 4-HBA in biomass, which represents 36- and 40-fold increases compared to the titer measured in wildtype. The two transgenic lines showed no obvious phenotypes, growth defects, nor alteration of cell wall polysaccharide content when cultivated under controlled conditions. In the field, when harvested before grain maturity, transgenic lines contained 0.8 and 1.2 dw% of 4-HBA, which represent economically relevant titers based on recent technoeconomic analysis. Only a slight reduction (11-15%) in biomass yield was observed in transgenics grown under natural environment. This work provides the first metabolic engineering steps toward 4-HBA overproduction in the bioenergy crop sorghum to improve the economics of biorefineries by accumulating a value-added coproduct that can be recovered from biomass and provide an additional revenue stream.

11.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232645

RESUMO

Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) functions as the initial enzyme in the dark reactions of photosynthesis, catalyzing reactions that extract CO2 from the atmosphere and fix CO2 into organic compounds. RuBisCO is classified into four types (isoforms I-IV) according to sequence-based phylogenetic trees. Given its size, the computational cost of accurate quantum-chemical calculations for functional analysis of RuBisCO is high; however, recent advances in hardware performance and the use of the fragment molecular orbital (FMO) method have enabled the ab initio analyses of RuBisCO. Here, we performed FMO calculations on multiple structural datasets for various complexes with the 2'-carboxylarabinitol 1,5-bisphosphate (2CABP) ligand as a substrate analog and investigated whether phylogenetic relationships based on sequence information are physicochemically relevant as well as whether novel information unobtainable from sequence information can be revealed. We extracted features similar to the phylogenetic relationships found in sequence analysis, and in terms of singular value decomposition, we identified residues that strongly interacted with the ligand and the characteristics of the isoforms for each principal component. These results identified a strong correlation between phylogenetic relationships obtained by sequence analysis and residue interaction energies with the ligand. Notably, some important residues were located far from the ligand, making comparisons among species using only residues proximal to the ligand insufficient.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Dióxido de Carbono/metabolismo , Ligantes , Oxigenases/metabolismo , Fotossíntese , Filogenia , Extratos Vegetais , Ribulose-Bifosfato Carboxilase/metabolismo
12.
J Biosci Bioeng ; 134(6): 496-500, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36182634

RESUMO

The obligate chemolithoautotrophic bacterium, Hydrogenovibrio marinus MH-110, has three ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) isoenzymes, CbbM, CbbLS-1, and CbbLS-2, which differ in CO2/O2 specificity factor values. Expressions of CbbM and CbbLS-1 are regulated differently by transcriptional regulators of the LysR family, CbbRm and CbbR1, respectively. CbbLS-2 has the highest specificity and is induced under low CO2 conditions, but the regulator for the cbbL2S2 genes encoding CbbLS-2 remains unidentified. In this study, the cbbR2 gene encoding the third CbbR-type regulator was identified in the downstream region of the cbbL2S2 and carboxysome gene cluster via transposon mutagenesis. CO2 depletion induced the cbbR2 gene. The cbbR2 knockout mutant could not grow under low CO2 conditions and did not produce CbbLS-2. Recombinant CbbR2 protein was bound to the promoter region of the cbbL2S2 genes. These results indicate that CbbR2 is the specific regulator for CbbLS-2 expression.


Assuntos
Hidrogênio , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Dióxido de Carbono
13.
Appl Biochem Biotechnol ; 194(10): 4852-4866, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35670905

RESUMO

L-ribulose, a kind of high-value rare sugar, could be utilized to manufacture L-form sugars and antiviral drugs, generally produced from L-arabinose as a substrate. However, the production of L-ribulose from L-arabinose is limited by the equilibrium ratio of the catalytic reaction, hence, it is necessary to explore a new biological enzymatic method to produce L-ribulose. Ribose-5-phosphate isomerase (Rpi) is an enzyme that can catalyze the reversible isomerization between L-ribose and L-ribulose, which is of great significance for the preparation of L-ribulose. In order to obtain highly active ribose-5-phosphate isomerase to manufacture L-ribulose, ribose-5-phosphate isomerase A (OsRpiA) from Ochrobactrum sp. CSL1 was engineered based on structural and sequence analyses. Through a rational design strategy, a triple-mutant strain A10T/T32S/G101N with 160% activity was acquired. The enzymatic properties of the mutant were systematically investigated, and the optimum conditions were characterized to achieve the maximum yield of L-ribulose. Kinetic analysis clarified that the A10T/T32S/G101N mutant had a stronger affinity for the substrate and increased catalytic efficiency. Furthermore, molecular dynamics simulations indicated that the binding of the substrate to A10T/T32S/G101N was more stable than that of wild type. The shorter distance between the catalytic residues of A10T/T32S/G101N and L-ribose illuminated the increased activity. Overall, the present study provided a solid basis for demonstrating the complex functions of crucial residues in RpiAs as well as in rare sugar preparation.


Assuntos
Aldose-Cetose Isomerases , Ochrobactrum , Aldose-Cetose Isomerases/metabolismo , Antivirais , Arabinose/metabolismo , Cinética , Ochrobactrum/genética , Ochrobactrum/metabolismo , Pentoses , Ribose
14.
Comput Struct Biotechnol J ; 20: 2503-2511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664225

RESUMO

Yarrowia lipolytica is a widely-used chassis cell in biotechnological applications. It has recently gained extensive research interest owing to its extraordinary ability of producing industrially valuable biochemicals from a variety of carbon sources. Genome-scale metabolic models (GSMMs) enable analyses of cellular metabolism for engineering various industrial hosts. In the present study, we developed a high-quality GSMM iYli21 for Y. lipolytica type strain W29 by extensive manual curation with Biolog experimental data. The model showed a high accuracy of 85.7% in predicting nutrient utilization. Transcriptomics data were integrated to delineate cellular metabolism of utilizing six individual metabolites as sole carbon sources. Comparisons showed that 302 reactions were commonly used, including those from TCA cycle, oxidative phosphorylation, and purine metabolism for energy and material supply. Whereas glycolytic reactions were employed only when glucose and glycerol used as sole carbon sources, gluconeogenesis and fatty acid oxidation reactions were specifically employed when fatty acid, alkane and glycerolipid were the sole carbon sources. Further test of 46 substrates for generating 5 products showed that hexanoate outcompeted other compounds in terms of maximum theoretical yield owing to the lowest carbon loss for energy supply. This newly generated model iYli21 will be a valuable tool in dissecting metabolic mechanism and guiding metabolic engineering of this important industrial cell factory.

15.
Synth Syst Biotechnol ; 7(2): 791-801, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35415278

RESUMO

Nucleic acid sensing is a 3 decades old but still challenging area of application for different biological sub-domains, from pathogen detection to single cell transcriptomics analysis. The many applications of nucleic acid detection and identification are mostly carried out by PCR techniques, sequencing, and their derivatives used at large scale. However, these methods' limitations on speed, cost, complexity and specificity have motivated the development of innovative detection methods among which nucleic acid biosensing technologies seem promising. Toehold switches are a particular class of RNA sensing devices relying on a conformational switch of secondary structure induced by the pairing of the detected trigger RNA with a de novo designed synthetic sensing mRNA molecule. Here we describe a streamlined methodology enabling the development of such a sensor for the RNA-mediated detection of an endangered plant species in a cell-free reaction system. We applied this methodology to help identify the rosewood Dalbergia maritima, a highly trafficked wood, whose protection is limited by the capacity of the authorities to distinguish protected logs from other unprotected but related species. The streamlined pipeline presented in this work is a versatile framework enabling cheap and rapid development of new sensors for custom RNA detection.

16.
Fitoterapia ; 157: 105132, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35074542

RESUMO

BACKGROUND: Increasing drug resistance of Helicobacter pylori has highlighted the search for natural compounds with antiadhesive properties, interrupting the adhesion of H. pylori to stomach epithelia. Basella alba, a plant widely used in Asian traditional medicine, was investigated for its antiadhesive activity against H. pylori. METHODS: B. alba extract FE was prepared by aqueous extraction. Polysaccharides were isolated from FE by ethanol precipitation and arabinogalactan-protein (AGP) was isolated with Yariv reagent. Carbohydrate analyses was performed by standard methods and sequence analysis of the protein part of AGP by LC-MS. In vitro adhesion assay of fluorescent-labelled H. pylori J99 to human AGS cells was performed by flow cytometric analysis. RESULTS: Raw polysaccharides (BA1) were isolated and 9% of BA1 were identified as AGP (53.1% neutral carbohydrates L-arabinose, D-galactose, rhamnose, 5.4% galacturonic acid, 41.5% protein). After deglycosylation of AGP, the protein part (two bands at 15 and 25 kDa in tricine SDS-PAGE) was shown to contain peptides like ribulose-bisphosphate-carboxylase-large-chain. Histological localization within the stem tissue of B. alba revealed that AGP was mainly located at the procambium ring. Functional assays indicated that neither FE nor BA1 had significant influence on viability of AGS cells or on H. pylori. FE inhibited the bacterial adhesion of H. pylori to AGS cells in a dose dependent manner. Best anti-adhesive effect of ~67% was observed with BA1 at 2 mg/mL. CONCLUSION: The data obtained from this study characterize in part the mucilage and isolated polysaccharides of B. alba. As the polysaccharides interact with the bacterial adhesion, a potential uses a supplemental antiadhesive entity against the recurrence of H. pylori after eradication therapy may be discussed.


Assuntos
Caryophyllales/química , Galactanos/química , Helicobacter pylori/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Cromatografia em Camada Fina , Eletroforese em Gel de Poliacrilamida , Humanos , Imunodifusão , Extratos Vegetais/isolamento & purificação , Caules de Planta/química , Polissacarídeos/isolamento & purificação , Ribulose-Bifosfato Carboxilase/química , Espectrometria de Massas em Tandem , Células Tumorais Cultivadas
17.
J Biotechnol ; 343: 128-137, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34906603

RESUMO

Methanol is a promising green feedstock for producing fuels and chemicals because it is inexpensive, clean, environmentally friendly, and easily prepared. Thus, many studies have been devoted to engineering non-native methylotrophic platform microorganisms to utilize methanol. This study adopted a series of strategies to develop a synthetic methylotrophic Bacillus subtilis that can use methanol as the carbon source, including the heterologous expression of methanol dehydrogenase (Mdh), enhancement of the expressions of 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi), regulation of the expressions of key enzymes at both the translational and transcriptional levels, stabilization of the key enzyme expression through a dual-system for expressing the target genes on both the plasmid and genome, and improvement of the catalytic activity of Mdh with a recycling strategy for NAD+. As a result, the methanol consumption of the synthetic methylotrophic B. subtilis reached 4.09 g/L, with the maximum OD600 showing a 2.21-fold increase compared with the wild-type B. subtilis, which cannot use methanol. We further deleted the phosphoglucose isomerase (Pgi) and added co-substrates to increase the supply of ribulose-5-phosphate (Ru-5-P), and the specific methanol consumption rate increased by an additional 27.54%. Finally, we successfully constructed two strains that cannot grow in M9 medium with xylose or ribose unless methanol is utilized. The strategies used in this study are generally applicable to other studies on synthetic methylotrophy.


Assuntos
Bacillus , Metanol , Bacillus/genética , Bacillus subtilis/genética , Engenharia Metabólica , Plasmídeos
18.
Biotechnol Adv ; 58: 107885, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34906670

RESUMO

Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Biotecnologia/métodos , Microalgas/metabolismo , Biologia Sintética/métodos
19.
Bioresour Technol ; 346: 126349, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34800639

RESUMO

As numerous industrial bioprocesses rely on yeast fermentation, developing CO2-fixing yeast strains can be an attractive option toward sustainable industrial processes and carbon neutrality. Recent studies have shown that the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) in yeasts, such as Saccharomyces cerevisiae and Kluyveromyces marxianus, enables mixotrophic CO2 fixation and production of biofuels. Also, the expression of a synthetic Calvin-Benson-Bassham (CBB) cycle including RuBisCO in Pichia pastoris enables autotrophic growth on CO2. This review highlights recent advances in metabolic engineering strategies to enable CO2 fixation in yeasts. Also, we discuss the potentials of other natural and synthetic metabolic pathways independent of RuBisCO for developing CO2-fixing yeast strains capable of producing value-added biochemicals.


Assuntos
Dióxido de Carbono , Engenharia Metabólica , Ciclo do Carbono , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo , Saccharomyces cerevisiae/metabolismo
20.
Front Plant Sci ; 12: 662425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539685

RESUMO

Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO) is the carbon-fixing enzyme present in most photosynthetic organisms, converting CO2 into organic matter. Globally, photosynthetic efficiency in terrestrial plants has become increasingly challenged in recent decades due to a rapid increase in atmospheric CO2 and associated changes toward warmer and dryer environments. Well adapted for these new climatic conditions, the C4 photosynthetic pathway utilizes carbon concentrating mechanisms to increase CO2 concentrations surrounding RuBisCO, suppressing photorespiration from the oxygenase catalyzed reaction with O2. The energy efficiency of C3 photosynthesis, from which the C4 pathway evolved, is thought to rely critically on an uninterrupted supply of chloroplast CO2. Part of the homeostatic mechanism that maintains this constancy of supply involves the CO2 produced as a byproduct of photorespiration in a negative feedback loop. Analyzing the database of RuBisCO kinetic parameters, we suggest that in genera (Flaveria and Panicum) for which both C3 and C4 examples are available, the C4 pathway evolved only from C3 ancestors possessing much lower than the average carboxylase specificity relative to that of the oxygenase reaction (S C/O=S C/S O), and hence, the higher CO2 levels required for development of the photorespiratory CO2 pump (C2 photosynthesis) essential in the initial stages of C4 evolution, while in the later stage (final optimization phase in the Flaveria model) increased CO2 turnover may have occurred, which would have been supported by the higher CO2 levels. Otherwise, C4 RuBisCO kinetic traits remain little changed from the ancestral C3 species. At the opposite end of the spectrum, C3 plants (from Limonium) with higher than average S C/O, which may be associated with the ability of increased CO2, relative to O2, affinity to offset reduced photorespiration and chloroplast CO2 levels, can tolerate high stress environments. It is suggested that, instead of inherently constrained by its kinetic mechanism, RuBisCO possesses the extensive kinetic plasticity necessary for adaptation to changes in photorespiration that occur in the homeostatic regulation of CO2 supply under a broad range of abiotic environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA