Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
IBRO Neurosci Rep ; 17: 235-244, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39286040

RESUMO

Postnatal neurogenesis appears to be highly sensitive to environmental factors, including microwave electromagnetic radiation (MWR). Here, we investigated the impact of MWR during intrauterine development on juvenile and adult neurogenesis in the rostral migratory stream (RMS) and the dentate gyrus of the hippocampus in the rat brain, as well as its effect on animal behavior. Female rats were exposed to MWR at a frequency of 2.45 GHz for 2 hours daily throughout pregnancy. The offspring of irradiated mothers survived to either juvenile age or adulthood. The brains of the rats were subjected to morphological analysis, assessing cell proliferation and death in both neurogenic regions. In the RMS, the differentiation of nitrergic neurons was also investigated. The effect of MWR on behavior was evaluated in rats surviving to adulthood. Prenatal MWR exposure caused significant changes in the number of proliferating and dying cells, depending on the age of the animals and the observed neurogenic region. In addition, MWR attenuated the maturation of nitrergic neurons in the RMS in both juvenile and adult rats. Morphological alterations in neurogenesis were accompanied by changes in animals' behavior. Affected neurogenesis and changes in animal behavior suggest a high sensitivity of the developing brain to MWR.

2.
Methods Cell Biol ; 188: 237-254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880526

RESUMO

The prevalence of central nervous system (CNS) dysfunction as a result of disease or trauma remains a clinically unsolved problem which is raising increased awareness in our aging society. Human Dental Pulp Stem Cells (hDPSCs) are excellent candidates to be used in tissue engineering and regenerative therapies of the CNS due to their neural differentiation ability and lack of tumorigenicity. Accordingly, they have been successfully used in animal models of spinal cord injury, stroke and peripheral neuropathies. The ideal therapy in brain injury should combine strategies aiming to protect the damaged lesion and, at the same time, accelerate brain tissue regeneration, thus promoting fast recovery while minimizing side or long-term effects. The use of bioresorbable nanopatterned poly(lactide-co-ɛ-caprolactone) (PLCL) polymeric scaffolds as hDPCSs carriers can represent an advantage for tissue regeneration. In this chapter, we describe the surgical procedures to implant functionalized bioresorbable scaffolds loaded with hDPSCs to improve the brain lesion microenvironment in an intracranial stab wound injury model severing the rostral migratory stream (RMS) that connects the brain subventricular zone (SVZ) and the olfactory bulb in nude mice. Additionally, we also describe the technical steps after animal sacrifice for histological tissue observation and characterization.


Assuntos
Polpa Dentária , Modelos Animais de Doenças , Camundongos Nus , Células-Tronco , Alicerces Teciduais , Polpa Dentária/citologia , Animais , Humanos , Alicerces Teciduais/química , Camundongos , Células-Tronco/citologia , Transplante de Células-Tronco/métodos , Ferimentos Perfurantes/terapia , Implantes Absorvíveis , Lesões Encefálicas/terapia , Lesões Encefálicas/patologia , Engenharia Tecidual/métodos
3.
Front Bioeng Biotechnol ; 12: 1410717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933539

RESUMO

In the brains of most adult mammals, neural precursor cells (NPCs) from the subventricular zone (SVZ) migrate through the rostral migratory stream (RMS) to replace olfactory bulb interneurons. Following brain injury, published studies have shown that NPCs can divert from the SVZ-RMS-OB route and migrate toward injured brain regions, but the quantity of arriving cells, the lack of survival and terminal differentiation of neuroblasts into neurons, and their limited capacity to re-connect into circuitry are insufficient to promote functional recovery in the absence of therapeutic intervention. Our lab has fabricated a biomimetic tissue-engineered rostral migratory stream (TE-RMS) that replicates some notable structural and functional components of the endogenous rat RMS. Based on the design attributes for the TE-RMS platform, it may serve as a regenerative medicine strategy to facilitate sustained neuronal replacement into an injured brain region or an in vitro tool to investigate cell-cell communication and neuroblast migration. Previous work has demonstrated that the TE-RMS replicates the basic structure, unique nuclear shape, cytoskeletal arrangement, and surface protein expression of the endogenous rat RMS. Here, we developed an enhanced TE-RMS fabrication method in hydrogel microchannels that allowed more robust and high-throughput TE-RMS assembly. We report unique astrocyte behavior, including astrocyte bundling into the TE-RMS, the presence of multiple TE-RMS bundles, and observations of discontinuities in TE-RMS bundles, when microtissues are fabricated in agarose microchannels containing different critical curved or straight geometric features. We also demonstrate that we can harvest NPCs from the SVZ of adult rat brains and that EGFP+ cells migrate in chain formation from SVZ neurospheres through the TE-RMS in vitro. Overall, the TE-RMS can be utilized as an in vitro platform to investigate the pivotal cell-cell signaling mechanisms underlying the synergy of molecular cues involved in immature neuronal migration and differentiation.

4.
BMC Med ; 22(1): 158, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616269

RESUMO

ANKRD11 (ankyrin repeat domain 11) is a chromatin regulator and the only gene associated with KBG syndrome, a rare neurodevelopmental disorder. We have previously shown that Ankrd11 regulates murine embryonic cortical neurogenesis. Here, we show a novel olfactory bulb phenotype in a KBG syndrome mouse model and two diagnosed patients. Conditional knockout of Ankrd11 in murine embryonic neural stem cells leads to aberrant postnatal olfactory bulb development and reduced size due to reduction of the olfactory bulb granule cell layer. We further show that the rostral migratory stream has incomplete migration of neuroblasts, reduced cell proliferation as well as aberrant differentiation of neurons. This leads to reduced neuroblasts and neurons in the olfactory bulb granule cell layer. In vitro, Ankrd11-deficient neural stem cells from the postnatal subventricular zone display reduced migration, proliferation, and neurogenesis. Finally, we describe two clinically and molecularly confirmed KBG syndrome patients with anosmia and olfactory bulb and groove hypo-dysgenesis/agenesis. Our report provides evidence that Ankrd11 is a novel regulator of olfactory bulb development and neuroblast migration. Moreover, our study highlights a novel clinical sign of KBG syndrome linked to ANKRD11 perturbations in mice and humans.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Animais , Camundongos , Fácies , Bulbo Olfatório , Modelos Animais de Doenças
5.
Auris Nasus Larynx ; 51(3): 517-524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522356

RESUMO

OBJECTIVE: Periglomerular and granule cells in the adult mammalian olfactory bulb modulate olfactory signal transmission. These cells originate from the subventricular zone, migrate to the olfactory bulb via the Rostral Migratory Stream (RMS), and differentiate into mature cells within the olfactory bulb throughout postnatal life. While the regulation of neuroblast development is known to be affected by external stimuli, there is a lack of information concerning changes that occur during the recovery process after injury caused by external stimuli. To address this gap in research, the present study conducted histological observations to investigate changes in the olfactory bulb and RMS occurring after the degeneration and regeneration of olfactory neurons. METHODS: To create a model of olfactory neurodegeneration, adult mice were administered methimazole intraperitoneally. Nasal tissue and whole brains were removed 3, 7, 14 and 28 days after methimazole administration, and EdU was administered 2 and 4 h before removal of these tissues to monitor dividing cells in the RMS. Methimazole-untreated mice were used as controls. Olfactory nerve fibers entering the olfactory glomerulus were observed immunohistochemically using anti-olfactory marker protein. In the brain tissue, the entire RMS was observed and the volume and total number of cells in the RMS were measured. In addition, the number of neuroblasts and dividing neuroblasts passing through the RMS were measured using anti-doublecortin and anti-EdU antibodies, respectively. Statistical analysis was performed using the Tukey test. RESULTS: Olfactory epithelium degenerated was observed after methimazole administration, and recovered after 28 days. In the olfactory glomeruli, degeneration of OMP fibers began after methimazole administration, and after day 14, OMP fibers were reduced or absent by day 28, and overall OMP positive fibers were less than 20%. Glomerular volume tended to decrease after methimazole administration and did not appear to recover, even 28 days after recovery of the olfactory epithelium. In the RMS, EdU-positive cells decreased on day 3 and began to increase on day 7. However, they did not recover to the same levels as the control methimazole-untreated mice even after 28 days. CONCLUSION: These results suggest that the division and maturation of neuroblasts migrating from the RMS was suppressed by olfactory nerve degeneration or the disruption of olfactory input.


Assuntos
Movimento Celular , Metimazol , Bulbo Olfatório , Animais , Bulbo Olfatório/patologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/citologia , Metimazol/farmacologia , Camundongos , Antitireóideos/farmacologia , Nervo Olfatório/patologia , Proteína de Marcador Olfatório/metabolismo , Modelos Animais de Doenças , Masculino
6.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697258

RESUMO

Microglia invade the neuroblast migratory corridor of the rostral migratory stream (RMS) early in development. The early postnatal RMS does not yet have the dense astrocyte and vascular scaffold that helps propel forward migrating neuroblasts, which led us to consider whether microglia help regulate conditions permissive to neuroblast migration in the RMS. GFP-labeled microglia in CX3CR-1GFP/+ mice assemble primarily along the outer borders of the RMS during the first postnatal week, where they exhibit predominantly an ameboid morphology and associate with migrating neuroblasts. Microglia ablation for 3 d postnatally does not impact the density of pulse labeled BrdU+ neuroblasts nor the distance migrated by tdTomato electroporated neuroblasts in the RMS. However, microglia wrap DsRed-labeled neuroblasts in the RMS of P7 CX3CR-1GFP/+;DCXDsRed/+ mice and express the markers CD68, CLEC7A, MERTK, and IGF-1, suggesting active regulation in the developing RMS. Microglia depletion for 14 d postnatally further induced an accumulation of CC3+ DCX+ apoptotic neuroblasts in the RMS, a wider RMS and extended patency of the lateral ventricle extension in the olfactory bulb. These findings illustrate the importance of microglia in maintaining a healthy neuroblast population and an environment permissive to neuroblast migration in the early postnatal RMS.


Assuntos
Microglia , Células-Tronco Neurais , Camundongos , Animais , Células-Tronco Neurais/fisiologia , Ventrículos Laterais , Movimento Celular/fisiologia , Bulbo Olfatório/fisiologia
7.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628378

RESUMO

Obesity is one of the biggest and most costly health challenges the modern world encounters. Substantial evidence suggests that the risk of metabolic syndrome or obesity formation may be affected at a very early stage of development, in particular through fetal and/or neonatal overfeeding. Outcomes from epidemiological studies indicate that maternal nutrition during pregnancy and lactation has a profound impact on adult neurogenesis in the offspring. In the present study, an intergenerational dietary model employing overfeeding of experimental mice during prenatal and early postnatal development was applied to acquire mice with various body conditions. We investigated the impact of the maternal high-energy diet during pregnancy and lactation on adult neurogenesis in the olfactory neurogenic region involving the subventricular zone (SVZ) and the rostral migratory stream (RMS) and some behavioral tasks including memory, anxiety and nociception. Our findings show that a maternal high-energy diet administered during pregnancy and lactation modifies proliferation and differentiation, and induced degeneration of cells in the SVZ/RMS of offspring, but only in mice where extreme phenotype, such as significant overweight/adiposity or obesity is manifested. Thereafter, a maternal high-energy diet enhances anxiety-related behavior in offspring regardless of its body condition and impairs learning and memory in offspring with an extreme phenotype.


Assuntos
Filhos Adultos , Lactação , Animais , Dieta/efeitos adversos , Feminino , Humanos , Camundongos , Neurogênese , Obesidade/metabolismo , Fenótipo , Gravidez
8.
Neuroglia ; 3(1): 41-60, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36776937

RESUMO

Neural precursor cells (NPCs) are generated in the subventricular zone (SVZ) and travel through the rostral migratory stream (RMS) to replace olfactory bulb interneurons in the brains of most adult mammals. Following brain injury, SVZ-derived NPCs can divert from the RMS and migrate toward injured brain regions but arrive in numbers too low to promote functional recovery without experimental intervention. Our lab has biofabricated a "living scaffold" that replicates the structural and functional features of the endogenous RMS. This tissue-engineered rostral migratory stream (TE-RMS) is a new regenerative medicine strategy designed to facilitate stable and sustained NPC delivery into neuron-deficient brain regions following brain injury or neurodegenerative disease and an in vitro tool to investigate the mechanisms of neuronal migration and cell-cell communication. We have previously shown that the TE-RMS replicates the basic structure and protein expression of the endogenous RMS and can direct immature neuronal migration in vitro and in vivo. Here, we further describe profound morphological changes that occur following precise physical manipulation and subsequent self-assembly of astrocytes into the TE-RMS, including significant cytoskeletal rearrangement and nuclear elongation. The unique cytoskeletal and nuclear architecture of TE-RMS astrocytes mimics astrocytes in the endogenous rat RMS. Advanced imaging techniques reveal the unique morphology of TE-RMS cells that has yet to be described of astrocytes in vitro. The TE-RMS offers a novel platform to elucidate astrocyte cytoskeletal and nuclear dynamics and their relationship to cell behavior and function.

9.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768936

RESUMO

Neural precursors originating in the subventricular zone (SVZ), the largest neurogenic region of the adult brain, migrate several millimeters along a restricted migratory pathway, the rostral migratory stream (RMS), toward the olfactory bulb (OB), where they differentiate into interneurons and integrate into the local neuronal circuits. Migration of SVZ-derived neuroblasts in the adult brain differs in many aspects from that in the embryonic period. Unlike in that period, postnatally-generated neuroblasts in the SVZ are able to divide during migration along the RMS, as well as they migrate independently of radial glia. The homophilic mode of migration, i.e., using each other to move, is typical for neuroblast movement in the RMS. In addition, it has recently been demonstrated that specifically-arranged blood vessels navigate SVZ-derived neuroblasts to the OB and provide signals which promote migration. Here we review the development of vasculature in the presumptive neurogenic region of the rodent brain during the embryonic period as well as the development of the vascular scaffold guiding neuroblast migration in the postnatal period, and the significance of blood vessel reorganization during the early postnatal period for proper migration of RMS neuroblasts in adulthood.


Assuntos
Encéfalo/irrigação sanguínea , Ventrículos Laterais/fisiologia , Neovascularização Fisiológica/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Bulbo Olfatório/fisiologia , Animais , Vasos Sanguíneos/metabolismo , Encéfalo/embriologia , Movimento Celular/fisiologia , Ventrículos Laterais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurônios/citologia , Neurônios/fisiologia , Bulbo Olfatório/citologia
10.
Biomolecules ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34572528

RESUMO

Disrupted systemic copper (Cu) homeostasis underlies neurodegenerative diseases with early symptoms including olfactory dysfunction. This study investigated the impact of Cu dyshomeostasis on olfactory function, adult neurogenesis, and neurochemical balance. Models of Cu deficiency (CuD) and Cu overload (CuO) were established by feeding adult rats with Cu-restricted diets plus ip. injection of a Cu chelator (ammonium tetrathiomolybdate) and excess Cu, respectively. CuD reduced Cu levels in the olfactory bulb (OB), subventricular zone (SVZ), rostral migratory stream (RMS), and striatum, while CuO increased Cu levels in these areas. The buried pellet test revealed both CuD and CuO prolonged the latency to uncover food. CuD increased neural proliferation and stem cells in the SVZ and newly differentiated neurons in the OB, whereas CuO caused opposite alterations, suggesting a "switch"-type function of Cu in regulating adult neurogenesis. CuO increased GABA in the OB, while both CuD and CuO reduced DOPAC, HVA, 5-HT and the DA turnover rate in olfactory-associated brain regions. Altered mRNA expression of Cu transport and storage proteins in tested brain areas were observed under both conditions. Together, results support an association between systemic Cu dyshomeostasis and olfactory dysfunction. Specifically, altered adult neurogenesis along the SVZ-RMS-OB pathway and neurochemical imbalance could be the factors that may contribute to olfactory dysfunction.


Assuntos
Encéfalo/metabolismo , Encéfalo/fisiopatologia , Cobre/metabolismo , Neurogênese , Bulbo Olfatório/fisiopatologia , Animais , Transporte Biológico , Biomarcadores/metabolismo , Proliferação de Células , Ácido Glutâmico/metabolismo , Homeostase , Masculino , Células-Tronco Neurais , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
11.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299282

RESUMO

Shrews are small animals found in many different habitats. Like other mammals, adult neurogenesis occurs in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus (DG) of the hippocampal formation. We asked whether the number of new generated cells in shrews depends on their brain size. We examined Crocidura russula and Neomys fodiens, weighing 10-22 g, and Crocidura olivieri and Suncus murinus that weigh three times more. We found that the density of proliferated cells in the SVZ was approximately at the same level in all species. These cells migrated from the SVZ through the rostral migratory stream to the olfactory bulb (OB). In this pathway, a low level of neurogenesis occurred in C. olivieri compared to three other species of shrews. In the DG, the rate of adult neurogenesis was regulated differently. Specifically, the lowest density of newly generated neurons was observed in C. russula, which had a substantial number of new neurons in the OB compared with C. olivieri. We suggest that the number of newly generated neurons in an adult shrew's brain is independent of the brain size, and molecular mechanisms of neurogenesis appeared to be different in two neurogenic structures.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Neurônios/fisiologia , Musaranhos/anatomia & histologia , Musaranhos/fisiologia , Animais , Peso Corporal , Movimento Celular/fisiologia , Proliferação de Células , Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Ventrículos Laterais/anatomia & histologia , Ventrículos Laterais/fisiologia , Neurogênese , Bulbo Olfatório/anatomia & histologia , Bulbo Olfatório/fisiologia , Tamanho do Órgão
12.
Front Neuroanat ; 14: 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581729

RESUMO

The coxsackievirus and adenovirus receptor (CAR) is a single-pass transmembrane cell adhesion molecule (CAM). CAR is expressed in numerous mammalian tissues including the brain, heart, lung, and testes. In epithelial cells, CAR functions are typical of the quintessential roles of numerous CAMs. However, in the brain the multiple roles of CAR are poorly understood. To better understand the physiological role of CAR in the adult brain, characterizing its location is a primordial step to advance our knowledge of its functions. In addition, CAR is responsible for the attachment, internalization, and retrograde transport of canine adenovirus type 2 (CAV-2) vectors, which have found a niche in the mapping of neuronal circuits and gene transfer to treat and model neurodegenerative diseases. In this study, we used immunohistochemistry and immunofluorescence to document the global location of CAR in the healthy, young adult mouse brain. Globally, we found that CAR is expressed by maturing and mature neurons in the brain parenchyma and located on the soma and on projections. While CAR occasionally colocalizes with glial fibrillary acidic protein, this overlap was restricted to areas that are associated with adult neurogenesis.

13.
Front Cell Dev Biol ; 8: 113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161758

RESUMO

Neural stem cells in the lateral ganglionic eminence (LGE) generate progenitors that migrate through the rostral migratory stream (RMS) to repopulate olfactory bulb (OB) interneurons, but the regulation of this process is poorly defined. The evolutionarily conserved Notch pathway is essential for neural development and maintenance of neural stem cells. Jagged1, a Notch ligand, is required for stem cell maintenance. In humans, heterozygous mutations in JAGGED1 cause Alagille syndrome, a genetic disorder characterized by complications such as cognitive impairment and reduced number of bile ducts in the liver, suggesting the presence of a JAGGED1 haploinsufficient phenotype. Here, we examine the role of Jagged1 using a conditional loss-of-function allele in the nervous system. We show that heterozygous Jagged1 mice possess a haploinsufficient phenotype that is associated with a reduction in size of the LGE, a reduced proliferative state, and fewer progenitor cells in the LGE and RMS. Moreover, loss of Jagged1 leads to deficits in periglomerular interneurons in the OB. Our results support a dose-dependent role for Jagged1 in maintaining progenitor division within the LGE and RMS.

14.
J Neurosci ; 39(50): 9967-9988, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31685650

RESUMO

New neurons, referred to as neuroblasts, are continuously generated in the ventricular-subventricular zone of the brain throughout an animal's life. These neuroblasts are characterized by their unique potential for proliferation, formation of chain-like cell aggregates, and long-distance and high-speed migration through the rostral migratory stream (RMS) toward the olfactory bulb (OB), where they decelerate and differentiate into mature interneurons. The dynamic changes of ultrastructural features in postnatal-born neuroblasts during migration are not yet fully understood. Here we report the presence of a primary cilium, and its ultrastructural morphology and spatiotemporal dynamics, in migrating neuroblasts in the postnatal RMS and OB. The primary cilium was observed in migrating neuroblasts in the postnatal RMS and OB in male and female mice and zebrafish, and a male rhesus monkey. Inhibition of intraflagellar transport molecules in migrating neuroblasts impaired their ciliogenesis and rostral migration toward the OB. Serial section transmission electron microscopy revealed that each migrating neuroblast possesses either a pair of centrioles or a basal body with an immature or mature primary cilium. Using immunohistochemistry, live imaging, and serial block-face scanning electron microscopy, we demonstrate that the localization and orientation of the primary cilium are altered depending on the mitotic state, saltatory migration, and deceleration of neuroblasts. Together, our results highlight a close mutual relationship between spatiotemporal regulation of the primary cilium and efficient chain migration of neuroblasts in the postnatal brain.SIGNIFICANCE STATEMENT Immature neurons (neuroblasts) generated in the postnatal brain have a mitotic potential and migrate in chain-like cell aggregates toward the olfactory bulb. Here we report that migrating neuroblasts possess a tiny cellular protrusion called a primary cilium. Immunohistochemical studies with zebrafish, mouse, and monkey brains suggest that the presence of the primary cilium in migrating neuroblasts is evolutionarily conserved. Ciliogenesis in migrating neuroblasts in the rostral migratory stream is suppressed during mitosis and promoted after cell cycle exit. Moreover, live imaging and 3D electron microscopy revealed that ciliary localization and orientation change during saltatory movement of neuroblasts. Our results reveal highly organized dynamics in maturation and positioning of the primary cilium during neuroblast migration that underlie saltatory movement of postnatal-born neuroblasts.


Assuntos
Movimento Celular/fisiologia , Cílios/ultraestrutura , Ventrículos Laterais/ultraestrutura , Células-Tronco Neurais/ultraestrutura , Neurônios/ultraestrutura , Bulbo Olfatório/ultraestrutura , Animais , Feminino , Macaca mulatta , Masculino , Camundongos , Peixe-Zebra
15.
Neuroimage ; 199: 153-159, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152841

RESUMO

The subventricular zone (SVZ) is a neurogenic niche in the mammalian brain, giving rise to migratory neural progenitor cells (NPC). In rodents, it is well-established that neurogenesis decreases with aging. MRI-based cell tracking has been used to measure various aspects of neurogenesis and NPC migration in rodents, yet it has not yet been validated in the context of age-related decrease in neurogenesis. This validation is critical to using these MRI techniques to study changes in neurogenesis that arise in diseases prevalent in aging populations and their combination with advanced cellular therapeutic approaches aiming to combat neurodegeneration. As such, in this work we used MRI-based cell tracking to measure endogenous neurogenesis and cell migration from the SVZ along the rostral migratory stream to the olfactory bulb, for 12 days duration, in rats aged 9 weeks to 2 years old. To enable the specific detection of NPCs by MRI, we injected micron sized particles of iron oxide (MPIOs) into the lateral ventricle to endogenously label cells within the SVZ, which then appeared as hypo-intensive spots within MR images. In vivo MRI data showed that the rate of NPC migration was significantly different between all ages examined, with decreases in the distance traveled and migration rate as age progressed. The total number of MPIO-labeled cells within the olfactory bulb on day 12, was significantly decreased when compared across ages in ex vivo high-resolution scans. We also demonstrate for the first-time, provocative preliminary data suggesting age-dependent MPIO uptake within the dentate gyrus (DG) as well. Histology to identify doublecortin-positive NPCs, verified the decrease in cell labeling as a function of aging, for both regions. The dramatic reduction of NPC labeling within the SVZ observed with MRI, validates the sensitivity of MRI-based cell tracking to neurogenic potential and demonstrates the importance of understanding the impact of age on the relationship of NPC and disease.


Assuntos
Envelhecimento , Rastreamento de Células/métodos , Giro Denteado/diagnóstico por imagem , Ventrículos Laterais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Células-Tronco Neurais/fisiologia , Animais , Movimento Celular/fisiologia , Proteína Duplacortina , Compostos Férricos , Ratos , Ratos Endogâmicos F344 , Coloração e Rotulagem
16.
Bull Exp Biol Med ; 166(6): 811-815, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31020581

RESUMO

We assessed changes of olfactory bulbs in rata with 6-hydroxydopamine destruction of the substantia nigra. The expression of marker proteins of immature and differentiated neurons and glia (vimentin, PSA-NCAM, tyrosine hydroxylase, and S100) was analyzed by immunohistochemical and morphometric methods. The number of periglomerular dopamine neurons and astroglia in the olfactory bulbs increased on the side of toxin injection and expression of PSA-NCAM and vimentin increased in the rostral migratory stream. Destruction of the substantia nigra shifted differentiation of neuronal progenitors towards the dopaminergic phenotype and increased their survival in the olfactory bulbs, which can be explained by increased expression of PSA-NCAM.


Assuntos
Neuroglia/patologia , Neurônios/patologia , Bulbo Olfatório/patologia , Doença de Parkinson Secundária/patologia , Substância Negra/patologia , Adaptação Fisiológica , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Humanos , Imuno-Histoquímica , Injeções Intraventriculares , Masculino , Atividade Motora/fisiologia , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Oxidopamina/administração & dosagem , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/metabolismo , Ratos , Ratos Wistar , Proteínas S100/genética , Proteínas S100/metabolismo , Ácidos Siálicos/genética , Ácidos Siálicos/metabolismo , Técnicas Estereotáxicas , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Vimentina/genética , Vimentina/metabolismo
17.
Curr Protoc Neurosci ; 87(1): e65, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30861320

RESUMO

Interneurons in the olfactory bulb are generated from neuronal precursor cells migrating from the anterior subventricular zone (SVZa) throughout the embryonic and postnatal life of mammals. This article describes basic methods for in vivo electroporation to label SVZa cells of both embryonic and postnatal rats. In addition, it describes three methods for tracing SVZa progenitors and following their migration pathway and differentiation, including immunohistochemistry, time-lapse live imaging in slice culture, and time-lapse imaging following transplantation in slice culture. These methods may be applied to all strains of rats and mice, including reporter mice. They may also be combined with methods such as BrdU labeling, tamoxifen injection, and electrophysiology, allowing one to observe proliferation or control gene expression at specific times and for specific neuronal functions. With time-lapse live imaging, details of labeled cells can be studied, including morphology, motility pattern, differentiation, and crosstalk between cells. © 2019 by John Wiley & Sons, Inc.


Assuntos
Encéfalo/fisiologia , Diferenciação Celular/fisiologia , Eletroporação , Imagem com Lapso de Tempo , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Movimento Celular/fisiologia , Eletroporação/métodos , Interneurônios/fisiologia , Camundongos , Neurônios/fisiologia , Ratos , Células-Tronco/citologia , Imagem com Lapso de Tempo/métodos
18.
J Bioenerg Biomembr ; 51(1): 53-63, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30421031

RESUMO

The critical period concept has been one of the most transcendent in science, education, and society forming the basis of our fixation on 'quality' of childhood experiences. The neural basis of this process has been revealed in developmental studies of visual, auditory and somatosensory maps and their enduring modification through manipulations of experience early in life. Olfaction, too, possesses a number of phenomena that share key characteristics with classical critical periods like sensitive temporal windows and experience dependence. In this review, we analyze the candidate critical period-like phenomena in olfaction and find them disanalogous to classical critical periods in other sensory systems in several important ways. This leads us to speculate as to why olfaction may be alone among exteroceptive systems in lacking classical critical periods and how life-long neurogenesis of olfactory sensory neurons and bulbar interneurons-a neotenic vestige-- relates to the structure and function of the mammalian olfactory system.


Assuntos
Neurogênese , Olfato/fisiologia , Animais , Humanos , Interneurônios , Bulbo Olfatório/crescimento & desenvolvimento , Neurônios Receptores Olfatórios
19.
Brain Struct Funct ; 224(1): 373-386, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30341743

RESUMO

We demonstrate the impact of a disrupted molecular clock in Bmal1-deficient (Bmal1-/-) mice on migration of neural progenitor cells (NPCs). Proliferation of NPCs in rostral migratory stream (RMS) was reduced in Bmal1-/- mice, consistent with our earlier studies on adult neurogenesis in hippocampus. However, a significantly higher number of NPCs from Bmal1-/- mice reached the olfactory bulb as compared to wild-type littermates (Bmal1+/+ mice), indicating a higher migration velocity in Bmal1-/- mice. In isolated NPCs from Bmal1-/- mice, not only migration velocity and expression pattern of genes involved in detoxification of reactive oxygen species were affected, but also RNA oxidation of catalase was increased and catalase protein levels were decreased. Bmal1+/+ migration phenotype could be restored by treatment with catalase, while treatment of NPCs from Bmal1+/+ mice with hydrogen peroxide mimicked Bmal1-/- migration phenotype. Thus, we conclude that Bmal1 deficiency affects NPC migration as a consequence of dysregulated detoxification of reactive oxygen species.


Assuntos
Fatores de Transcrição ARNTL/deficiência , Movimento Celular , Células-Tronco Neurais/metabolismo , Neurogênese , Bulbo Olfatório/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Catalase/metabolismo , Células Cultivadas , Cofilina 1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bulbo Olfatório/citologia , Estresse Oxidativo , Fenótipo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Tempo
20.
IBRO Rep ; 5: 43-53, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30211337

RESUMO

The Ccdc66-deficient (Ccdc66 -/-) mouse model exhibits slow progressive retinal degeneration. It is unclear whether CCDC66 protein also plays a role in the wildtype (WT; Ccdc66 +/+) mouse brain and whether the lack of Ccdc66 gene expression in the Ccdc66 -/- mouse brain may result in morphological and behavioral alterations. CCDC66 protein expression in different brain regions of the adult WT mouse and in whole brain during postnatal development was quantified by SDS-PAGE and Western blot. Ccdc66 reporter gene expression was visualized by X-gal staining. Selected brain regions were further analyzed by light and electron microscopy. In order to correlate anatomical with behavioral data, an olfactory habituation/dishabituation test was performed. CCDC66 protein was expressed throughout the early postnatal development in the WT mouse brain. In adult mice, the main olfactory bulb exhibited high CCDC66 protein levels comparable to the expression in the retina. Additionally, the Ccdc66 -/- mouse brain showed robust Ccdc66 reporter gene expression especially in adult olfactory bulb glomeruli, the olfactory nerve layer and the olfactory epithelium. Degeneration was detected in the Ccdc66 -/- olfactory bulb glomeruli at advanced age. This degeneration was also reflected in behavioral alterations; compared to the WT, Ccdc66 -/- mice spent significantly less time sniffing at the initial presentation of unknown, neutral odors and barely responded to social odors. Ccdc66 -/- mice develop substantial olfactory nerve fiber degeneration and alteration of olfaction-related behavior at advanced age. Thus, the Ccdc66 -/- mouse model for retinal degeneration adds the possibility to study mechanisms of central nervous system degeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA