Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Sci Rep ; 14(1): 23687, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390140

RESUMO

In rotating machinery, the condition of rolling bearings is paramount, directly influencing operational integrity. However, the literature on the fault evolution of rolling bearings in their nascent stages is notably limited. Addressing this gap, our study establishes an innovative nonlinear dynamic model for early fault evolution of rolling bearings based on collision impact. Firstly, considering the fault evolution characteristics, the influence of the rolling element and fault structure, the dynamic model of early fault evolution between the rolling element and the local fault is established. Secondly, according to the Hertzian contact deformation theory, a nonlinear dynamic model of rolling bearings expressed as mass-spring is established. Thirdly, the energy contribution method is used to integrate the fault evolution model and the nonlinear dynamic model of the rolling bearing. A nonlinear dynamic model of early fault evolution of the rolling bearing is proposed by using the Lagrangian equation. Comparing the simulation results of the nonlinear dynamic with the experimental results, it can be seen that the numerical model can effectively predict the evolution process and vibration characteristics of the fault evolution of rolling bearings in the early stage.

2.
Heliyon ; 10(17): e35781, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281601

RESUMO

The finished precision rolling bearings after processing are required to pass the life test before they can be put into the market. The life testing takes a lot of time and expense. Aiming to solve the problem of time and expense, the 1D-CNN and 1D-CNN-LSTM hybrid neural networks are used for deep learning based on the existing rolling bearing life big data results (a total of 791152 date). Taking the wear of bearing as the target, the life prediction of bearing is carried out by using Python. The results show that: (1) 1D-CNN-LSTM algorithm and "all parameters" are selected as the best prediction options. (2) "XYZ direction displacement" and "all parameters" have the best fitting effect on the predicted wear value, and the MAPE is 4.18877, 1.2102, 2.68903 and 1.19981, respectively. The 1D-CNN-LSTM algorithm is slightly better than the 1D-CNN algorithm. (3) Using 1D-CNN-LSTM algorithm and "all parameters" to predict the bearing wear life will obtain good results. Compared with the highest 1D-CNN and "Four Bearing Temperatures" parameters, it is reduced by 14.7 times. (4) The prediction process and results provide a wear prediction method for relevant bearing enterprises in the experimental running-in stage. It can also provide reliable research ideas for subsequent related enterprises and scholars.

3.
Sensors (Basel) ; 24(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39275611

RESUMO

The fault diagnosis of rolling bearings is faced with the problem of a lack of fault data. Currently, fault diagnosis based on traditional convolutional neural networks decreases the diagnosis rate. In this paper, the developed adaptive residual shrinkage network model is combined with transfer learning to solve the above problems. The model is trained on the Case Western Reserve dataset, and then the trained model is migrated to a small-sample dataset with a scaled-down sample size and the Jiangnan University bearing dataset to conduct the experiments. The experimental results show that the proposed method can efficiently learn from small-sample datasets, improving the accuracy of the fault diagnosis of bearings under variable loads and variable speeds. The adaptive parameter-rectified linear unit is utilized to adapt the nonlinear transformation. When rolling bearings are in operation, noise production is inevitable. In this paper, soft thresholding and an attention mechanism are added to the model, which can effectively process vibration signals with strong noise. In this paper, the real noise is simulated by adding Gaussian white noise in migration task experiments on small-sample datasets. The experimental results show that the algorithm has noise resistance.

4.
Sensors (Basel) ; 24(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39204877

RESUMO

To address the issues of inadequate feature extraction for rolling bearings, inaccurate fault diagnosis, and overfitting in complex operating conditions, this paper proposes a rolling bearing diagnosis method based on multi-scale feature fusion and transfer adversarial learning. Firstly, a multi-scale convolutional fusion layer is designed to effectively extract fault features from the original vibration signals at multiple time scales. Through a feature encoding fusion module based on the multi-head attention mechanism, feature fusion extraction is performed, which can model long-distance contextual information and significantly improve diagnostic accuracy and anti-noise capability. Secondly, based on the domain adaptation (DA) cross-domain feature adversarial learning strategy of transfer learning methods, the extraction of optimal domain-invariant features is achieved by reducing the gap in data distribution between the target domain and the source domain, addressing the call for research on fault diagnosis across operating conditions, equipment, and virtual-real migrations. Finally, experiments were conducted to verify and optimize the effectiveness of the feature extraction and fusion network. A public bearing dataset was used as the source domain data, and special vehicle bearing data were selected as the target domain data for comparative experiments on the effect of network transfer learning. The experimental results demonstrate that the proposed method exhibits an exceptional performance in cross-domain and variable load environments. In multiple bearing cross-domain transfer learning tasks, the method achieves an average migration fault diagnosis accuracy rate of up to 98.65%. When compared with existing methods, the proposed method significantly enhances the ability of data feature extraction, thereby achieving a more robust diagnostic performance.

5.
Sensors (Basel) ; 24(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39204978

RESUMO

In recent years, single-source-data-based deep learning methods have made considerable strides in the field of fault diagnosis. Nevertheless, the extraction of useful information from multi-source data remains a challenge. In this paper, we propose a novel approach called the Genetic Simulated Annealing Optimization (GASA) method with a multi-source data convolutional neural network (MSCNN) for the fault diagnosis of rolling bearing. This method aims to identify bearing faults more accurately and make full use of multi-source data. Initially, the bearing vibration signal is transformed into a time-frequency graph using the continuous wavelet transform (CWT) and the signal is integrated with the motor current signal and fed into the network model. Then, a GASA-MSCNN fault diagnosis method is established to better capture the crucial information within the signal and identify various bearing health conditions. Finally, a rolling bearing dataset under different noisy environments is employed to validate the robustness of the proposed model. The experimental results demonstrate that the proposed method is capable of accurately identifying various types of rolling bearing faults, with an accuracy rate reaching up to 98% or higher even in variable noise environments. The experiments reveal that the new method significantly improves fault detection accuracy.

6.
Heliyon ; 10(15): e35407, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39166054

RESUMO

In the context of burgeoning industrial advancement, there is an increasing trend towards the integration of intelligence and precision in mechanical equipment. Central to the functionality of such equipment is the rolling bearing, whose operational integrity significantly impacts the overall performance of the machinery. This underscores the imperative for reliable fault diagnosis mechanisms in the continuous monitoring of rolling bearing conditions within industrial production environments. Vibration signals are primarily used for fault diagnosis in mechanical equipment because they provide comprehensive information about the equipment's condition. However, fault data often contain high noise levels, high-frequency variations, and irregularities, along with a significant amount of redundant information, like duplication, overlap, and unnecessary information during signal transmission. These characteristics present considerable challenges for effective fault feature extraction and diagnosis, reducing the accuracy and reliability of traditional fault detection methods. This research introduces an innovative fault diagnosis methodology for rolling bearings using deep convolutional neural networks (CNNs) enhanced with variational autoencoders (VAEs). This deep learning approach aims to precisely identify and classify faults by extracting detailed vibration signal features. The VAE enhances noise robustness, while the CNN improves signal data expressiveness, addressing issues like gradient vanishing and explosion. The model employs the reparameterization trick for unsupervised learning of latent features and further trains with the CNN. The system incorporates adaptive threshold methods, the "3/5" strategy, and Dropout methods. The diagnosis accuracy of the VAE-CNN model for different fault types at different rotational speeds typically reaches more than 90 %, and it achieves a generally acceptable diagnosis result. Meanwhile, the VAE-CNN augmented fault diagnosis model, after experimental validation in various dimensions, can achieve more satisfactory diagnosis results for various fault types compared to several representative deep neural network models without VAE augmentation, significantly improving the accuracy and robustness of rolling bearing fault diagnosis.

7.
ISA Trans ; 152: 371-384, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39095286

RESUMO

Rolling bearing is the key component of rotating machinery, and its vibration signal usually exhibits nonlinear and nonstationary characteristics when failure occurs. Multiscale permutation entropy (MPE) is an effective nonlinear dynamics analysis tool, which has been successfully applied to rolling bearing fault diagnosis in recent years. However, MPE ignores the deep amplitude information when measuring the complexity of the time series and the original multiscale coarse-graining is insufficient, which requires further research and improvement. In order to protect the integrity of information structure, a novel nonlinear dynamic analysis method termed refined composite multiscale slope entropy (RCMSlE) is proposed in this paper, which introduced the concept of refined composite to further boost the performance of MPE in nonlinear dynamical complexity analysis. Furthermore, RCMSlE utilizes a novel symbolic representation that takes full account of mode and amplitude information, which overcomes the weaknesses in describing the complexity and regularity of bearing signals. Based on this, a GWO-SVM multi-classifier is introduced to fulfill mode recognition, and then a new intelligent fault diagnosis method for rolling bearing based on RCMSlE and GWO-SVM is proposed. The experimental results show that the proposed method can not only accurately identify different fault types and degrees of rolling bearing, but also has a short computation time and better performance than other comparative methods.

8.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894114

RESUMO

Ensuring the smooth operation of rolling bearings requires a precise fault diagnosis. Particularly, identifying fault types under varying working conditions holds significant importance in practical engineering. Thus, we propose a reinforcement ensemble method for diagnosing rolling bearing faults under varying working conditions. Firstly, a reinforcement model was designed to select the optimal base learner. Stratified random sampling was used to extract four datasets from raw training data. The reinforcement model was trained by these four datasets, respectively, and we obtained four optimal base learners. Then, a sparse ANN was designed as the ensemble model and the reinforcement learning model that can successfully identify the fault type under variable work conditions was constructed. Extensive experiments were conducted, and the results demonstrate the superiority of the proposed method over other intelligent approaches, with significant practical engineering benefits.

9.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894163

RESUMO

To solve the problem of a low signal-to-noise ratio of fault signals and the difficulty in effectively and accurately identifying the fault state in the early stage of motor bearing fault occurrence, this paper proposes an early fault diagnosis method for bearings based on the Differential Local Mean Decomposition (DLMD) and fusion of current-vibration signals. This method uses DLMD to decompose the current signal and vibration signal, respectively, and weights the decomposed product function (PF) according to the kurtosis value to reconstruct the signal, and then fuses the reconstructed signals to obtain the current-vibration fusion signal after normalization, and then analyzes the fusion signal spectrally through the Hilbert envelope spectrum. Finally, the fusion signal is analyzed by the Hilbert envelope spectrum, and a clear fault characteristic frequency is obtained. The experimental results demonstrate that compared to traditional bearing fault diagnosis methods, the proposed method significantly improves the signal-to-noise ratio of fault signals, effectively enhances the sensitivity of early-stage fault detection in motor bearings, and improves the accuracy of fault identification.

10.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894172

RESUMO

Currently, many fault diagnosis methods for rolling bearings based on deep learning are facing two main challenges. Firstly, the deep learning model exhibits poor diagnostic performance and limited generalization ability in the presence of noise signals and varying loads. Secondly, there is incomplete utilization of fault information and inadequate extraction of fault features, leading to the low diagnostic accuracy of the model. To address these problems, this paper proposes an improved dual-branch convolutional capsule neural network for rolling bearing fault diagnosis. This method converts the collected bearing vibration signals into grayscale images to construct a grayscale image dataset. By fully considering the types of bearing faults and damage diameters, the data are labeled using a dual-label format. A multi-scale convolution module is introduced to extract features from the data and maximize feature information extraction. Additionally, a coordinate attention mechanism is incorporated into this module to better extract useful channel features and enhance feature extraction capability. Based on adaptive fusion between fault type (damage diameter) features and labels, a dual-branch convolutional capsule neural network model for rolling bearing fault diagnosis is established. The model was experimentally validated using both Case Western Reserve University's bearing dataset and self-made datasets. The experimental results demonstrate that the fault type branch of the model achieves an accuracy rate of 99.88%, while the damage diameter branch attains an accuracy rate of 99.72%. Both branches exhibit excellent classification performance and display robustness against noise interference and variable working conditions. In comparison with other algorithm models cited in the reference literature, the diagnostic capability of the model proposed in this study surpasses them. Furthermore, the generalization ability of the model is validated using a self-constructed laboratory dataset, yielding an average accuracy rate of 94.25% for both branches.

11.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894481

RESUMO

Recent advancements in applications of deep neural network for bearing fault diagnosis under variable operating conditions have shown promising outcomes. However, these approaches are limited in practical applications due to the complexity of neural networks, which require substantial computational resources, thereby hindering the advancement of automated diagnostic tools. To overcome these limitations, this study introduces a new fault diagnosis framework that incorporates a tri-channel preprocessing module for multidimensional feature extraction, coupled with an innovative diagnostic architecture known as the Lightweight Ghost Enhanced Feature Attention Network (GEFA-Net). This system is adept at identifying rolling bearing faults across diverse operational conditions. The FFE module utilizes advanced techniques such as Fast Fourier Transform (FFT), Frequency Weighted Energy Operator (FWEO), and Signal Envelope Analysis to refine signal processing in complex environments. Concurrently, GEFA-Net employs the Ghost Module and the Efficient Pyramid Squared Attention (EPSA) mechanism, which enhances feature representation and generates additional feature maps through linear operations, thereby reducing computational demands. This methodology not only significantly lowers the parameter count of the model, promoting a more streamlined architectural framework, but also improves diagnostic speed. Additionally, the model exhibits enhanced diagnostic accuracy in challenging conditions through the effective synthesis of local and global data contexts. Experimental validation using datasets from the University of Ottawa and our dataset confirms that the framework not only achieves superior diagnostic accuracy but also reduces computational complexity and accelerates detection processes. These findings highlight the robustness of the framework for bearing fault diagnosis under varying operational conditions, showcasing its broad applicational potential in industrial settings. The parameter count was decreased by 63.74% compared to MobileVit, and the recorded diagnostic accuracies were 98.53% and 99.98% for the respective datasets.

12.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475033

RESUMO

To address the challenges faced in the prediction of rolling bearing life, where temporal signals are affected by noise, making fault feature extraction difficult and resulting in low prediction accuracy, a method based on optimal time-frequency spectra and the DenseNet-ALSTM network is proposed. Firstly, a signal reconstruction method is introduced to enhance vibration signals. This involves using the CEEMDAN deconvolution method combined with the Teager energy operator for signal reconstruction, aiming to denoise the signals and highlight fault impacts. Subsequently, a method based on the snake optimizer (SO) is proposed to optimize the generalized S-transform (GST) time-frequency spectra of the enhanced signals, obtaining the optimal time-frequency spectra. Finally, all sample data are transformed into the optimal time-frequency spectrum set and input into the DenseNet-ALSTM network for life prediction. The comparison experiment and ablation experiment show that the proposed method has high prediction accuracy and ideal prediction performance. The optimization terms used in different contexts in this paper are due to different optimization methods, specifically the CEEMDAN method.

13.
Heliyon ; 10(6): e27986, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515657

RESUMO

In allusion to solve the issue of fault diagnosis for bearing and other rotatory machinery, a technique based on fined-grained multi-scale Kolmogorov entropy and whale optimized multi-class support vector machine (abbreviated as FGMKE-WOA-MSVM) is proposed. Firstly, vibration signals are decomposed by fine-grained multi-scale decomposition, and the Kolmogorov entropy of the sub-signals at different analysis scales is calculated as the multi-dimension feature vector, which quantitatively characterize the complexity of the signal at multi-scales. Aiming at the problem of sensitive parameters selection for multi-class support vector machine model (abbreviated as MSVM), the whale optimization algorithm (abbreviated as WOA) is introduced to optimize the penalty factor and kernel function parameter, and constructing optimal WOA-MSVM model. Finally, an instance analysis is carried out with Jiangnan University bearing datasets to verify the effectiveness and superiority of this technique. The results show that compared with different feature vectors and models such as K nearest neighbors (abbreviated as KNN) and Decision Tree (abbreviated as RF), the proposed technique is superior with fast computation speed and high diagnostic efficiency.

14.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400448

RESUMO

Accurate fault diagnosis is essential for the safe operation of rotating machinery. Recently, traditional deep learning-based fault diagnosis have achieved promising results. However, most of these methods focus only on supervised learning and tend to use small convolution kernels non-effectively to extract features that are not controllable and have poor interpretability. To this end, this study proposes an innovative semi-supervised learning method for bearing fault diagnosis. Firstly, multi-scale dilated convolution squeeze-and-excitation residual blocks are designed to exact local and global features. Secondly, a classifier generative adversarial network is employed to achieve multi-task learning. Both unsupervised and supervised learning are performed simultaneously to improve the generalization ability. Finally, supervised learning is applied to fine-tune the final model, which can extract multi-scale features and be further improved by implicit data augmentation. Experiments on two datasets were carried out, and the results verified the superiority of the proposed method.

15.
ISA Trans ; 147: 453-471, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388295

RESUMO

Incipient degradation dynamic detection is crucial for preventing serious accidents in the context of rolling bearing online automatic condition monitoring and preventive maintenance. This article presents a novel framework, cyclostationarity-sensitive spectrum fuzzy entropy-assisted Bayesian online anomaly inference (CSFE-BOAI), to address this challenge. A new health index, CSFE, is first defined by performing the fuzzy entropy measure on the extracted cyclostationarity-sensitive spectra to promote incipient-degradation sensitivity and robustness to interferences. Next, the BOAI procedure for detecting anomalies in continuously arriving CSFEs is derived using the robust generalized T-distribution as the underlying predictive distribution. Eventually, the CSFE-BOAI framework is constructed for bearing incipient degradation dynamic detection, which possesses double confirmation of valid anomalies through the Pauta criterion and cyclostationarity-sensitive spectrum. Experimental verifications are performed on two typical bearing degradation data and one healthy-to-incipient defect data. Results show that CSFE-BOAI enables effective and timely incipient degradation alarm and identification of rolling bearings. The comparisons with the eight advanced health indexes and four anomaly detection approaches demonstrate that CSFE-BOAI has the lowest false and missed alarms and therefore has good deployment potential for practical applications.

16.
Heliyon ; 10(4): e26141, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420432

RESUMO

A rolling bearing fault diagnosis method based on Recursive Quantitative Analysis (RQA) combined with time domain feature extraction and Whale Optimization Algorithm Support Vector Machine (WOA-SVM) is proposed. Firstly, the recurrence graph of the vibration signal is drawn, and the nonlinear feature parameters in the recurrence graph combined with Standard Deviation (STD) are extracted by recursive quantitative analysis method to generate feature vectors; after that, in order to construct the optimal support vector machine model, the Whale Optimization Algorithm is used to optimize the c and g parameters. Finally, both Recursive Quantitative Analysis and standard deviation are combined with the WOA-SVM model to perform fault diagnosis of rolling bearings. The rolling bearing datasets from Case Western Reserve University and Jiangnan University were used for example analysis, and the fault identification accuracy reached 100% and 95.00%, respectively. Compared to other methods, the method proposed in this paper has higher diagnostic accuracy and wide practical applicability, and the risk of accidents can be reduced through accurate fault diagnosis, which is also important for safety and environmental policies. This research originated in the field of mechanical fault diagnosis to solve the problem of fault diagnosis of rolling bearings in industrial production, it builds on previous research and explores new methods and techniques to fill some gaps in the field of mechanical fault diagnosis.

17.
ISA Trans ; 146: 319-335, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38220542

RESUMO

Blind deconvolution can remove the effects of complex paths and extraneous disturbances, thus recovering simple features of the original fault source, and is used extensively in the field of fault diagnosis. However, it can only identify and extract the statistical mean of the fault impact features in a single domain and is unable to simultaneously highlight the local features of the signal in the time-frequency domain. Therefore, the extraction effect of weak fault signals is generally not ideal. In this paper, a new time-frequency slice extraction method is proposed. The method first computes a high temporal resolution spectrum of the signal by short-time Fourier transform to obtain multiple frequency slices with distinct temporal waveforms. Subsequently, the constructed harmonic spectral feature index is used to quantify and target the intensity of feature information in each frequency slice and enhance their fault characteristics using maximum correlation kurtosis deconvolution. Enhancing the local features of selected frequency slice clusters can reduce noise interference and obtain signal components with more obvious fault signatures. Finally, the validity of the method was confirmed by a simulated signal and fault diagnosis of the rolling bearing outer and inner rings was accomplished sequentially. Compared with other common deconvolution methods, the proposed method obtains more accurate and effective results in identifying fault messages.

18.
ISA Trans ; 146: 195-207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155035

RESUMO

To address the unknown spatial relationship between source and target domain labels, which leads to poor fault diagnosis accuracy, a contrastive universal domain adaptation model and rolling bearing fault diagnosis approach are proposed. The approach introduces bootstrap your own latent network to mine the data-specific structure of the target domain and proposes rejecting unknown class samples using an entropy separation strategy. Simultaneously, a source class weighting mechanism is designed to improve the transferable semantics augmentation method by assigning various class-level weights to source categories, which improves the alignment of the feature distributions in the shared label space to further construct fault diagnosis models. Experimental validation on two rolling bearing datasets confirmed the superior fault diagnosis accuracy of the proposed method under diverse working conditions.

19.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067814

RESUMO

Due to the difficulty in dealing with non-stationary and nonlinear vibration signals using the single decomposition method, it is difficult to extract weak fault features from complex noise; therefore, this paper proposes a fault feature extraction method for rolling bearings based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD) methods. CEEMDAN was used to decompose the signal, and the signal was then screened and reconstructed according to the component envelope kurtosis. Based on the kurtosis of the maximum envelope spectrum as the fitness function, the sparrow search algorithm (SSA) was used to perform adaptive parameter optimization for VMD, which decomposed the reconstructed signal into several IMF components. According to the kurtosis value of the envelope spectrum, the optimal component was selected for an envelope demodulation analysis to realize fault feature extraction for rolling bearings. Finally, by using open data sets and experimental data, the accuracy of envelope kurtosis and envelope spectrum kurtosis as a component selection index was verified, and the superiority of the proposed feature extraction method for rolling bearings was confirmed by comparing it with other methods.

20.
Math Biosci Eng ; 20(11): 19963-19982, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38052632

RESUMO

As an essential component of mechanical equipment, the fault diagnosis of rolling bearings may not only guarantee the systematic operation of the equipment, but also minimize any financial losses caused by equipment shutdowns. Fault diagnosis algorithms based on convolutional neural networks (CNN) have been widely used. However, traditional CNNs have limited feature representation capabilities, thereby making it challenging to determine their hyperparameters. This paper proposes a fault diagnosis method that combines a 1D-CNN with an attention mechanism and hyperparameter optimization to overcome the aforementioned limitations; this method improves the search speed for optimal hyperparameters of CNN models, improves the diagnostic accuracy, and enhances the representation of fault feature information in CNNs. First, the 1D-CNN is improved by combining it with an attention mechanism to enhance the fault feature information. Second, a swarm intelligence algorithm based on Differential Evolution (DE) and Grey Wolf Optimization (GWO) is proposed, which not only improves the convergence accuracy, but also increases the search efficiency. Finally, the improved 1D-CNN alongside hyperparameters optimization are used to diagnose the faults of rolling bearings. By using the Case Western Reserve University (CWRU) and Jiangnan University (JNU) datasets, when compared to other common diagnosis models, the results demonstrate the usefulness and dependability of the DE-GWO-CNN algorithm in fault diagnosis applications by demonstrating the increased diagnostic accuracy and superior anti-noise capabilities of the proposed method. The fault diagnosis methodology presented in this paper can accurately identify faults and provide dependable fault classification, thereby assisting technicians in promptly resolving faults and minimizing equipment failures and operational instabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA