Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement (Amst) ; 16(2): e12589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666085

RESUMO

INTRODUCTION: Soluble amyloid beta (Aß) oligomers have been suggested as initiating Aß related neuropathologic change in Alzheimer's disease (AD) but their quantitative distribution and chronological sequence within the AD continuum remain unclear. METHODS: A total of 526 participants in early clinical stages of AD and controls from a longitudinal cohort were neurobiologically classified for amyloid and tau pathology applying the AT(N) system. Aß and tau oligomers in the quantified cerebrospinal fluid (CSF) were measured using surface-based fluorescence intensity distribution analysis (sFIDA) technology. RESULTS: Across groups, highest Aß oligomer levels were found in A+ with subjective cognitive decline and mild cognitive impairment. Aß oligomers were significantly higher in A+T- compared to A-T- and A+T+. APOE Îµ4 allele carriers showed significantly higher Aß oligomer levels. No differences in tau oligomers were detected. DISCUSSION: The accumulation of Aß oligomers in the CSF peaks early within the AD continuum, preceding tau pathology. Disease-modifying treatments targeting Aß oligomers might have the highest therapeutic effect in these disease stages. Highlights: Using surface-based fluorescence intensity distribution analysis (sFIDA) technology, we quantified Aß oligomers in cerebrospinal fluid (CSF) samples of the DZNE-Longitudinal Cognitive Impairment and Dementia (DELCODE) cohortAß oligomers were significantly elevated in mild cognitive impairment (MCI)Amyloid-positive subjects in the subjective cognitive decline (SCD) group increased compared to the amyloid-negative control groupInterestingly, levels of Aß oligomers decrease at advanced stages of the disease (A+T+), which might be explained by altered clearing mechanisms.

2.
Cell Rep Med ; 3(5): 100630, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584626

RESUMO

The elimination of amyloid beta (Aß) oligomers is a promising strategy for therapeutic drug development of Alzheimer's disease (AD). AD mouse models that develop Aß pathology have been used to demonstrate in vivo efficacy of compounds that later failed in clinical development. Here, we analyze the concentration and size distribution of Aß oligomers in different transgenic mouse models of AD and in human brain samples by surface-based fluorescence intensity distribution analysis (sFIDA), a highly sensitive method for detecting and quantitating protein aggregates. We demonstrate dose- and time-dependent oligomer elimination by the compound RD2 in mouse and human AD brain homogenates as sources of native Aß oligomers. Such ex vivo target engagement analyses with mouse- and human-brain-derived oligomers have the potential to enhance the translational value from pre-clinical proof-of-concept studies to clinical trials.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
3.
FEBS Lett ; 592(4): 516-534, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29360176

RESUMO

Early diagnosis of Alzheimer's disease (AD) is of great importance for the development of therapeutics and their application in the clinical environment. Amyloid ß (Aß) oligomers are crucial for the onset and progression of AD and represent a popular drug target, being presumably the most direct biomarker. Efforts to measure Aß oligomers in body fluids are hampered by the low analyte concentration and presence of Aß monomers. The surface-based fluorescence intensity distribution analysis (sFIDA) features both highly specific and sensitive oligomer quantitation as well as total insensitivity towards monomers. In this Review, we highlight structural features of oligomeric and fibrillar Aß. Recent advancements in sFIDA assay development have been the successful automation, adaption for additional biomarkers such as α-synuclein oligomers, and significant improvement of essential assay parameters.


Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/química , Multimerização Proteica , Espectrometria de Fluorescência/métodos , Doença de Alzheimer/metabolismo , Diagnóstico Precoce , Humanos , Estrutura Secundária de Proteína
4.
Clin Chim Acta ; 466: 152-159, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28088342

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by symptoms such as rigor, tremor and bradykinesia. A reliable and early diagnosis could improve the development of early therapeutic strategies before death of dopaminergic neurons leads to the first clinical symptoms. The sFIDA (surface-based fluorescence intensity distribution analysis) assay is a highly sensitive method to determine the concentration of α-synuclein (α-syn) oligomers which are presumably the major toxic isoform of α-syn and potentially the most direct biomarker for PD. Oligomer-based diagnostic tests require standard molecules that closely mimic the native oligomer. This is particularly important for calibration and assessment of inter-assay variation. In this study, we generated a standard in form of α-syn coated silica nanoparticles (α-syn-SiNaPs) that are in the size range of α-syn oligomers and provide a defined number of α-syn epitopes. The preparation of the sFIDA assay was realized on an automated platform to allow handling of high number of samples and reduce the effects of human error. The assay outcome was analyzed by determination of coefficient of variation and linearity for the applied α-syn-SiNaPs concentrations. Additionally, the limit of detection and lower limit of quantification were determined yielding concentrations in the lower femtomolar range.


Assuntos
Testes Imunológicos/métodos , Nanopartículas/normas , Doença de Parkinson/diagnóstico , alfa-Sinucleína/imunologia , Biomarcadores/análise , Calibragem , Epitopos/análise , Humanos , Testes Imunológicos/normas , Limite de Detecção , Mimetismo Molecular/imunologia , Nanopartículas/química , Multimerização Proteica/imunologia , Silício , alfa-Sinucleína/análise
5.
Clin Biochem ; 50(4-5): 244-247, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27823959

RESUMO

OBJECTIVES: Alzheimer's disease (AD) is a neurodegenerative disorder with yet non-existent therapeutic and limited diagnostic options. Reliable biomarker-based AD diagnostics are of utmost importance for the development and application of therapeutic substances. We have previously introduced a platform technology designated 'sFIDA' for the quantitation of amyloid ß peptide (Aß) aggregates as AD biomarker. In this study we implemented the sFIDA assay on an automated platform to enhance robustness and performance of the assay. DESIGN AND METHODS: In sFIDA (surface-based fluorescence intensity distribution analysis) Aß species are immobilized by a capture antibody to a glass surface. Aß aggregates are then multiply loaded with fluorescent antibodies and quantitated by high resolution fluorescence microscopy. As a model system for Aß aggregates, we used Aß-conjugated silica nanoparticles (Aß-SiNaPs) diluted in PBS buffer and cerebrospinal fluid, respectively. Automation of the assay was realized on a liquid handling system in combination with a microplate washer. RESULTS: The automation of the sFIDA assay results in improved intra-assay precision, linearity and sensitivity in comparison to the manual application, and achieved a limit of detection in the sub-femtomolar range. CONCLUSIONS: Automation improves the precision and sensitivity of the sFIDA assay, which is a prerequisite for high-throughput measurements and future application of the technology in routine AD diagnostics.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Líquidos Corporais/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Limite de Detecção , Agregados Proteicos , Robótica , Sensibilidade e Especificidade
6.
Front Neurosci ; 10: 8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858588

RESUMO

Still, there is need for significant improvements in reliable and accurate diagnosis for Alzheimer's disease (AD) at early stages. It is widely accepted that changes in the concentration and conformation of amyloid-ß (Aß) appear several years before the onset of first symptoms of cognitive impairment in AD patients. Because Aß oligomers are possibly the major toxic species in AD, they are a promising biomarker candidate for the early diagnosis of the disease. To date, a variety of oligomer-specific assays have been developed, many of them ELISAs. Here, we demonstrate the sFIDA assay, a technology highly specific for Aß oligomers developed toward single particle sensitivity. By spiking stabilized Aß oligomers to buffer and to body fluids from control donors, we show that the sFIDA readout correlates with the applied concentration of stabilized oligomers diluted in buffer, cerebrospinal fluid (CSF), and blood plasma over several orders of magnitude. The lower limit of detection was calculated to be 22 fM of stabilized oligomers diluted in PBS, 18 fM in CSF, and 14 fM in blood plasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA