Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.095
Filtrar
1.
Anim Nutr ; 18: 433-440, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39309971

RESUMO

Pogostemon cablin essential oil (PEO), extracted from P. cablin, has anti-oxidant, anti-inflammatory, and anti-stress properties, as well as the ability to improve gastrointestinal digestion. This study aims to evaluate the effects of PEO on the performance, rumen epithelial morphology, and barrier function in heat-stressed beef cattle. Thirty-six male Jingjiang cattle at 18 months old were randomly assigned into four groups and fed a diet containing PEO at 0 (control), 50, 100, or 150 mg/kg in the feed concentrate (n = 9). All experimental cattle were fed under high temperature and humidity in summer for 60 days. The results indicated that 50 mg/kg of PEO treatment enhanced the average daily gain of beef cattle compared with the control group (P = 0.032). All PEO treatments reduced the diamine oxidase activity (P = 0.004) and malondialdehyde content (P = 0.008) in serum. In addition, the content of 70 kDa heat shock protein in the 100 mg/kg group was increased, and the activity of glutathione peroxidase and total antioxidant capacity in both 100 mg/kg and 150 mg/kg groups were enhanced compared to the control group (P < 0.05). More importantly, PEO treatment with 50 mg/kg enhanced the mRNA relative expressions of occludin in ruminal epithelia but decreased the mRNA relative expressions of c-Jun N-terminal kinase, P38 mitogen-activated protein kinases, caspase-3, Beclin1 (P < 0.05), and extremely significant declined the mRNA relative expressions of extracellular regulated protein kinases and ubiquitin-binding protein in contrast to the control group (P < 0.01). These findings indicated that dietary PEO supplementation might be favorable to improve growth performance and repairing damaged rumen epithelium of heat-stressed cattle by down-regulating the mitogen-activated protein kinase signaling pathway.

3.
Front Microbiol ; 15: 1445223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314883

RESUMO

The growth rate of young ruminants has been associated with production performance in later life, with recent studies highlighting the importance of rumen microbes in supporting the health and growth of ruminants. However, the specific role of rumen epithelium bacteria and microbiota-host interactions in influencing the early life growth rate of ruminants remains poorly understood. In this study, we investigated the rumen fermentation pattern, microbiota characteristics, and global gene expression profiles of the rumen epithelium in 6-month-old goats with varying growth rates. Our results showed that goats with high average daily gain (HADG) exhibited higher rumen propionate concentrations. Goats with low average daily gain (LADG) had the higher relative abundances of rumen epithelium bacteria genera U29-B03 and Quinella, while exhibiting a lower relative abundance of Lachnospiraceae UCG-009. In the rumen fluid, the relative abundances of bacteria genus Alloprevotella were lower and Desulfovibrio were higher in LADG goats compared to HADG goats. Additionally, the relative abundance of fungal genus Symmetrospora was lower in LADG goats compared to HADG goats. Transcriptome analysis showed that 415 genes were differentially expressed between LADG and HADG goats, which were enriched in functions related to cell junction and cell adhesion, etc. Correlation analysis revealed that rumen epithelium bacteria genera UCG-005 and Candidatus Saccharimonas were negatively associated, while Lachnospiraceae NK3A20 group and Oscillospiraceae NK4A214 group were positively associated with average daily gain (ADG) and genes related to barrier function. The rumen fluid bacteria genus Alloprevotella was positively correlated, while Desulfovibrio was negatively correlated with rumen propionate and ammoniacal nitrogen (NH3-N) concentrations, as well as genes related to barrier function and short chain fatty acids (SCFAs) transport. In summary, our study reveals that the higher ruminal fermentation efficiency, improved rumen epithelial barrier functions, and enhanced SCFAs transport in HADG goats could be attributed to the rumen microbiota, particularly the rumen epithelium bacteria, such as Lachnospiraceae and Oscillospiraceae NK4A214 group.

4.
J Anim Sci ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320146

RESUMO

The objectives of this study were to evaluate the levels of supplemental salt on low-quality forage intake, water intake, dry matter digestibility, and rumen fermentation. Six ruminally cannulated, Angus crossbred heifers (14 mo of age; 449 kg ± 24 kg BW) were used in a dual 3 × 3 Latin square design. The heifers were housed in individual stalls with two animals assigned to each treatment per period. Salt treatments were mixed into a protein supplement of 50% cracked corn and 50% soybean meal and fed at 0.3% of shrunk BW. Salt treatments consisted of: 1) control, no salt (CON), 2) 0.05% of BW salt (LOW), and 3) 0.1% of BW salt (HIGH). Chopped, low-quality (CP = 7.4%; NDF = 64.2%), grass hay was used as the base ration and was provided daily at 120% of the average daily intake of the previous 3 days. Each period included a 14-day diet adaptation, 6 days of sample collection, 1 day collection of rumen fluid samples for ruminal and microbial profiles. Individual forage dry matter intake, water intake, and dry matter digestibility were measured during the 6-day collection period. Rumen pH, ammonia levels, and VFA concentrations were measured during the 1-day ruminal profile. Rumen DM and liquid fill were determined with a 5-hour post feeding rumen evacuation. Supplemental salt had no influence on forage intake (P = 0.19) expressed on a kg/day basis yet tended to decrease linearly (P = 0.06) with increasing levels of salt when expressed on a grams/kg body weight basis. Dry matter digestibility was not influenced by salt levels (P > 0.05), but DM fill tended to increase linearly with increasing salt levels (P = 0.06). Water intake and liquid fill, however, increased linearly with increasing level of salt (P < 0.01) with an 18.9% increase in water intake and 17.0% increase in liquid fill compared to control animals. Ruminal pH and ammonia levels both decreased linearly with increasing salt (P < 0.01). Acetate concentration and acetate: propionate ratio increased linearly with increasing levels of salt (P < 0.01). In contrast, isobutyrate and butyrate concentrations decreased linearly with increasing levels of salt (P < 0.01). Our research suggests that increasing levels of salt tends to influence dry matter intake, DM fill, liquid kinetics, and rumen fermentation characteristics. Results from this research provides additional information on how salt-limited supplements may impact beef cattle consuming low-quality forage diets.

5.
Insects ; 15(9)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39336698

RESUMO

Adult house flies (Musca domestica L.) inhabiting dairy farms not only are nuisance pests but also harbor and disseminate bacteria. We examined the bacterial community composition, diversity, environmental sources, and prevalence in individual adult female house flies and cattle manure samples collected monthly from Florida, North Carolina, and Tennessee dairy farms between May and August 2021. Individual house flies carried diverse bacterial communities, encompassing all bacterial taxa (100%) identified across manure samples, and additional species likely acquired from the animals. Bacterial community assemblage in house flies and manure samples within farms varied by month. Some taxa were differentially associated with either house flies (Corynebacterium, Acinetobacter, and Staphylococcus) or manure samples (Treponema, Succinivibrio, and Clostridia). House fly bacterial communities mostly contained specialist species originating from manure, with several taxa (Escherichia, Corynebacterium, Turicibacter) being potential pathogens of livestock and humans. These findings further support the role of house flies as carriers of cattle-associated bacteria, including pathogens, and their potential for disseminating these microbes among cattle and to neighboring environments. Since their bacterial communities provide a snapshot of their surrounding environment, house flies also serve as effective sentinels in xenosurveillance strategies.

6.
J Dairy Sci ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343216

RESUMO

Malate, a precursor in the ruminal propionate production pathway, competes with methanogenesis for metabolic hydrogen, offering a way to reduce ruminal methane (CH4) production in ruminants. However, cost considerations hinder widespread use of malate in ruminant diets. An alternative approach involves utilizing transient malate levels generated during seed germination via the glyoxylate cycle. This study investigated the methane-mitigating potential of malate-containing hydroponic fodder. Fodder samples with peak malate concentrations from alfalfa, forage pea, Italian ryegrass, rye, soybean, triticale, and wheat during germination were subjected to in vitro rumen fermentation using the Hohenheim gas test. The basal diet of in vitro fermentation comprised 40% grass silage, 40% maize silage, 15% hay, and 5% concentrate on a dry matter basis, with nutritional characteristics including 42.1% neutral detergent fiber (NDF), 25.0% acid detergent fiber, 14.0% starch, 12.7% crude protein, and 3.5% ether extract (EE), on a dry matter basis. Experimental treatments were fodder inclusion involved replacing 20% of the basal diet (20R), and additionally, 100% replacement of the silages with alfalfa d 10 and rye d 9 (SR), the 2 high-malate fodders. Reductions in CH4 production were observed with soybean (20R, 6.7% reduction), alfalfa (20R, 6.6% reduction), and increased with rye (20R, 6.3% increase). In the setup replacing silages with high-malate fodders (SR), alfalfa decreased CH4 production (17.7%) but increased ammonia (174%), while rye increased CH4 production (35.8%). Organic matter digestibility increased with SR rye (12.6%). Marginal effects of dietary variables were analyzed in a Generalized Additive Model. A negative relationship between dietary malate content and CH4 production was observed, whereas dietary NDF and starch content were positive correlated with CH4 production. In conclusion, malate within the hydroponic fodder could potentially reduce CH4 emissions in ruminants. However, achieving sufficient efficacy requires high malate content. Additionally, use of hydroponic fodder may increase the risk of nitrogen emissions. Animal studies are required for further investigation.

7.
Microorganisms ; 12(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39338499

RESUMO

The aim of this experiment is to explore the effect of sodium sulfate (Na2SO4) on methane reduction in the rumen, and its impact on anaerobic methane-oxidizing archaea (ANME). Using mixed rumen fluid from four Angus cattle fistulas, this study conducted an in vitro fermentation. Adding Na2SO4 to the fermentation substrate resulted in sulfur concentrations in the substrate of 0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6%, 1.8%, 2.0%, 2.2%, and 2.4%. The gas production rate and methane yield were measured using an in vitro gas production method. Subsequently, the fermentation fluid was collected to determine the fermentation parameters. The presence of ANME in the fermentation broth, as well as the relationship between the number of bacteria, archaea, sulfate reducing bacteria (SRB), ANME, and the amount of Na2SO4 added to the substrate, were measured using qPCR. The results showed that: (1) the addition of Na2SO4 could significantly reduce CH4 production and was negatively correlated with CO2 production; (2) ANME-1 and ANME-2c did exist in the fermentation broth; (3) the total number of archaea, SRB, ANME-1, and ANME-2c increased with the elevation of Na2SO4. The above results indicated that Na2SO4 could mitigate methane production via sulfate-dependent anaerobic methane oxidation (S-DAMO) in the rumen. In the future management of beef cattle, including sodium sulfate in their diet can stimulate S-DAMO activity, thereby promoting a reduction in methane emissions.

8.
Microorganisms ; 12(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39338541

RESUMO

To investigate the effect of 5-aminolevulinic acid (5-ALA) on in vitro rumen gas production, fermentation characteristics, and bacterial community profiles, five levels of 5-ALA (0, 100, 500, 1000, and 5000 mg/kg DM) were supplemented into a total mixed ration (concentrate/forage = 40:60) as substrate in an in vitro experiment. Results showed that as the supplementation level of 5-ALA increased, asymptotic gas production (b) decreased linearly and quadratically (p < 0.01) while the dry matter degradation rate increased quadratically (p < 0.01). Meanwhile, the propionate concentration of 72 h incubation fluid increased linearly (p = 0.03) and pH value increased linearly and quadratically (p < 0.01), while the concentrations of butyrate, isobutyrate, valerate, isovalerate, and NH3-N and the ratio of acetate/propionate (A/P) decreased linearly and quadratically (p < 0.05). There was no significant difference in any alpha diversity indices of bacterial communities among the various 5-ALA levels (p < 0.05). PCoA and PERMANOVA analysis revealed that the bacterial profiles showed a statistical difference between the treatment 5-ALA at 1000 mg/kg DM and the other levels except for 5000 mg/kg DM (p < 0.05). Taxonomic classification revealed a total of 18 and 173 bacterial taxa at the phylum and genus level with relative abundances higher than 0.01% in at least half of the samples, respectively. LEfse analysis revealed that 19 bacterial taxa were affected by 5-ALA levels. Correlation analysis showed that Actinobacteriota was positively correlated with the gas production parameter b, the ratio of A/P, and the concentration of butyrate, isovalerate, and NH3-N (p < 0.05) and negatively correlated with pH (p < 0.05). WPS-2 exhibited a negative correlation with the gas production parameter b, the ratio of A/P, and the concentration of butyrate, valerate, isobutyrate, isovalerate, and NH3-N (p < 0.05), along with a weaker positive correlation with pH (p = 0.04). The Bacteroidales BS11 gut group was negatively correlated with the concentration of propionate but positively correlated with gas production parameter b and the concentration of butyrate and NH3-N (p < 0.05). The Lachnospiraceae NK3A20 group was found to have a positive correlation with gas production parameter b, the ratio of A/P, and the concentration of butyrate, isobutyrate, isovalerate, valerate, total VFA, and NH3-N (p < 0.05), but a highly negative correlation with pH (p < 0.01). Differential metabolic pathways analysis suggested that metabolic pathways related to crude protein utilization, such as L-glutamate degradation VIII (to propanoate), L-tryptophan degradation IX, and urea cycle, increased with 5-ALA levels. In summary, including 5-ALA in the diet might improve energy and protein utilization by reducing the abundance of Actinobacteriota, the Bacteroidales BS11 gut group, the Lachnospiraceae NK3A20 group, and certain pathogenic bacteria and increasing the abundance of WPS-2.

9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39252598

RESUMO

Observed improvements in animal and sward performance, coupled with a desire for more sustainable pasture-based feeding systems, has triggered a surge in the implementation of more botanically diverse pastures. However, thus far, there has been limited research investigating the effects of botanically diverse sward types on enteric methane (CH4) or nitrogen (N) excretion, alongside the ruminal microbiota and fermentation profile, in sheep. Hence, this study investigates the effect of sward type on CH4 production and N excretion, in addition to assessing the rumen microbiome, volatile fatty acid proportions, and ammonia nitrogen (NH3-N) concentration in sheep. A 5 × 5 Latin square design experiment was implemented to investigate 5 dietary treatments; perennial ryegrass (Lolium perenne L.; PRG) only or PRG plus white clover (Trifolium repens L.; PRG + WC), red clover (Trifolium pratense L.; PRG + RC), chicory (Chicorium intybus L.; PRG + Chic) or plantain (Plantago lanceolata L.; PRG + Plan). Diets were mixed at a ratio of 75% PRG and 25% of the respective companion forage and 100% PRG for the PRG treatment, on a dry matter basis. Twenty castrated male sheep were housed in metabolism crates across 5 feeding periods. Methane measurements were acquired utilizing portable accumulation chambers. Rumen fluid was harvested using a transoesophageal sampling device. Microbial rumen DNA was extracted and subjected to 16S rRNA amplicon sequencing and fermentation analysis. Data were analyzed using PROC MIXED in SAS. Results show that animals consuming PRG + WC ranked lower for CH4 production (g/d) than sheep offered PRG, PRG + Chic or PRG + Plan (P < 0.01) while the addition of any companion forage ranked CH4 yield (g/kg dry matter intake (DMI)) lower (P < 0.001) than PRG. There was a moderate positive correlation between DMI and CH4 (g/d; r = 0.51). Ruminal NH3-N was lowest in animals consuming the PRG diet (P < 0.01). There was a greater abundance of Methanobrevibacter and reduced abundance of Methanosphaera (P < 0.001) in sheep offered PRG, compared with any binary sward. On average, herb diets (PRG + Chic or PRG + Plan) reduced the urinary nitrogen concentration of sheep by 34% in comparison to legume diets (PRG + WC or PRG + RC) and 13% relative to the PRG diet (P < 0.001). Sheep offered PRG + Chic had a greater dietary nitrogen use efficiency than PRG + RC (P < 0.05). This study demonstrates the potential for sward type to influence rumen function and the microbial community, along with CH4 and N output from sheep.


Mitigating greenhouse gas emissions from ruminants fed forage diets will reduce the carbon footprint of livestock production and the agricultural sector globally, thereby improving the overall environmental sustainability of ruminant production. In the current study, sheep housed in metabolism crates were offered 5 differing zero-grazed sward types. Methane production and methane yield from animals offered diets containing white clover ranked 14% and 27% lower, respectively, in comparison to the perennial ryegrass monoculture. The inclusion of herbs (chicory or plantain) led to an average reduction of 13% and 34% in urinary nitrogen concentration when compared to perennial ryegrass or perennial ryegrass and legume (white clover or red clover) treatments, respectively. Results from the current study support the implementation of binary sward mixtures (perennial ryegrass plus white clover, red clover, chicory, or plantain) as a viable strategy for mitigating methane emissions and nitrogen excretion from pasture-based sheep production systems.


Assuntos
Ração Animal , Dieta , Microbioma Gastrointestinal , Lolium , Metano , Nitrogênio , Rúmen , Animais , Metano/metabolismo , Rúmen/microbiologia , Rúmen/metabolismo , Nitrogênio/metabolismo , Ovinos/fisiologia , Ovinos/microbiologia , Dieta/veterinária , Ração Animal/análise , Masculino , Fermentação , Trifolium , Ácidos Graxos Voláteis/metabolismo
10.
Trop Anim Health Prod ; 56(7): 255, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240410

RESUMO

This study aimed to evaluate the impact of supplementing sodium bicarbonate or a commercial blend of buffering agents (BBA) comprising calcareous calcitic, magnesium oxide, calcareous algae, and sodium bicarbonate on the productive, behavioral and metabolic parameters of Holstein cows fed starchy diets. Over a 60-day trial period, thirty-six multiparous cows with an average milk yield of 38.84 ± 9.24 kg/day and 63.74 ± 18.63 days in milk (DIM), were randomly divided into two groups. The control group (n = 18) received a supplementation of 1.1% dry matter (DM) of sodium bicarbonate (Raudi®, Totalmix, Brazil), while the BBA group (n = 18) was administered with 0.5% DM of a blend of buffering agents (Equalizer®, Nutron/Cargill, Brazil). The mean values of ruminal pH (control 6.80 ± 0.06 and BBA 6.77 ± 0.06; P > 0.05) and volatile fatty acid (VFA) production (control: acetate 62.63 ± 1.29%, propionate 22.99 ± 1.07%, butyrate 14.30 ± 0.52%; BBA: acetate 63.07 ± 1.32%, propionate 23.47 ± 1.10%, butyrate 13.70 ± 0.57%), were similar (P > 0,05) between the two groups. The value of faecal pH was higher (P < 0.05) in the BBA group (6.25 ± 0.02) than the control group (6.12 ± 0.02). Animals treated with BBA exhibited lower (P < 0,05) dry matter intake (DMI) (24.75 ± 0.64 kg/day), higher feed efficiency (FE) (1.64 ± 0.03), and reduced feeding frequency (52.89 ± 3.73 n°/day) than the control group (DMI, 26.75 ± 0.62 kg/day; FE, 1.50 ± 0.03; feeding frequency, 66.07 ± 3.64 n°/day). Milk production remained similar across both groups (control, 39.11 ± 0.92 kg/day and BBA, 39.87 ± 0.92 kg/day; P > 0.05). Notably, the control group displayed a higher (P < 0,05) concentration of milk protein (1.21 ± 0.05 kg/day) than the BBA (1.18 ± 0.05 kg/day) group. The study concluded that both treatments effectively buffered the rumen and mitigated the risk of ruminal acidosis. Moreover, the higher faecal pH in the BBA-treated group suggests potential intestinal action attributable to the synergistic effects of diverse additives with buffering properties. Despite a reduced DMI, BBA-treated animals exhibited improved FE.


Assuntos
Ração Animal , Dieta , Lactação , Rúmen , Animais , Bovinos/fisiologia , Feminino , Lactação/efeitos dos fármacos , Dieta/veterinária , Rúmen/metabolismo , Rúmen/efeitos dos fármacos , Ração Animal/análise , Suplementos Nutricionais/análise , Leite/química , Soluções Tampão , Bicarbonato de Sódio/administração & dosagem , Bicarbonato de Sódio/farmacologia , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Distribuição Aleatória , Concentração de Íons de Hidrogênio , Comportamento Animal/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Brasil
11.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273219

RESUMO

The economic significance of ruminants in agriculture underscores the need for advanced research methodologies to enhance their traits. This review aims to elucidate the transformative role of pan-omics technologies in ruminant research, focusing on their application in uncovering the genetic mechanisms underlying complex traits such as growth, reproduction, production performance, and rumen function. Pan-omics analysis not only helps in identifying key genes and their regulatory networks associated with important economic traits but also reveals the impact of environmental factors on trait expression. By integrating genomics, epigenomics, transcriptomics, metabolomics, and microbiomics, pan-omics enables a comprehensive analysis of the interplay between genetics and environmental factors, offering a holistic understanding of trait expression. We explore specific examples of economic traits where these technologies have been pivotal, highlighting key genes and regulatory networks identified through pan-omics approaches. Additionally, we trace the historical evolution of each omics field, detailing their progression from foundational discoveries to high-throughput platforms. This review provides a critical synthesis of recent advancements, offering new insights and practical recommendations for the application of pan-omics in the ruminant industry. The broader implications for modern animal husbandry are discussed, emphasizing the potential for these technologies to drive sustainable improvements in ruminant production systems.


Assuntos
Genômica , Metabolômica , Ruminantes , Animais , Ruminantes/genética , Genômica/métodos , Metabolômica/métodos , Epigenômica/métodos , Criação de Animais Domésticos/métodos , Criação de Animais Domésticos/economia , Multiômica
12.
Vet Sci ; 11(9)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39330774

RESUMO

Subacute ruminal acidosis (SARA) is a prevalent metabolic disorder in highly productive dairy cows that results in serious issues, including hoof lamellar injuries. This study aimed to investigate the efficacy of a carbonate buffer mixture (CBM) in preventing hoof lamella injury in dairy goats, a species also susceptible to SARA due to similar feeding practices over a 17-week period. Twenty-four healthy dairy goats were randomly assigned to three groups: control, SARA, and CBM groups. The control group received a standardized diet, whereas the SARA and CBM groups were subjected to a high-grain feeding regimen to induce SARA. The CBM group received a daily supplement of 10 g CBM mixed with their diet. Clinical assessments, including body temperature, rumen pH, inflammatory markers, matrix metalloproteinases (MMPs), and hoof lamellar injuries, were monitored throughout the study. The results showed that the CBM group maintained a more stable rumen pH and had lower levels of inflammatory markers than the SARA group did. The incidence of hoof lamellar injury was slightly lower in the CBM group. These findings suggest that long-term CBM supplementation may mitigate SARA-associated hoof lamella injury in dairy goats by regulating the rumen environment, fostering the growth of healthy bacterial communities, and by reducing the production of harmful metabolites. The use of CBM as a dietary supplement may have significant implications in improving the health, welfare, and productivity of dairy animals.

13.
Zoo Biol ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321035

RESUMO

Hand-reared animals are invaluable and irreplaceable in studies of wildlife nutrition. Hand-rearing protocols provide insights into dietary and training programs, but less information is available on disease management. In young ruminants, thiamin (Vitamin B1) deficiency is a particularly important disease that is treatable early in the disease process, but otherwise can be fatal. In this husbandry report, we describe a case of suspected thiamin deficiency in a hand-reared calf (Rangifer tarandus granti) that resulted in clinical signs of polioencephalomalacia and persisted for > 3 months. We attempted treatment with thiamin injections; injections resolved clinical signs of disease, but clinical signs of disease returned once injections stopped. After > 2 months of thiamin injections, the caribou calf received a rumen transfaunation from a fistulated moose (Alces alces) housed at the same facility. Following rumen transfaunation, we did not observe signs of thiamin deficiency. The calf outgrew other females in the cohort initially and shows no long-term effects of thiamin deficiency or polioencephalomalacia. We recommend rumen transfaunation when thiamin deficiency is suspected and does not resolve with thiamin injections alone. We also recommend heterospecific donors if conspecific donors are not available.

14.
Front Vet Sci ; 11: 1416695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323873

RESUMO

Several medium chain fatty acids and different chemical forms of these acids were evaluated in vitro as treatments of aerobically-exposed corn silage against spoilage and pathogenic microbes and for effects on rumen fermentation. Treatments were control (no additive), myristate (MY), laurate (LA), monolaurin (MLA), methyl ester laurate (MELA), a blend of mono-, di- and triglycerides of laurate (BLA), and monocaprylate (MC). After 24 h of aerobic incubation (37°C), yeast and mold growth were not influenced (P > 0.05) by treatments, while the net growth of lactic acid bacteria was decreased, albeit slightly, compared to that by untreated controls (P < 0.01) by all treatments of the air-exposed corn silage. Compared with controls, wild-type enterococci were decreased (P < 0.01) in MLA, MELA, and BLA. Staphylococcus aureus was reduced (P < 0.01) with MLA, MELA, BLA, and MC. Total aerobes showed reductions (P < 0.01) with MLA, BLA, and MC. Listeria monocytogenes numbers were reduced (P < 0.01) with MELA. Anaerobic incubation (24 h; 39°C) of ruminal fluid (10 mL) with 0.2 g air-exposed and MCFA-treated corn silage revealed higher hydrogen accumulations (P < 0.01) with MLA and MC over the control treatment. Methane was decreased (P < 0.01) solely by MLA. There was an increase (P < 0.01) of acetate with MELA and MC; of propionate with MELA or by BLA; and of butyrate with MLA, MELA, BLA, and MC. Total VFA, hexose fermented, and ammonia were increased (P < 0.01) with MELA, BLA, and MC. The acetate:propionate ratio was increased (P < 0.01) with MC. The results showed that treatment of air-exposed corn silage with esterified MCFA had no effect on yeasts and molds but prevented propagation or reduced populations of some unwanted and potentially desirable bacteria. Modest methane reduction was seen during in vitro incubation of rumen fluid suspensions with MLA-treated silage and ammonia accumulations were increased in esterified MCFA-treated silage. Little, if any, other detrimental effects on beneficial ruminal fermentation characteristics were observed.

15.
Anim Sci J ; 95(1): e14000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39340206

RESUMO

The objectives of this study were to evaluate the nutritional characteristics of bakery by-products (castella, pancake, baumkuchen) and their effect on rumen fermentation in vitro as compared with steam-flaked corn and barley as human-edible grains. The fermentation pattern of sugar and starch as pure components was also investigated. Additionally, rumen pH was evaluated using a low-capacity buffer. Bakery by-products contained high sugar (212-590 g/kg DM) and starch (262-545 g/kg DM). Castella exhibited the highest sugar content, whereas pancake and baumkuchen were rich in starch and ether extract within bakery by-products, respectively. The gas production rate at the early phase of incubation was higher in bakery by-products than in grains, and the highest in castella among all feeds. Bakery by-products produced higher total organic acids and propionate than grains. Bakery by-products also exhibited a lower rumen pH than grains during twenty-four hours of incubation with a low-capacity buffer. As pure components, sucrose showed a higher gas production rate and lower pH than starch. Overall, compared with grains, bakery by-products have the potential not only to supply more energy to ruminants but also decrease rumen pH because sugar and starch in bakery by-products ferment rapidly and produce higher organic acids in the rumen.


Assuntos
Ração Animal , Fermentação , Rúmen , Amido , Rúmen/metabolismo , Animais , Amido/metabolismo , Amido/análise , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Grão Comestível/química , Zea mays/química , Fenômenos Fisiológicos da Nutrição Animal , Gases/metabolismo , Propionatos/metabolismo , Propionatos/análise , Bovinos/metabolismo , Açúcares/análise , Açúcares/metabolismo
16.
Parasit Vectors ; 17(1): 398, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300583

RESUMO

BACKGROUND: Infections with (tricho-)strongyles, Dictyocaulus viviparus or Fasciola hepatica have been shown to reduce milk production in dairy cows. However, the current published studies focused on one single helminth infection by neglecting helminth co-infections and their possible (additive) effects on host performance. Hence, for the first time, we investigated differences in the impact of patent helminth co-infections versus mono-infections on milk production parameters in individual cows. METHODS: A total of 1583 dairy cows from 27 herds were included in this study. Faecal samples were examined in 2015 and 2021/2022 to determine the number of eggs/larvae per gram faeces for (tricho-)strongyles, D. viviparus, F. hepatica and rumen flukes. The cows were classified as non-infected, mono-infected and co-infected. Linear mixed models were applied to analyse the association between infection status (non-infected vs. mono-infected vs. co-infected) with milk yield, milk protein and milk fat content by including potential confounders. RESULTS: Infections with (tricho-)strongyles, D. viviparus, F. hepatica and rumen flukes were detected in 100%, 28.6%, 50.0% and 21.4% of herds, and 27.4%, 2.6%, 10.8% and 0.8% of faecal samples in 2015, while 100%, 0.0%, 86.7% and 60.0% of herds and 52.3%, 0.0%, 13.3% and 26.8% of faecal samples were positive in 2021/2022. Co-infections with two or more helminth taxa were detected in 74.4% of herds and 5.0% of faecal samples in 2015, and in 93.3% of herds and 21.7% of faecal samples in 2021/2022. The correlations between strongyle EPG, D. viviparus LPG and F. hepatica EPG were significantly positive in 2015. Significantly higher mean EPGs were identified in 2015 in faecal samples presenting co-infections with F. hepatica and one or two other helminth taxa than in faecal samples presenting F. hepatica mono-infections (P = 0.013). Although expected, the infection status (mono- or co-infected) had no significant impact on milk yield, milk protein and milk fat content in the linear mixed model analyses based on individual faecal examinations. CONCLUSIONS: Patent helminth co-infections had no additive detrimental impact on milk production parameters in the present study. This might be a result of presumably low worm burdens, but should be confirmed in future studies.


Assuntos
Doenças dos Bovinos , Coinfecção , Fezes , Helmintíase Animal , Leite , Animais , Bovinos , Coinfecção/parasitologia , Coinfecção/veterinária , Coinfecção/epidemiologia , Leite/química , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/epidemiologia , Feminino , Fezes/parasitologia , Helmintíase Animal/parasitologia , Helmintíase Animal/epidemiologia , Lactação , Alemanha/epidemiologia , Indústria de Laticínios , Contagem de Ovos de Parasitas , Fasciolíase/veterinária , Fasciolíase/parasitologia , Fasciolíase/complicações , Fasciolíase/epidemiologia
17.
Animal ; 18(10): 101319, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39305824

RESUMO

Ruminants play an important part in the food supply chain, and manipulating rumen microbiota is important to maximising ruminants' production. Rumen microbiota through rumen fermentation produces as major end products volatile fatty acids that provide animal's energy requirements, and microbial CP. Diet is a key factor that can manipulate rumen microbiota, and each variation of the physical and chemical composition creates a specific niche that selects specific microbes. Alteration in the chemical composition of forage, the addition of concentrates in the diet, or the inclusion of plant extract and probiotics, can induce a change in rumen microbiota. High-throughput sequencing technologies are the approaches utilised to investigate the microbial system. Also, the application of omics technologies allows us to understand rumen microbiota composition and these approaches are useful to improve selection programmes. The aim of this review was to summarise the knowledge about rumen microbiota, its role in nutrient metabolism, and how diet can influence its composition.

18.
Trop Anim Health Prod ; 56(8): 263, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302552

RESUMO

Ruminant animals constitute major contributors to greenhouse gas (GHG) emissions and play an important part in sustainable agricultural systems. A bioactive compound (BC) with antibacterial properties was utilized to inhibit rumen methanogens and decrease ruminant methane emissions. The bio efficacy of ruminant nutrition was frequently employed using a new technology through microencapsulation technique to produce stable products. The microencapsulated banana flower powder pellet (mBAFLOP) powder was used as a BC in the diets. Consequently, this study aimed to evaluate the effects of mBAFLOP supplementation on in vitro gas production kinetics, rumen fermentation, microbial population, and methane production. A completely randomized design (CRD) was used to randomly assign respective treatments at 0, 1, 2, and 3% of the total dry matter (DM) substrate. Ruminal pH, in vitro dry matter degradability and volatile fatty acid profile both at 12, and 24 h were not negatively affected by supplementation with mBAFLOP. The supplemented mBAFLOP (3% of total DM substrate) resulting in ruminal ammonia-nitrogen concentrations was linearly increased (P < 0.01) different among treatments, while methane production was reduced when compared with other treatment (quadratic effect, P < 0.05). Moreover, Ruminococcus flavefaciens was increased when the proportion of mBAFLOP supplement was increased. Furthermore, there was a linear effect (P < 0.05) of decreasing Methanobacteriales in the rumen with increased levels of mBAFLOP supplementation. Based on this study, the use of mBAFLOP at 3% could enhance NH3N concentration and cellulolytic bacteria especially Ruminococcus flavefaciens was increased. Furthermore, supplementation with mBAFLOP decreased methane production. Therefore, a possible dietary plant-based bioactive compound, mBAFLOP supplementation cloud enhances rumen fermentation and mitigates methane production.


Assuntos
Ração Animal , Digestão , Fermentação , Metano , Musa , Rúmen , Animais , Musa/química , Rúmen/microbiologia , Rúmen/metabolismo , Metano/metabolismo , Fermentação/efeitos dos fármacos , Digestão/efeitos dos fármacos , Ração Animal/análise , Dieta/veterinária , Flores/química , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Pós , Composição de Medicamentos/veterinária , Bovinos
19.
Front Microbiol ; 15: 1409659, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220041

RESUMO

Background: High-yielding dairy cows are commonly fed high-grain rations. However, this can cause subacute ruminal acidosis (SARA), a metabolic disorder in dairy cows that is usually accompanied by dysbiosis of the rumen microbiome. Postbiotics that contain functional metabolites provide a competitive niche for influential members of the rumen microbiome, may stabilize and promote their populations, and, therefore, may attenuate the adverse effects of SARA. Methods: This study used a total of 32 rumen-cannulated lactating dairy cows, which were randomly assigned into four treatments: no SCFP (control), 14 g/d Original XPC (SCFPa), 19 g/d NutriTek (SCFPb-1X), and 38 g/d NutriTek (SCFPb-2X) (Diamond V, Cedar Rapids, IA) from 4 weeks before until 12 weeks after parturition. Grain-based SARA challenges were conducted during week 5 (SARA1) and week 8 (SARA2) after parturition by replacing 20% dry matter of the base total mixed ration (TMR) with pellets containing 50% ground barley and 50% ground wheat. The DNA of rumen solids digesta was extracted and subjected to V3-V4 16S rRNA gene sequencing. The characteristics of rumen solids microbiota were compared between non-SARA (Pre-SARA1, week 4; Post-SARA1, week 7; and Post-SARA2, weeks 10 and 12) and SARA stages (SARA1/1, SARA1/2, SARA2/1, SARA2/2), as well as among treatments. Results: Both SARA challenges reduced the richness and diversity of the microbiota and the relative abundances of the phylum Fibrobacteres. Supplementation with SCFP promoted the growth of several fibrolytic bacteria, including Lachnospiraceae UCG-009, Treponema, unclassified Lachnospiraceae, and unclassified Ruminococcaceae during the SARA challenges. These challenges also reduced the positive interactions and the numbers of hub taxa in the microbiota. The SCFPb treatment increased positive interactions among microbial members of the solids digesta and the number of hub taxa during the SARA and non-SARA stages. The SCFPb-2X treatment prevented changes in the network characteristics, including the number of components, clustering coefficient, modularity, positive edge percentage, and edge density of the microbiota during SARA challenges. These challenges reduced predicted carbohydrate and nitrogen metabolism in microbiota, whereas SCFP supplementation attenuated those reductions. Conclusions: Supplementation with SCFP, especially the SCFPb-2X attenuated the adverse effects of grain-based SARA on the diversity and predicted functionality of rumen solids microbiota.

20.
J Dairy Sci ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245171

RESUMO

Limited literature is available identifying phenotypical traits related to enteric methane (CH4) production from dairy cows, despite its relevance in relation to breeding for animals with a low CH4 yield (g/kg DMI), and the derived consequences hereof. This study aimed to investigate the relationships between CH4 yield and different animal phenotypes when 16 2nd parity dairy cows, fitted with a ruminal cannula, were fed 2 diets differing in forage:concentrate ratio in a crossover design. The diets had either a low forage proportion (35% on DM basis, F35) or a high forage proportion (63% on DM basis, F63). Gas exchange was measured by means of indirect calorimetry. Spot samples of feces were collected, and indigestible NDF (INDF) was used as an internal marker to determine total-tract digestibility. In addition, ruminal evacuations, monitoring of chewing activity, determination of ruminal VFA concentration, analysis of relative abundance of methanogens, and measurement of liquid passage rate were performed. Statistical differences were analyzed by a linear mixed model with diet, days in milk, and period as fixed effects, and cow as random effect. The random cow estimates (RCE) were extracted from the model to get the Pearson correlations (r) between RCE of CH4 yield with RCE of all other variables measured, to identify possible phenotypes related to CH4 yield. Significant correlations were observed between RCE of CH4 yield and RCE of OM digestibility (r = 0.63) and ruminal concentration of valeric acid (r = -0.61), acetic acid (r = 0.54), ammonium (r = 0.55), and lactic acid (r = ‒0.53). Additionally, tendencies were observed for correlations between RCE of CH4 yield and RCE of H2 yield in g/kg DM (r = 0.47, P = 0.07), and ruminal isobutyric acid concentration (r = 0.43, P = 0.09). No correlations were observed between RCE of CH4 yield and RCE of ruminal pool sizes, milk data, urinary measurements, or chewing activity. Cows had a lower DMI and ECM, when they were fed F63 compared with F35. Cows fed F63 had higher NDF digestibility, CH4 emissions (g/d, g/kg of DMI, and g/kg of ECM), ruminal concentration of acetic acid, ruminal pH, degradation rate of digestible NDF (DNDF, %/h), and longer rumen retention time (h). Also, rumination and total chewing time (min/kg DMI) were higher for cows fed F63. The results in the present study emphasize the positive relation between cow's ability to digest OM and their CH4 emissions. The derived consequences of breeding for lower CH4 emission might be cows with lower ability to digest OM, but more studies are warranted for further documentation of this relationship.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA