RESUMO
In this study, rooibos tea waste (RTW) incorporated with a binary oxide (BO; Fe2O3-SnO2) has been reported for the first time as a highly efficient adsorbent material for the elimination of Ni(II) ions. The as-synthesised rooibos tea waste-binary oxide (RWBO) composite adsorbent was characterised using miscellaneous techniques such as FTIR, XRD, SEM, EDX, TGA, BET, and XPS. The RWBO was then tested for the removal of Ni(II) in a batch adsorption experiment. The composite adsorbent showed a great removal efficiency of about 99.75% for Ni(II) ions at 45 °C, 180 min agitation time, pH 7, and dosage of 250 mg. The adsorption process was found to be endothermic and spontaneous. Also, the spent adsorbent [RWBO-Ni(II)] was found to be solar light active with a narrow band gap of 1.4 eV. It was further used as a photocatalyst for the photocatalytic abatement of 10 mg/L ciprofloxacin with an extent of degradation of 83% obtained after 150 min. In addition, the extent of mineralisation of the ciprofloxacin by the spent adsorbent as obtained from the TOC data was found to be 64%. Overall, the RWBO composite adsorbent lends itself as an efficient, eco-friendly and promising material for environmental remediation.
Assuntos
Aspalathus , Poluentes Químicos da Água , Níquel , Óxidos , Ciprofloxacina , Chá , Aspalathus/metabolismo , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , ÍonsRESUMO
The release of biochar (BC) on forest soil is a strategy aimed at increasing carbon reserves and forest productivity. The effect of BC amendments on the decomposition of different quality litter is, however, poorly understood. With this study we investigate the effects of wood-derived BC applications on early decomposition in a European beech (Fagus sylvatica L.) forest through the burial of standard material, i.e. green tea and rooibos tea (high- and low-quality litter surrogates, respectively). Two main questions were addressed: 1) Do BC applications influence the decomposition of high- and low-quality standard litter and, if so, in what way? and 2) Does this effect (if measurable) depend on where the sample is placed with respect to the BC application layer? To test BC amendment effects, four application percentages were employed (0, 10, 20 and 100 %), after which standard litter mass loss was recorded. To investigate the effects of sample position, only three BC application percentages were used (0, 10 and 20 %), with teabags buried at three different depths - within the BC amended layer, between this layer and the unamended soil, and below the latter. Results show that early decomposition of high-quality standard litter was not influenced by BC applications, while a significant reduction in mass loss of low-quality standard litter was observed when the percentage of BC application was higher, specifically of litter within the 20 % and 100 % BC amended layers. Decomposition was also affected by sample position relative to the BC layer, exhibiting higher levels of mass loss when samples were placed within the BC amended layer. Overall, BC applications on beech forest soils not only seem to produce negligible effects on the early decomposition rate of high-quality standard litter, but such applications also seem to have the ability to reduce carbon loss following plant material degradation.
RESUMO
In this study, a magnetic sorbent assisted dispersive solid phase extraction (DSPE) method was used to preconcentrate lead ions from rooibos tea samples for determination by slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS). Cobalt ferrite magnetic nanoparticles (CoFe2O4 MNPs) were synthesized by microwave assisted digestion. Limits of detection and quantification were calculated as 5.3 and 17.6 µg/L, respectively, in a linear dynamic range of 20-800 µg/L. The enhancement factor of the developed method was found to be 80-folds when compared to the detection limit of the regular FAAS system. The percent recoveries obtained for rooibos tea samples spiked at different concentrations were in the range of 77 - 125%, with high repeatability as indicated by low standard deviations. The findings of the study demonstrated that the CoFe2O4 MNPs-based extraction method is a straightforward, fast, affordable, safe, and eco-friendly approach to qualifying/quantifying lead with high precision in the selected beverage sample.
Assuntos
Aspalathus , Microextração em Fase Líquida , Nanopartículas , Micro-Ondas , Microextração em Fase Líquida/métodos , Espectrofotometria Atômica/métodos , Chá/químicaRESUMO
Impaired mitochondrial function and loss of cellular proteostasis control are key hallmarks of aging and are implicated in the development of neurodegenerative diseases. A common denominator is the cell's inability to handle reactive oxygen species (ROS), leading to major downstream oxidative damage that exacerbates neuronal dysfunction. Although we have progressed in understanding the molecular defects associated with neuronal aging, many unanswered questions remain. How much ROS is required to serve cellular function before it becomes detrimental and how does the cell's oxidative status impact mitochondrial function and protein degradation through autophagy? How does ROS regulate autophagy? Aspalathus linearis, also commonly known as rooibos, is an endemic South African plant that is gaining globally acclaim for its antioxidant properties and its role as functional medicinal beverage. In this article we dissect the role of rooibos in the context of the cell's ROS handling capacity, mitochondrial function and autophagy activity. By addressing the dynamic relationship between these critical interconnected systems, and by evaluating the functional properties of rooibos, we unravel its position for preserving cell viability and promoting healthy aging.
Assuntos
Aspalathus , Envelhecimento Saudável , Aspalathus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais , Proteostase , Chá , Mitocôndrias/metabolismoRESUMO
This study aimed to identify factors that influence the decisions of rooibos farmers in South Africa to implement certification and quality assurance systems. The study was conducted in the Western Cape region of South Africa. A structured questionnaire was distributed to 300 farmers in the form of interviews. In addition, an analysis of previously published data was also used. Results showed that membership in an association, land tenure, rooibos tea farm size, and education level were the main determinants of implementing certifications and quality assurance systems. Membership in the association and land tenure significantly negatively affected the adoption of certification. In contrast, farm size and level of education, translating to knowledge of certification systems, tended to have a significant positive effect on adoption. Continuous education, awareness of the process of certification and quality assurance systems, and the formation of farmers' support systems are recommended to improve the impact of smallholder rooibos farmers in the industry.
RESUMO
Hyperuricemia, a lifestyle-related disease characterized by elevated serum urate levels, is the main risk factor for gout; therefore, the serum urate-lowering effects of human diets or dietary ingredients have attracted widespread interest. As Urate transporter 1 (URAT1) governs most urate reabsorption from primary urine into blood, URAT1 inhibition helps decrease serum urate levels by increasing the net renal urate excretion. In this study, we used a cell-based urate transport assay to investigate the URAT1-inhibitory effects of 162 extracts of plant materials consumed by humans. Among these, we focused on Aspalathus linearis, the source of rooibos tea, to explore its active ingredients. Using liquid-liquid extraction with subsequent column chromatography, as well as spectrometric analyses for chemical characterization, we identified quercetin as a URAT1 inhibitor. We also investigated the URAT1-inhibitory activities of 23 dietary ingredients including nine flavanols, two flavanonols, two flavones, two isoflavonoids, eight chalcones, and a coumarin. Among the tested authentic chemicals, fisetin and quercetin showed the strongest and second-strongest URAT1-inhibitory activities, with IC50 values of 7.5 and 12.6 µM, respectively. Although these effects of phytochemicals should be investigated further in human studies, our findings may provide new clues for using nutraceuticals to promote health.
Assuntos
Aspalathus , Transportadores de Ânions Orgânicos , Promoção da Saúde , Humanos , Transportadores de Ânions Orgânicos/fisiologia , Folhas de Planta , Polifenóis , Ácido ÚricoRESUMO
The formation of prostaglandin E2 (PGE2) is associated with adverse inflammatory effects. However, long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) comes with risk of severe side effects. Therefore, alternative ways to inhibit PGE2 are warranted. We have investigated the effects of tea extracts and the polyphenols epigallocatechin gallate (EGCG) and quercetin on PGE2 formation, determined by immunoassay, and protein expression, determined by immunoblotting, of cytosolic phospholipase A2 (cPLA2), cyclooxygenase 2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) in human monocytes. Green and black tea extracts, and with a lower potency, Rooibos tea extract, inhibited lipopolysaccharide (LPS) and calcium ionophore-induced PGE2 formation. In addition, all tea extracts inhibited the LPS-induced expression of mPGES-1, and the green and black tea extracts also inhibited, to a lesser extent, COX-2 expression. The tea extracts only marginally reduced cPLA2 expression and had no effect on COX-1 expression. EGCG, present in green and black tea, and quercetin, present in all three teas, also inhibited PGE2 formation and expression of mPGES-1, COX-2 and cPLA2. Cell-based and cell-free assays were also performed to evaluate direct effects on the enzymatic activity of COX and PGE synthases. Mainly, the cell-free assay demonstrated partial inhibition by the tea extracts and polyphenols. However, the inhibition required higher doses compared to the effects demonstrated on protein expression. In conclusion, green and black tea, and to a lesser extent Rooibos tea, are potent inhibitors of PGE2 formation in human monocytes, and mediate their effects by inhibiting the expression of the enzymes responsible for PGE2 formation, especially mPGES-1.
Assuntos
DinoprostonaRESUMO
A total of 80 rooibos tea samples from a range of brands were purchased from various registered retail shops in South Africa. The samples were bought during 2019 winter (40) and summer (40) period which are classified as 6 natural rooibos, 18 herbal rooibos samples, and 16 flavor rooibos samples and subjected for heavy metal analysis such as chromium (Cr), iron (Fe), arsenic (As), cadmium (Cd), and lead (Pb) using inductively coupled plasma mass spectrometer (ICP-MS). Human health risks were determined by estimating the daily intake non-cancer hazard quotient (THQ) and hazard index (HI) via oral exposure to toxic elements based on daily tea consumption. The concentration range of the determined heavy metals in rooibos tea samples were as follows: Cr (0.17-11.98 mg/kg), Fe (31-450 mg/kg), As (ND-0.51 mg/kg), Cd (0.09-0.17 mg/kg), and Pb (0.06-2.73 mg/kg). Cr was found in higher amount when compared to the World Health Organization (WHO) permissive limit (1.3 mg/kg). The concentrations of all studied heavy metals during winter and summer period were compared using two-way Anova, and no significant differences (p = 0.832) were observed for the two seasons. Both the target risk quotient (THQ) and the hazard index (HI) levels in all analyzed tea were well below 1, implying that intake of rooibos tea with analyzed heavy metals should not cause a threat to human health. On the other hand, the continuous intake due to the high concentrations of trace metals such as Cr may pose a serious chronic health risk due to accumulation in body tissues over time. The study, therefore, suggests constant monitoring of these heavy metals in teas in order to limit the risk of exceeding the permissive limits.
Assuntos
Aspalathus , Metais Pesados , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , África do Sul , CháRESUMO
This study aimed to comparatively analyze the volatile flavor of rooibos tea (Aspalathus linearis) obtained by two commonly used flavor extraction methods, simultaneous distillation-extraction (SDE) and steam distillation under reduced pressure (DRP). The tea obtained by the two extraction methods, were analyzed by gas chromatography-mass spectrometry to identify volatile aroma-related compounds. Descriptive sensory analysis of the extracted rooibos tea flavor was carried out by a trained panel (n = 7). Fifty volatile compounds were identified, including 26 and 25 aroma-active compounds by SDE (45.9 µg/g) and DRP (37.5 µg/g), respectively. SDE recovered larger quantities of alcohols, acids, and esters, whereas DRP was useful for analyzing thermally unstable volatile compounds, including various alcohols, aldehydes, and hydrocarbons. Descriptive sensory analysis revealed that ketones and phenolic compounds may be responsible for the sensory attributes woody and grassy green, whereas the aldehydes and acidic compounds may contribute to floral and fruity.
Assuntos
Aspalathus , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Percepção , Chá , Compostos Orgânicos Voláteis/análiseRESUMO
Rooibos is brewed from the medicinal plant Aspalathus linearis. It has a well-established wide spectrum of bio-activity properties, which in part may be attributed to the phenolic antioxidant power. The antioxidant capacity (AOC) of rooibos is related to its total phenolic content (TPC). The relation between TPC and AOC of randomly selected 51 fermented (FR) and 47 unfermented (UFR) rooibos samples was studied after extraction using water and methanol separately. The resulted extracts were assessed using two antioxidant assays, trolox equivalent antioxidant capacity (TEAC) and ferric reducing antioxidant power (FRAP). The results were analyzed using both simple statistical methods and machine learning. The analysis showed different trends of TPC and AOC correlations of FR and UFR samples, depending on the solvent used for extraction. The results of the water extracts showed similar TPC and higher AOC of FR than UFR samples, while the methanolic extracted samples showed higher TPC and AOC of UFR than FR. As a result, the methanolic extracts showed better agreement between TPC and AOC than water extracts. Possible explanations are given for these observed results. Although, the current literature demonstrates direct correlations of the TPC and AOC of rooibos water extracts. This study showed deviation and highlighted the importance of solvent selection and analysis methodology as an important factor in determining the TPC/AOC correlation and subsequently the expectation of the actual health benefits of rooibos herbal tea. In particular, unfermented and fermented samples can be accurately identified on the basis of a combination of assays (any two of TPC, FRAP and TEAC), especially if methanol is the solvent used. Machine learning analysis of assay data provides nearly identical results with classical statistical analytical methods. This is the first report on machine learning analysis and comparison of the TPC and AOC of rooibos herbal tea extracted with methanol and water, and highlights the importance of using methanol as a solvent to evaluate its AOC.
RESUMO
The comparative phytochemicals, antioxidative and antidiabetic activities of Camellia sinensis (black tea) and Aspalathus linearis (rooibos tea) were studied in vitro and ex vivo. Concentrated infusions of the teas showed significant free radical scavenging activities in vitro. They significantly increased the glutathione level, superoxide dismutase and catalase enzyme activities in oxidative hepatic injury, while concomitantly depleting malondialdehyde level. The teas significantly inhibited intestinal glucose absorption and α-amylase activities, and elevated muscle glucose uptake. LCMS phytochemical profiling revealed the presence of hydroxycaffeic acid, l-threonate, caffeine, vanillic acid, n-acetylvaline, and spinacetin 3-glucoside in C. sinensis. While quinolinic acid, coumestrol, phloroglucinol, 8-hydroxyquercetagetin, umbelliferone, and ajoene were identified in A. linearis. These results portray the antioxidant and antidiabetic potencies of both teas, with A. linearis showed better activity compared to C. sinensis. These teas may thus be used as functional foods in the management of diabetes and other oxidative stress related metabolic disorders.
RESUMO
In the present study, the degradation of C-glucosidic dihydrochalcone aspalathin as the major phenolic compound in rooibos (Aspalathus linearis) was investigated. Analyses by gas chromatography-mass spectrometry of aqueous aspalathin-lysine incubations after silylation showed the formation of dihydrocaffeic acid [3-(3,4-dihydroxyphenyl)-propionic acid] under oxidative conditions as a novel degradation product up to 10 mol %. High-performance liquid chromatography analyses revealed the concurrent formation of the dihydrocaffeic acid lysine amide at about 30-fold lower concentrations, which was unequivocally verified by synthesis of an authentic reference standard. The amide was also verified in aspalathin-protein incubations after enzymatic hydrolysis by high-performance liquid chromatography-tandem mass spectrometry analyses. Thus, the covalent interaction of phenolic plant compounds with proteins under mild conditions (ambient temperatures and neutral pH) was confirmed for the first time. Acid and free amide were also quantitated in rooibos teas with significantly higher values in fermented varieties. The mechanism of formation was clarified to be initiated by singlet oxygen and to include a rearrangement-fragmentation mechanism with 1,2,3,5-tetrahydroxybenzene as the counterpart.
Assuntos
Amidas/química , Aspalathus/química , Ácidos Cafeicos/química , Chalconas/química , Lisina/química , Extratos Vegetais/química , Estrutura Molecular , OxirreduçãoRESUMO
Consumption of rooibos (Aspalathus linearis) as herbal tea is growing in popularity worldwide and its health-promoting attributes are mainly ascribed to its phenolic composition, which may be affected by the brewing conditions used. An aspect so far overlooked is the impact of cold brewing vs regular brewing and microwave boiling on the poly(phenolic) profile and in vitro antioxidant capacity of infusions prepared from red ('fermented', oxidized) and green ('unfermented', unoxidized) rooibos, the purpose of the present study. By using an untargeted metabolomics-based approach (UHPLC-QTOF mass spectrometry), 187 phenolic compounds were putatively annotated in both rooibos types, with flavonoids, tyrosols, and phenolic acids the most represented type of phenolic classes. Multivariate statistics (OPLS-DA) highlighted the phenolic classes most affected by the brewing conditions. Similar antioxidant capacities (ORAC and ABTS assays) were observed between cold- and regular-brewed green rooibos and boiled-brewed red rooibos. However, boiling green and red rooibos delivered infusions with the highest antioxidant capacities and total polyphenol content. The polyphenol content strongly correlated with the in vitro antioxidant capacities, especially for flavonoids and phenolic acids. These results contribute to a better understanding of the impact of the preparation method on the potential health benefits of rooibos tea.
RESUMO
Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26⯰C MAT and from 60 to 3113â¯mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3â¯months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.
RESUMO
Tea samples from 17 populations of "wild tea" ecotypes Aspalathus linearis (rooibos tea) and 2 populations of Aspalathus pendula were analyzed. Recent advances in column technology together with high-resolution mass spectrometry were applied to improve resolution, facilitating the identification of several new compounds as well as grouping of the wild tea ecotypes according to their chemical composition. The collisional cross-section data obtained from ion mobility-mass spectrometry is reported for the flavonoids in rooibos for the first time. Enzyme pathways for the synthesis of the unique flavonoids found in rooibos tea are also proposed. A. linearis and A. pendula produce similar combinations of main phenolic compounds, with no diagnostically different discontinuities between populations or species. Northern resprouters (Gifberg and Nieuwoudtville) contain higher phenylpropenoic acid glucoside levels while teas from Wupperthal and surrounding areas were found to contain unique dihydrochalcones (phloridzin and a sieboldin analog), which are reported here for the first time.
Assuntos
Aspalathus/química , Flavonoides/química , Fenóis/química , Extratos Vegetais/química , Cromatografia Líquida , Análise Discriminante , Espectrometria de Massas , Estrutura MolecularRESUMO
While analyzing chromatographic data, it is necessary to preprocess it properly before exploration and/or supervised modeling. To make chromatographic signals comparable, it is crucial to remove the scaling effect, caused by differences in overall sample concentrations. One of the efficient methods of signal scaling is Probabilistic Quotient Normalization (PQN) [1]. However, it can be applied only to data for which the majority of features do not vary systematically among the studied classes of signals. When studying the influence of the traditional "fermentation" (oxidation) process on the concentration of 56 individual peaks detected in rooibos plant material, this assumption is not fulfilled. In this case, the only possible solution is the analysis of pairwise log-ratios, which are not influenced by the scaling constant. To estimate significant features, i.e., peaks differentiating the studied classes of samples (green and fermented rooibos plant material), we propose the application of rPLR (robust pair-wise log-ratios) as proposed by Walach et al. [2]. It allows for fast computation and identification of the significant features in terms of original variables (peaks) which is problematic, while working with the unfolded pair-wise log ratios. As demonstrated, it can be applied to designed data sets and in the case of contaminated data, it allows proper conclusions.
Assuntos
Aspalathus/química , Cromatografia , Estatística como Assunto/métodos , Fermentação , OxirreduçãoRESUMO
The unique characteristics and healthful reputation of caffeine-free rooibos tea (RT) make it an ideal carrier for vitamin D3 supplementation, and a potential base for the addition of Saskatoon berry syrup (SBS), a natural flavor additive. The objective of this study was to determine the effect of vitamin D3 fortification and SBS addition on the flavor profile, consumer acceptability, and antioxidant properties of RT. Six formulations (RT, RT with SBS, RT with SBS and vitamin D3 , RT with vitamin D3 , green tea [GT], and GT with SBS) were evaluated by 12 trained panelists and 114 consumers. The formulations were also assessed for antioxidant capacity, physical characteristics, and untargeted phytochemical content. Sensory results revealed that the mean intensity values for berry and sweet attributes were significantly higher (P < 0.05) while bitter and astringent attributes were significantly lower when SBS was added to RT samples compared to those without syrup. Acceptability of flavor, aftertaste, and overall acceptability were also significantly higher for the RT with SBS. The addition of SBS to RT significantly increased the antioxidant capacities which may increase the related health benefits of RT. SBS contributed several polyphenols, particularly flavonoids, to the tea. Vitamin D3 added to RT formulations did not significantly affect the sensory attributes, acceptability, or antioxidant content. For the development of a functional vitamin D3 fortified iced-tea beverage that can be consumed as part of the daily diet, SBS could be a favorable flavoring additive that may provide additional health benefits.
Assuntos
Antioxidantes/farmacologia , Aspalathus , Colecalciferol/administração & dosagem , Comportamento do Consumidor , Rosaceae/química , Paladar , Chás de Ervas/análise , Antioxidantes/análise , Flavonoides/análise , Flavonoides/farmacologia , Aromatizantes , Manipulação de Alimentos/métodos , Alimentos Fortificados , Frutas/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologiaRESUMO
An ultimate goal of investigations of rooibos plant material subjected to different stages of fermentation is to identify the chemical changes taking place in the phenolic composition, using an untargeted approach and chromatographic fingerprints. Realization of this goal requires, among others, identification of the main components of the plant material involved in chemical reactions during the fermentation process. Quantitative chromatographic data for the compounds for extracts of green, semi-fermented and fermented rooibos form the basis of preliminary study following a targeted approach. The aim is to estimate whether treatment has a significant effect based on all quantified compounds and to identify the compounds, which contribute significantly to it. Analysis of variance is performed using modern multivariate methods such as ANOVA-Simultaneous Component Analysis, ANOVA - Target Projection and regularized MANOVA. This study is the first one in which all three approaches are compared and evaluated. For the data studied, all tree methods reveal the same significance of the fermentation effect on the extract compositions, but they lead to its different interpretation.
Assuntos
Aspalathus/química , Cromatografia/métodos , Fermentação , Chá/química , Análise Multivariada , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/metabolismoRESUMO
Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-ß-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann-Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from mixed CaOx mono- and di-hydrate to monohydrate after ingestion of each tea. Since the latter form has a stronger binding affinity for epithelial cells, this effect is not protective. Analysis of the physicochemical and peroxidative risk factors in CG1 and CG2 did not reveal any evidence of a synergistic effect between the two teas. Paradoxically, baseline risk factors in the habitual JGT control group were significantly raised relative to those in CG1. Our preliminary results suggest that ingestion of RT and JGT does not reduce the risk factors for CaOx stone formation in humans, but these findings need to be tested in further studies involving much larger sample sizes.
Assuntos
Antioxidantes/análise , Antioxidantes/uso terapêutico , Nefrolitíase/epidemiologia , Nefrolitíase/prevenção & controle , Chá/química , Chás de Ervas/análise , Adolescente , Adulto , Fenômenos Químicos , Humanos , Masculino , Oxirredução , Projetos Piloto , Fatores de Risco , Adulto JovemRESUMO
The free radical scavenging activity of Aspalathus linearis (Rooibos tea) and its effect on reactive oxygen species (ROS), catalase (CAT), and superoxide dismutase (SOD) were investigated in two in vitro disease models of cancer and diabetes. Although the antioxidant activity of this tea has been reported in several studies, its effects in disease models of ROS-induced oxidative stress have not been systematically evaluated to date. The oxygen radical absorbance capacity (ORAC) assay was used in this study to quantify the antioxidant capacity of the extract, whereas the ROS scavenging ability in hyperglycemia-induced human umbilical vein endothelial cells (HUVECs) and HeLa cells were investigated. The CAT and SOD assays were also carried out in the two disease models in order to evaluate the effect of the extract in the stimulation of these two enzyme activities. The extract was observed to have reduced ROS in a dose-dependent manner in both HUVECs and HeLa cells. The stimulation of the CAT and SOD enzyme activities were observed to be dose-dependent as well. The high ORAC value of the extract indicated the presence of antioxidant compounds which could directly quench ROS, whereby this mechanism of action could be hypothesized to have been further complemented through the stimulation of CAT and SOD. Overall, the Aspalathus linearis extract was observed to have increased the CAT and SOD activities in two in vitro disease models of cancer and hyperglycemia. Given the correlation between the ORAC values, the increases in CAT and SOD activities and the reduction in ROS in a dose-dependent manner, it could be hypothesized that the extract had a significant therapeutic potential for either the prevention of the onset of the two diseases or their progression because ROS has been identified as their root causes.