Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Elife ; 132024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177307

RESUMO

Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics simulations. Models contained a predicted lumenal rimantadine-binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted therapies.


Assuntos
Antivirais , Infecção por Zika virus , Zika virus , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Antivirais/farmacologia , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia , Humanos , Animais , Rimantadina/farmacologia , Chlorocebus aethiops , Simulação de Dinâmica Molecular , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/antagonistas & inibidores , Células Vero , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/química
2.
Heliyon ; 10(13): e33885, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071632

RESUMO

Arboviruses are etiological agents in an extensive group of emerging diseases with great clinical relevance in Brazil, due to the wide distribution of their vectors and the favorable environmental conditions. Among them, the Mayaro virus (MAYV) has drawn attention since its emergence as the etiologic agent of Mayaro fever, a highly debilitating disease. To study viral replication and identify new drug candidates, traditional antiviral assays based on viral antigens and/or plaque assays have been demonstrating low throughput, making it difficult to carry out larger-scale assays. Therefore, we developed and characterized two DNA-launched infectious clones reporter viruses based on the MAYV strain BeAr 20290 containing the reporter genes of firefly luciferase (FLuc) and nanoluciferase (NLuc), designated as MAYV-firefly and MAYV-nanoluc, respectively. The viruses replicated efficiently with similar properties to the parental wild-type MAYV, and luminescence expression levels reflected viral replication. Reporter genes were also preserved during passage in cell culture, remaining stably expressed for one round of passage for MAYV-firefly and three rounds for MAYV-nanoluc. Employing the infectious clone, we described the effect of Rimantadine, an FDA-approved Alzheimer's drug, as a repurposing agent for MAYV but with a broad-spectrum activity against Zika virus infection. Additionally, we validated MAYV-nanoluc as a tool for antiviral drug screening using the compound EIDD-2749 (4'-Fluorouridine), which acts as an inhibitor of alphavirus RNA-dependent RNA polymerase.

3.
Pharm Pat Anal ; 12(5): 231-236, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37982658

RESUMO

Repurposing of approved drugs allows strong savings in time and investment. Rimantadine is an FDA-approved drug for prevention and treatment of influenza A infection. Patent US2021330605 describes the use of rimantadine, an adamantane derivative, for the treatment of melanoma, breast cancer and head and neck squamous cell carcinoma. Rimantadine inhibited proliferation of cell lines of melanoma, breast cancer, and head and neck squamous cell carcinoma, increased the survival of mice injected with cancer cell lines and restores the expression of MHC class I. Rimantadine has the potential to be used successfully in the treatment of head and neck squamous cell carcinoma.


Assuntos
Neoplasias de Cabeça e Pescoço , Melanoma , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Rimantadina/farmacologia , Rimantadina/uso terapêutico , Reposicionamento de Medicamentos , Melanoma/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
4.
Fish Shellfish Immunol Rep ; 5: 100120, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37854946

RESUMO

Drug repurposing is a methodology of identifying new therapeutic use for existing drugs. It is a highly efficient, time and cost-saving strategy that offers an alternative approach to the traditional drug discovery process. Past in-silico studies involving molecular docking have been successful in identifying potential repurposed drugs for the various treatment of diseases including aquaculture diseases. The emerging shrimp hemocyte iridescent virus (SHIV) or Decapod iridescent virus 1 (DIV1) is a viral pathogen that causes severe disease and high mortality (80 %) in farmed shrimps caused serious economic losses and presents a new threat to the shrimp farming industry. Therefore, effective antiviral drugs are critically needed to control DIV1 infections. The aim of this study is to investigate the interaction of potential existing antiviral drugs, Chloroquine, Rimantadine, and CAP-1 with DIV1 major capsid protein (MCP) with the intention of exploring the potential of drug repurposing. The interaction of the DIV1 MCP and three antivirals were characterised and analysed using molecular docking and molecular dynamics simulation. The results showed that CAP-1 is a more promising candidate against DIV1 with the lowest binding energy of -8.46 kcal/mol and is more stable compared to others. We speculate that CAP-1 binding may induce the conformational changes in the DIV1 MCP structure by phosphorylating multiple residues (His123, Tyr162, and Thr395) and ultimately block the viral assembly and maturation of DIV1 MCP. To the best of our knowledge, this is the first report regarding the structural characterisation of DIV1 MCP docked with repurposing drugs.

5.
Wei Sheng Yan Jiu ; 52(2): 286-291, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37062693

RESUMO

OBJECTIVE: To establish a method for determination of amantadine, rimantadine and dimethylamantadine residues in poultry matrix by ultra-performance liquid chromatography-tandem mass spectrometry. METHODS: Poultry samples were extracted with acid acetonitrile, salting out, and then the organic phase was cleaned up by C_(18) and PSA. A Waters ACQUITYTM UPLC HSS T3 column(100 mm×2.1 mm, 1.7 mm)was used for liquid chromatography separation, ESI positive ion scan was used with multiple reaction monitoring(MRM) mode and quantified by matrix-matched external standard method. RESULTS: At the spiked level of 0.5, 1.0 and 5.0 µg/kg, the recoveries of each compound were in the range of 81.3%-91.1% with the relative standard deviations of 6.5%-11.3%. The qualitative limits of detections were 0.06-0.2 µg/kg and the quantitative limits were 0.2-0.5 µg/kg for the 3 target compounds. The established method was applied to the detection of the 3 target compounds in 30 poultry samples, and none of the target compounds exceeded the residue limits. CONCLUSION: The method is simple, rapid, high sensitivity and good stability, with a wide variety and a certain development. It can be used for the daily monitoring of the veterinary drug residues in poultry.


Assuntos
Aves Domésticas , Rimantadina , Animais , Rimantadina/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem , Contaminação de Alimentos/análise , Cromatografia Líquida , Amantadina/análise
7.
Heliyon ; 8(8): e10102, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36016527

RESUMO

In this research, a combined study on structures and vibrational spectra of antiviral rimantadine have been performed using hybrid B3LYP/6-311++G∗∗ calculations and the scaled quantum force field (SQMFF) procedure. Harmonic force fields and scaled force constants of Free Base (FB), Cationic (CA) and Hydrochloride (HCl) species derived from the antiviral rimantadine have been calculated in gas phase and in aqueous solution using normal internal coordinates and scaling factors. Good correlations were acquired comparing the theoretical IR, Raman, 1H- 13C-NMR and UV spectra of three species with the analogous experimental ones, suggesting probably, the presence of all them in both phases. The main force constants of three species have evidenced lower values than the corresponding to antiviral amantadine. The ionic character of N1-H33⋯Cl36 bond of HCl species in aqueous solution evidence positive Mulliken charge on N1 atom indicating that this species is as CA one. Rimantadine presents higher solvation energies in water than other antiviral species, such as chloroquin, niclosamide, cidofovir and brincidofovir. The FB and HCl species of rimantadine are slightly less reactive than the corresponding to amantadine while the opposite is observed for the CA species. The predicted ECD spectra for the FB and CA species show positive Cotton effect different from the negative observed for the HCl one. These different behaviours of three species of rimantadine could probably explain the differences observed in the intensities of bands predicted in the electronic spectra of these species.

8.
J Virol ; 96(18): e0064622, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36040176

RESUMO

Hepatitis A virus (HAV) infection is a major cause of acute viral hepatitis worldwide. Furthermore, HAV causes acute liver failure or acute-on-chronic liver failure. However, no potent anti-HAV drugs are currently available in the clinical situations. There have been some reports that amantadine, a broad-spectrum antiviral, suppresses HAV replication in vitro. Therefore, we examined the effects of amantadine and rimantadine, derivates of adamantane, on HAV replication, and investigated the mechanisms of these drugs. In the present study, we evaluated the effects of amantadine and rimantadine on HAV HM175 genotype IB subgenomic replicon replication and HAV HA11-1299 genotype IIIA replication in cell culture infection systems. Amantadine and rimantadine significantly inhibited HAV replication at the post-entry stage in Huh7 cells. HAV infection inhibited autophagy by suppressing the autophagy marker light chain 3 and reducing number of lysosomes. Proteomic analysis on HAV-infected Huh7 cells treated by amantadine and rimantadine revealed the changes of the expression levels in 42 of 373 immune response-related proteins. Amantadine and rimantadine inhibited HAV replication, partially through the enhancement of autophagy. Taken together, our results suggest a novel mechanism by which HAV replicates along with the inhibition of autophagy and that amantadine and rimantadine inhibit HAV replication by enhancing autophagy. IMPORTANCE Amantadine, a nonspecific antiviral medication, also effectively inhibits HAV replication. Autophagy is an important cellular mechanism in several virus-host cell interactions. The results of this study provide evidence indicating that autophagy is involved in HAV replication and plays a role in the HAV life cycle. In addition, amantadine and its derivative rimantadine suppress HAV replication partly by enhancing autophagy at the post-entry phase of HAV infection in human hepatocytes. Amantadine may be useful for the control of acute HAV infection by inhibiting cellular autophagy pathways during HAV infection processes.


Assuntos
Amantadina , Autofagia , Vírus da Hepatite A , Hepatite A , Rimantadina , Replicação Viral , Amantadina/farmacologia , Amantadina/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Autofagia/efeitos dos fármacos , Linhagem Celular , Hepatite A/tratamento farmacológico , Anticorpos Anti-Hepatite A , Vírus da Hepatite A/efeitos dos fármacos , Humanos , Proteômica , Rimantadina/farmacologia , Rimantadina/uso terapêutico , Replicação Viral/efeitos dos fármacos
9.
Acta Trop ; 227: 106300, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34979144

RESUMO

Most of the patients infected with Chikungunya virus (CHIKV) develop chronic manifestations characterized by pain and deformity in joints, impacting their quality of life. The aminoadamantanes, in their turn, have been exploited due to their biological activities, with amantadine and memantine recently described with anti-CHIKV activities. Here we evaluated the antiviral activity of rimantadine hydrochloride (rtdH), a well-known antiviral agent against influenza A, its platinum complex (Pt-rtd), and the precursor cis-[PtCl2(dmso)2], against CHIKV infection in vitro. The rtdH demonstrated significant antiviral activity in all stages of CHIKV replication (29% in pre-treatment; 57% in early stages of infection; 60% in post-entry stages). The Pt-rtd complex protected the cells against infection in 92%, inhibited 100% of viral entry, mainly by a virucidal effect, and impaired 60% of post-entry stages. Alternatively, cis-[PtCl2(dmso)2] impaired viral entry in 100% and post-entry steps in 60%, but had no effect in protecting cells when administered prior to CHIKV infection. Collectively, the obtained data demonstrated that rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, with the strongest effect observed to Pt-rtd complex, which reduced up to 100% of CHIKV infection. Moreover, molecular docking analysis and infrared spectroscopy data (ATR-FTIR) suggest an interaction of Pt-rtd with CHIKV glycoproteins, potentially related to the mechanism of inhibition of viral entry by Pt-rtd. Through a migration retardation assay, it was also shown that Pt-rtd and cis-[PtCl2(dmso)2] interacted with the dsRNA in 87% and 100%, respectively. The obtained results highlight the repurposing potential of rtdH as an anti-CHIKV drug, as well as the synthesis of promising platinum(II) metallodrugs with potential application for the treatment of CHIKV infections. Importance Chikungunya fever is a disease that can result in persistent symptoms due to the chronic infection process. Infected patients can develop physical disability, resulting and high costs to the health system and significant impacts on the quality of life of affected individuals. Additionally, there are no licensed vaccines or antivirals against the Chikungunya virus (CHIKV) and the virus is easily transmitted due to the abundance of viable vectors in epidemic regions. In this context, our study highlights the repurposing potential of the commercial drug rimantadine hydrochloride (rtdH) as an antiviral agent for the treatment of CHIKV infections. Moreover, our data demonstrated that a platinum(II)-rimantadine metallodrug (Pt-rtd) poses as a potent anti-CHIKV molecule with potential application for the treatment of Chikungunya fever. Altogether, rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, reducing up to 100% of CHIKV infection in vitro.


Assuntos
Febre de Chikungunya , Rimantadina , Linhagem Celular , Febre de Chikungunya/tratamento farmacológico , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Platina/farmacologia , Platina/uso terapêutico , Qualidade de Vida , Rimantadina/farmacologia , Rimantadina/uso terapêutico , Replicação Viral
10.
COVID ; 2(11): 1551-1563, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37274537

RESUMO

Coronavirus disease 2019 (COVID-19) has had devastating effects worldwide, with particularly high morbidity and mortality in outbreaks on residential care facilities. Amantadine, originally licensed as an antiviral agent for therapy and prophylaxis against influenza A virus, has beneficial effects on patients with Parkinson's disease and is used for treatment of Parkinson's disease, multiple sclerosis, acquired brain injury, and various other neurological disorders. Recent observational data suggest an inverse relationship between the use of amantadine and COVID-19. Adamantanes, including amantadine and rimantadine, are reported to have in vitro activity against severe acute respiratory syndrome coronavirus (SARS-CoV) and, more recently, SARS-CoV-2. We hypothesized that adamantanes have antiviral activity against SARS-CoV-2, including variant strains. To assess the activity of adamantanes against SARS-CoV-2, we used in vitro and in vivo models of infection. We established that amantadine, rimantadine, and tromantadine inhibit the growth of SARS-CoV-2 in vitro in cultured human epithelial cells. While neither rimantadine nor amantadine reduces lung viral titers in mice infected with mouse-adapted SARS-CoV-2, rimantadine significantly reduces viral titers in the lungs in golden Syrian hamsters infected with SARS-CoV-2. In summary, rimantadine has antiviral activity against SARS-CoV-2 in human alveolar epithelial cells and in the hamster model of SARS-CoV-2 lung infection. The evaluation of amantadine or rimantadine in human randomized controlled trials can definitively address applications for the treatment or prevention of COVID-19.

11.
Acta Naturae ; 13(2): 116-125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377562

RESUMO

The World Health Organization (WHO) recommends antivirals as an additional line of defense against influenza. One of such drugs is rimantadine. However, most of the circulating strains of influenza A viruses are resistant to this drug. Thus, a search for analogs effective against rimantadine-resistant viruses is of the utmost importance. Here, we examined the efficiency of two adamantane azaheterocyclic rimantadine derivatives on a mouse model of pneumonia caused by the rimantadine-resistant influenza A virus /California/ 04/2009 (H1N1). BALB/c mice inoculated with the virus were treated with two doses (15 mg and 20 mg/kg a day) of tested analogs via oral administration for 5 days starting 4 hours before the infection. The efficacy was assessed by survival rate, mean day to death, weight loss, and viral titer in the lungs. Oral treatment with both compounds in both doses protected 60-100% of the animals, significantly increased the survival rate, and abolished weight loss. The treatments also inhibited virus titer in the lungs in comparison to the control group. This treatment was more effective compared to rimantadine at the same scheme and dosage. Moreover, the study of the sensitivity of the virus isolated from the lungs of the treated mice and grown in MDCK cells showed that no resistance had emerged during the 5 days of treatment with both compounds.

12.
J Biol Res (Thessalon) ; 28(1): 18, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34344455

RESUMO

BACKGROUND: Novel Coronavirus disease 2019 or COVID-19 has become a threat to human society due to fast spreading and increasing mortality. It uses vertebrate hosts and presently deploys humans. Life cycle and pathogenicity of SARS-CoV-2 have already been deciphered and possible drug target trials are on the way. RESULTS: The present study was aimed to analyze Non-Structural Proteins that include conserved enzymes of SARS-CoV-2 like papain-like protease, main protease, Replicase, RNA-dependent RNA polymerase, methyltransferase, helicase, exoribonuclease and endoribonucleaseas targets to all known drugs. A bioinformatic based web server Drug ReposeER predicted several drug binding motifs in these analyzed proteins. Results revealed that anti-viral drugs Darunavir,Amprenavir, Rimantadine and Saquinavir were the most potent to have 3D-drug binding motifs that were closely associated with the active sites of the SARS-CoV-2 enzymes . CONCLUSIONS:  Repurposing of the antiviral drugs Darunavir, Amprenavir, Rimantadine and Saquinavir to treat COVID-19 patients could be useful that can potentially prevent human mortality.

13.
Comput Biol Med ; 122: 103848, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658735

RESUMO

The recent outbreak of coronavirus disease-19 (COVID-19) continues to drastically affect healthcare throughout the world. To date, no approved treatment regimen or vaccine is available to effectively attenuate or prevent the infection. Therefore, collective and multidisciplinary efforts are needed to identify new therapeutics or to explore effectiveness of existing drugs and drug-like small molecules against SARS-CoV-2 for lead identification and repurposing prospects. This study addresses the identification of small molecules that specifically bind to any of the three essential proteins (RdRp, 3CL-protease and helicase) of SARS-CoV-2. By applying computational approaches we screened a library of 4574 compounds also containing FDA-approved drugs against these viral proteins. Shortlisted hits from initial screening were subjected to iterative docking with the respective proteins. Ranking score on the basis of binding energy, clustering score, shape complementarity and functional significance of the binding pocket was applied to identify the binding compounds. Finally, to minimize chances of false positives, we performed docking of the identified molecules with 100 irrelevant proteins of diverse classes thereby ruling out the non-specific binding. Three FDA-approved drugs showed binding to 3CL-protease either at the catalytic pocket or at an allosteric site related to functionally important dimer formation. A drug-like molecule showed binding to RdRp in its catalytic pocket blocking the key catalytic residues. Two other drug-like molecules showed specific interactions with helicase at a key domain involved in catalysis. This study provides lead drugs or drug-like molecules for further in vitro and clinical investigation for drug repurposing and new drug development prospects.


Assuntos
Betacoronavirus/enzimologia , Infecções por Coronavirus/tratamento farmacológico , Reposicionamento de Medicamentos , Pneumonia Viral/tratamento farmacológico , Inibidores de Proteases/farmacologia , Amidas , COVID-19 , Carbamatos , Domínio Catalítico , Simulação por Computador , Ciclopropanos , Dimerização , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Pandemias , Inibidores de Proteases/química , Quinoxalinas/farmacologia , Rimantadina/farmacologia , SARS-CoV-2 , Sulfonamidas , Proteínas Virais/química , Tratamento Farmacológico da COVID-19
14.
J Sep Sci ; 43(3): 631-638, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31680400

RESUMO

The first dispersive liquid liquid microextraction scheme followed by liquid chromatography-post column derivatization for the determination of the antiviral drug rimantadine in urine samples is demonstrated. The effect of the type and volume of organic extraction solvent, type and volume of disperser solvent, sample pH, ionic strength, extraction time, and centrifugation speed on the extraction efficiency were studied. Rimantadine and the internal standard (amantadine) were chromatographed using a reversed phase monolithic stationary phase with a mixture of equal volumes of methanol and phosphate buffer (pH = 3) as mobile phase. On-line post-column derivatization of the analyte was performed using a "two-stream" manifold with o-phthalaldehyde and N-acetyl-cysteine at alkaline medium. Under the optimized extraction conditions, the enrichment factor of rimantadine was 58. The linear range was 5-100 µg/L with correlation coefficient r of 0.9984 while the limit of detection achieved was 0.5 µg/L. The within-day and between-day precision for the tested concentration levels were less than 14.3% and the mean recoveries obtained from the spiked samples were ranged between 87.5 and 113.9%. The main advantages of the proposed method are the simplicity of operation, rapidity, low cost, and low limit of detection of the analyte.


Assuntos
Microextração em Fase Líquida , Rimantadina/urina , Cromatografia Líquida de Alta Pressão/instrumentação , Voluntários Saudáveis , Humanos , Microextração em Fase Líquida/instrumentação
16.
Artigo em Inglês | MEDLINE | ID: mdl-34658454

RESUMO

Heat capacities of the antiviral drug rimantadine hydrochloride in the crystalline state were measured by adiabatic calorimetry and differential scanning calorimetry in the temperature range from (7 to 453) K. A broad low-enthalpy solid-state phase anomaly was detected between (170 and 250) K. Thermodynamic functions for crystalline rimantadine hydrochloride were derived. Decomposition of the studied compound was probed by the Knudsen effusion method and thermogravimetry with the support of quantum chemical calculations. The enthalpy of decomposition of rimantadine hydrochloride into the corresponding amine and hydrogen chloride was estimated from those data. The thermodynamic functions of the corresponding amine in the ideal gaseous state, including enthalpy of formation, were obtained using statistical thermodynamics with the necessary molecular parameters computed using quantum chemical methods. The enthalpy of formation of crystalline rimantadine hydrochloride was estimated.

17.
Molecules ; 24(21)2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31684129

RESUMO

A zone-fluidics (ZF) based automated fluorimetric sensor for the determination of pharmaceutically active adamantine derivatives, i.e., amantadine (AMA), memantine (MEM) and rimantadine (RIM) is reported. Discrete zones of the analytes and reagents (o-phthalaldehyde and N-acetylcysteine) mix and react under stopped-flow conditions to yield fluorescent iso-indole derivatives (λex/ λem = 340/455 nm). The proposed ZF sensor was developed and validated to prove suitable for quality control tests (assay and content uniformity) of commercially available formulations purchased from the Greek market (EU licensed) and from non-EU web-pharmacies at a sampling rate of 16 h-1. Interestingly, a formulation obtained through the internet and produced in a third-non-EU-country (AMA capsules, 100 mg per cap), was found to be out of specifications (mean assay of 85.3%); a validated HPLC method was also applied for confirmatory purposes.


Assuntos
Amantadina/isolamento & purificação , Fluorometria/métodos , Memantina/isolamento & purificação , Rimantadina/isolamento & purificação , Amantadina/química , Cromatografia Líquida de Alta Pressão , Indicadores e Reagentes/química , Indóis/química , Memantina/química , Microfluídica , Rimantadina/química
18.
J Virol Methods ; 274: 113714, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31412271

RESUMO

Hepatitis C pseudoparticles (HCVpp) are used to evaluate HCV cell entry while screening for neutralizing antibodies induced upon vaccination or while screening for new antiviral drugs. In this work we explore the stable production of HCVpp aiming to reduce the variability associated with transient productions. The performance of stably produced HCVpp was assessed by evaluating the influence of Human Serum and the impact of CD81 cellular expression on the infectivity of HCVpp. After evaluating the performance of stably produced HCVpp we studied the effect of co-expressing p7NS2 openreading frame (ORF) on HCVpp infectivity. Our data clearly shows an enhanced infectivity of HCVppp7NS2. Even though the exact mechanism was not completely elucidated, the enhanced infectivity of HCVppp7NS2 is neither a result of an increase production of virus particles nor a result from increased envelope density. The inhibitory effect of p7 inhibitory molecules such as rimantadine suggests a direct contribution of p7 ion channel for the enhanced infectivity of HCVppp7NS2 which is coherent with a pH-dependent cell entry mechanism. In conclusion, we report the establishment of a stable production system of HCVpp with enhanced infectivity through the overexpression of p7NS2 ORF contributing to improve HCV entry assessment assays widely used in antiviral drug discovery and vaccine development.


Assuntos
Expressão Gênica , Hepacivirus/fisiologia , Vírus da Leucemia Murina/crescimento & desenvolvimento , Proteínas não Estruturais Virais/biossíntese , Proteínas Virais/biossíntese , Cultura de Vírus/métodos , Internalização do Vírus , Linhagem Celular , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Hepacivirus/genética , Humanos , Vírus da Leucemia Murina/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Coloração e Rotulagem/métodos , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética
19.
Molecules ; 24(9)2019 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-31083636

RESUMO

This work discloses a new procedure for the resolution of commercially available racemic rimantadine hydrochloride to enantiomerically pure (S)-rimantadine using (R)-phenoxypropionic acid as a recyclable resolving reagent. Good chemical yields, operational ease, and low-cost structure underscore the preparative value of this method for the production of enantiomerically pure rimantadine for medicinal or synthetic studies.


Assuntos
Rimantadina/química , Aminas/química , Estrutura Molecular , Estereoisomerismo
20.
J Sep Sci ; 41(19): 3764-3771, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30063122

RESUMO

In-capillary derivatization using fluorescamine as the labeling reagent was proposed to enhance the detectability of adamantine drugs (memantine, amantadine and rimantadine) by spectrophotometric detection. Fluorescamine and the drugs were delivered to the capillary electrophoresis instrument at a ratio of 10:1 by zone injection. The derivatization reaction occurred following the application of voltage (20 kV). The derivatized products, hydrolyzed- fluorescamine and excess fluorescamine were separated in 7 min using 100 mM borate buffer (pH 10.0) containing 0.1% w/v of Brij®-35 and 20% v/v of acetonitrile. Validation data showed good linearity (r2  > 0.98), precision (%RSDs < 3.4), and accuracy (recoveries ranging from 98.0 to 102.0%). The detection and quantitation limits are in the range of 6.0-8.5 and 18-25 µM, respectively. The validation data is comparable to reported methods, however, the current method offers better precision with enhanced sensitivity (up to six times). Applications of the method show percent labeled amounts found in the studied samples within 100.6-109.3%, which complied with the United States Pharmacopeia limit (90.0-110.0%). The method was simple, rapid and, automated, which required no extra instrumentation or skillful operators.


Assuntos
Adamantano/análise , Fluorescamina/química , Eletroforese Capilar , Estrutura Molecular , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA