RESUMO
As a novel guanylate cyclase stimulator, SGC003F is being developed for the treatment of heart failure with a reduced ejection fraction (HFrEF). This study aimed to assess the effect of P-glycoprotein (P-gp) inhibition on SGC003F exposure in vivo, comparing plasma and tissue levels, and evaluating the role of P-gp in the small intestine, blood-brain barrier (BBB), and kidney in impacting the tissue exposure. Tariquidar, a P-gp inhibitor, was added to monolayer transport assays to observe the changes in the transmembrane characteristics of SGC003F. Rats were given SGC003F with tariquidar via various routes to measure plasma, tissue, urine, and fecal concentrations. The inclusion of tariquidar significantly altered the pharmacokinetics of SGC003F. In LLC-PK1-MDR1 cells, tariquidar reduced the efflux ratio of SGC003F from 6.56 to 1.28. In rats, it enhanced the plasma AUC by 3.05 or 1.61 times, increased the Cmax by 2.13 or 1.07 times, and notably improved bioavailability from 46.4% to 95%. Additionally, co-administration with tariquidar led to a decrease in fecal excretion and an increase in tissue exposure, with only a moderate effect on the partition ratios in the small intestine and brain. P-gp inhibition impacts SGC003F exposure, with plasma levels not fully reflecting tissue levels. P-gp in the small intestine and BBB affects SGC003F's pharmacokinetics, warranting further clinical drug-drug interaction (DDI) studies.
RESUMO
The use of phosphodiesterase inhibitors in the treatment of Parkinson's disease is currently widely discussed. The study aimed to investigate the impact of acute and chronic treatment with the phosphodiesterase 5 inhibitor, sildenafil, at low and moderate doses of 2 mg/kg and 6 mg/kg, and L-DOPA (12.5 mg/kg), alone or in combination, on asymmetric behavior and dopamine (DA) and serotonin metabolism in the striatum and substantia nigra of unilaterally 6-OHDA-lesioned rats. Acute administration of sildenafil at both tested doses jointly with L-DOPA significantly increased the number of contralateral rotations during a 2 h measurement compared to L-DOPA alone. The effect of a lower dose of sildenafil combined with L-DOPA was much greater in the second hour of measurement. However, the acute combined administration of a higher dose of sildenafil with L-DOPA resulted in an immediate and much stronger increase in the number of contralateral rotations compared to L-DOPA alone, already visible in the first hour of measurement. Interestingly, the chronic combined administration of 2 mg/kg of sildenafil and L-DOPA significantly reduced the number of contralateral rotations, especially during the first hour of measurement, compared to the long-term treatment with L-DOPA alone. Such an effect was not observed after the long-term combined treatment of a higher dose of sildenafil and L-DOPA compared to L-DOPA alone. The concentration of DA in the ipsilateral striatum and substantia nigra after the last combined chronic dose of sildenafil (2 or 6 mg/kg) and L-DOPA (12.5 mg/kg) was significantly higher than after L-DOPA alone. In spite of much stronger increases in the DA concentration in the ipsilateral striatum and substantia nigra, the number of contralateral rotations was reduced in the group of rats treated with the combination of 2 mg/kg sildenafil and L-DOPA compared to the group receiving L-DOPA alone. Moreover, the combined treatment with a low dose of sildenafil and L-DOPA had an opposite effect on DA catabolism, as assessed by DOPAC/DA and HVA/DA indexes, and these indexes were reduced in the ipsilateral striatum but increased in the contralateral striatum and substantia nigra compared to the treatment with L-DOPA alone. The results of the present study show that the addition of a low dose of a PDE5 inhibitor to the standard L-DOPA therapy differently modulates rotational behavior, the tissue DA concentration and its catabolism in the striatum and substantia nigra.
Assuntos
Corpo Estriado , Levodopa , Oxidopamina , Inibidores da Fosfodiesterase 5 , Citrato de Sildenafila , Substância Negra , Animais , Citrato de Sildenafila/farmacologia , Levodopa/farmacologia , Substância Negra/metabolismo , Substância Negra/efeitos dos fármacos , Ratos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Masculino , Inibidores da Fosfodiesterase 5/farmacologia , Dopamina/metabolismo , Comportamento Animal/efeitos dos fármacos , Quimioterapia Combinada , Serotonina/metabolismo , Modelos Animais de Doenças , Monoaminas Biogênicas/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismoRESUMO
The paraventricular nucleus of the hypothalamus (PVN) regulates physiological and behavioural responses evoked by stressful stimuli, but the local neurochemical and signalling mechanisms involved are not completely understood. The soluble guanylate cyclase (sGC) within the PVN is implicated in autonomic and cardiovascular control in rodents under resting conditions. However, the involvement of PVN sGC-mediated signalling in stress responses is unknown. Therefore, we investigated the role of sGC within the PVN in cardiovascular, autonomic, neuroendocrine, and local neuronal responses to acute restraint stress in rats. Bilateral microinjection of the selective sGC inhibitor ODQ (1 nmol/100 nl) into the PVN reduced both the increased arterial pressure and the drop in cutaneous tail temperature evoked by restraint stress, while the tachycardia was enhanced. Intra-PVN injection of ODQ did not alter the number of Fos-immunoreactive neurons in either the dorsal cap parvocellular (PaDC), ventromedial (PaV), medial parvocellular (PaMP), or lateral magnocelllular (PaLM) portions of the PVN following acute restraint stress. Local microinjection of ODQ into the PVN did not affect the restraint-induced increases in plasma corticosterone concentration. Taken together, these findings suggest that sGC-mediated signalling in the PVN plays a key role in acute stress-induced pressor responses and sympathetically mediated cutaneous vasoconstriction, whereas the tachycardiac response is inhibited. Absence of an effect of ODQ on corticosterone and PVN neuronal activation in and the PaV and PaMP suggests that PVN sGC is not involved in restraint-evoked hypothalamus-pituitary-adrenal (HPA) axis activation and further indicates that autonomic and neuroendocrine responses are dissociable at the level of the PVN.
Assuntos
Núcleo Hipotalâmico Paraventricular , Restrição Física , Estresse Psicológico , Animais , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Masculino , Ratos , Estresse Psicológico/fisiopatologia , Estresse Psicológico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiopatologia , Ratos Wistar , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Guanilato Ciclase/metabolismo , Guanilato Ciclase/antagonistas & inibidoresRESUMO
All anthracyclines, including doxorubicin (DOXO), the most common and still indispensable drug, exhibit cardiotoxicity with inherent risk of irreversible cardiomyopathy leading to heart failure with reduced ejection fraction (HFrEF). Current pharmacological strategies are clearly less effective for this type of HFrEF, hence an urgent need for new therapeutic approaches. The prerequisite for success is thorough understanding of pathophysiology of this HFrEF form, which requires an appropriate animal model of the disease. The aim of this study was to comprehensively characterise a novel model of HF with cardiorenal syndrome, i.e. DOXO-induced HFrEF with nephrotic syndrome, in which DOXO was administered to Ren-2 transgenic rats (TGR) via five intravenous injections in a cumulative dose of 10 mg/kg of body weight (BW). Our analysis included survival, echocardiography, as well as histological examination of the heart and kidneys, blood pressure, but also a broad spectrum of biomarkers to evaluate cardiac remodelling, fibrosis, apoptosis, oxidative stress and more. We have shown that the new model adequately mimics the cardiac remodelling described as "eccentric chamber atrophy" and myocardial damage typical for DOXO-related cardiotoxicity, without major damage of the peritoneum, lungs and liver. This pattern corresponds well to a clinical situation of cancer patients receiving anthracyclines, where HF develops with some delay after the anticancer therapy. Therefore, this study may serve as a comprehensive reference for all types of research on DOXO-related cardiotoxicity, proving especially useful in the search for new therapeutic strategies.
RESUMO
Heart failure (HF) is a syndrome characterized by signs and symptoms resulting from structural or functional cardiac abnormalities, confirmed by elevated natriuretic peptides or evidence of congestion. HF patients are classified according to left ventricular ejection fraction (LVEF). Worsening HF (WHF) is associated with increased short- and long-term mortality, re-hospitalization, and healthcare costs. The standard treatment of HF includes angiotensin-converting enzyme inhibitors, angiotensin receptor-neprilysin inhibitors, mineralocorticoid-receptor antagonists, beta-blockers, and sodium-glucose-co-transporter 2 inhibitors. To manage systolic HF by reducing mortality and hospitalizations in patients experiencing WHF, treatment with vericiguat, a direct stimulator of soluble guanylate cyclase (sGC), is indicated. This drug acts by stimulating sGC enzymes, part of the nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) signaling pathway, regulating the cardiovascular system by catalyzing cGMP synthesis in response to NO. cGMP acts as a second messenger, triggering various cellular effects. Deficiencies in cGMP production, often due to low NO availability, are implicated in cardiovascular diseases. Vericiguat stimulates sGC directly, bypassing the need for a functional NO-sGC-cGMP axis, thus preventing myocardial and vascular dysfunction associated with decreased sGC activity in heart failure. Approved by the FDA in 2021, vericiguat administration should be considered, in addition to the four pillars of reduced EF (HFrEF) therapy, in symptomatic patients with LVEF < 45% following a worsening event. Cardiac rehabilitation represents an ideal setting where there is more time to implement therapy with vericiguat and incorporate a greater number of medications for the management of these patients. This review covers vericiguat's metabolism, molecular mechanisms, and drug-drug interactions.
RESUMO
Adenoid cystic carcinoma (AdCC) is a slow-growing salivary gland malignancy that relapses frequently. AdCCs of the submandibular gland exhibit unique differences in prognosis and treatment response to adjuvant radiotherapy compared to other sites, yet the role of tumor anatomic subsite on gene expression and tumor immune microenvironment (TIME) composition remains unclear. We used 87 samples, including 48 samples (27 AdCC and 21 normal salivary gland tissue samples) from 4 publicly available AdCC RNA sequencing datasets, a validation set of 33 minor gland AdCCs, and 39 samples from an in-house cohort (30 AdCC and 9 normal salivary gland samples). RNA sequencing data were used for single sample gene set enrichment analysis and TIME deconvolution. Quantitative PCR and multiplex immunofluorescence were performed on the in-house cohort. Wilcoxon rank-sum, nonparametric equality-of-medians tests and linear regression models were used to evaluate tumor subsite differences. AdCCs of different anatomic subsites including parotid, submandibular, sublingual, and minor salivary glands differed with respect to expression of several key tumorigenic pathways. Among the three major salivary glands, the reactive oxygen species (ROS)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway signature was significantly underexpressed in AdCC of submandibular compared to parotid and sublingual glands while this association was not observed among normal glands. Additionally, the NRF2 pathway, whose expression was associated with favorable overall survival, was overexpressed in AdCCs of parotid gland compared to minor and submandibular glands. The TIME deconvolution identified differences in CD4+ T cell populations between AdCC of major and minor glands and natural killer (NK) cells among AdCC of minor, submandibular, and parotid glands while plasma cells were enriched in normal submandibular glands compared to other normal gland controls. Our data reveal key molecular differences in AdCC of different anatomic subsites. The ROS and NRF2 pathways are underexpressed in submandibular and minor AdCCs compared to parotid gland AdCCs, and NRF2 pathway expression is associated with favorable overall survival. The CD4+ T, NK, and plasma cell populations also vary by tumor subsites, suggesting that the observed submandibular AdCC tumor-intrinsic pathway differences may be responsible for influencing the TIME composition and survival differences.
Assuntos
Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Microambiente Tumoral , Humanos , Carcinoma Adenoide Cístico/patologia , Carcinoma Adenoide Cístico/imunologia , Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/genética , Neoplasias das Glândulas Salivares/patologia , Neoplasias das Glândulas Salivares/imunologia , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/mortalidade , Masculino , Feminino , Microambiente Tumoral/imunologia , Pessoa de Meia-Idade , Idoso , Regulação Neoplásica da Expressão Gênica , Adulto , Glândulas Salivares/patologia , Glândulas Salivares/metabolismo , Glândulas Salivares/imunologia , PrognósticoRESUMO
In recent years, thanks to the advent of new classes of drugs (ARNI and SGLT2-i), the prognosis of patients suffering from heart failure with reduced ejection fraction (HFrEF) has gradually improved. Nonetheless, there is a residual risk that is not targeted by these therapies. Currently, it is recognized that vericiguat, an oral stimulator of soluble guanylate cyclase (sGC), can restore the NO-sGC-cGMP pathway, through stimulation and activation of sGC, aiming to increase cGMP levels with a reduction in heart failure-related oxidative stress and endothelial dysfunction. Even though the Victoria trial demonstrated that HFrEF patients in treatment with vericiguat showed a 10% reduction in the composite of cardiovascular mortality and rehospitalization for heart failure, statistically significantly reducing heart failure hospitalization, the international guidelines limit its use as a second-line drug for patients with worsening symptomatology despite optimized medical therapy. Furthermore, vericiguat has proved to be a valid therapeutic ally especially in those patients with comorbidities such that they cannot receive the classic four-pillar therapy of HF (in particular renal failure). In this review, the authors report on randomized clinical trials, substudies, and meta-analysis about vericiguat in HFrEF, emphasizing the strengths that would suggest the possible role of vericiguat as the fifth pillar of the HFrEF treatment, acknowledging that there are still gaps in the evidence that need to be clarified.
Assuntos
Insuficiência Cardíaca , Volume Sistólico , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Volume Sistólico/fisiologia , Volume Sistólico/efeitos dos fármacos , Pirimidinas/uso terapêutico , Pirrolidinas/uso terapêutico , Resultado do Tratamento , Guanilil Ciclase Solúvel/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto , Compostos Heterocíclicos com 2 AnéisRESUMO
Hypertensive disorders in pregnancy (HDP) are the most prevalent diseases during pregnancy. In addition to the already identified risk factors, exposure to environmental contaminants has been also considered a new one. Phthalates, which are classified as priority environmental pollutants due to their ubiquitousness and endocrine disrupting properties, have been implicated in HDP in some epidemiological studies. Nevertheless, phthalates' vascular impacts still need to be clarified. Thus, we aimed to understand the connection between phthalates exposure and the occurrence of gestational hypertension, as well as the pathway involved in the pathological vascular effects. We investigated diethyl phthalate's (DEP) effect on the vascular reactivity of the human umbilical arteries (HUAs) from normotensive and hypertensive pregnant women. Both DEP's nongenomic (within minutes effect) and genomic (24 h exposure to DEP) actions were evaluated, as well as the contribution of cyclic guanosine monophosphate and Ca2+ channel pathways. The results show that short-term exposure to DEP interferes with serotonin and histamine receptors, while after prolonged exposure, DEP seems to share the same vasorelaxant mechanism as estrogens, through the NO/sGC/cGMP/PKG signaling pathway, and to interfere with the L-type Ca2+ channels. Thus, the vascular effect induced by DEP is similar to that observed in HUA from hypertensive pregnancies, demonstrating that the development of HDP may be a consequence of DEP exposure.
RESUMO
Herein, we describe the rational design, synthesis and in vitro functional characterization of new heme-dependent, direct soluble guanylyl cyclase (sGC) agonists. These new compounds bear a 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton, modified to enable efficient sGC binding and stimulation. To gain insights into structure-activity relationships, the N6-alkylation of the skeleton was explored, while a pyrimidine ring, substituted with various C5'-polar groups, was installed at position C3. Among the newly synthesized 1H-pyrazolo[3,4-c]pyridin-7(6H)-ones, derivatives 14b, 15b and 16a display characteristic features of sGC "stimulators" in A7r5 vascular smooth muscle cells in vitro. They strongly synergize with the NO donor, sodium nitroprusside (SNP) in inducing cGMP generation in a manner that requires the presence of a reduced heme moiety associated with sGC, and elevate the cGMP-responsive phosphorylation of the protein VASP at Ser239. In line with their sGC stimulating capacity, docking calculations of derivatives 16a, 15(a-c) on a cryo-EM structure of human sGC (hsGC) in an ΝΟ-activated state indicated the implication of 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton in efficient bonding interactions with the recently identified region that binds known sGC stimulators, while the presence of either a N6-H or N6-methyl group pointed to enhanced binding affinity. Moreover, the in vitro functional effects of our newly identified sGC stimulators were compatible with a beneficial role in vascular homeostasis. Specifically, derivative 14b reduced A7r5 cell proliferation, while 16a dampened the expression of adhesion molecules ICAM-1 and P/E-Selectin in Human Umbilical Vein Endothelial Cells (HUVECs), as well as the subsequent adhesion of U937 leukocytes to the HUVECs, triggered by tumor necrosis factor alpha (TNF-α) or interleukin-1 beta (IL-1ß). The fact that these compounds elevate cGMP only in the presence of NO may indicate a novel way of interaction with the enzyme and may make them less prone than other direct sGC agonists to induce characteristic hypotension in vivo.
Assuntos
Células Endoteliais , Guanilato Ciclase , Humanos , Células Endoteliais/metabolismo , Ativação Enzimática , Guanilato Ciclase/metabolismo , Heme , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Vasodilatadores , AlquilaçãoRESUMO
In the face of the global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), researchers are tirelessly exploring novel therapeutic approaches to combat coronavirus disease 2019 (COVID-19) and its associated complications. Nitric oxide (NO) has appeared as a multifaceted signaling mediator with diverse and often contrasting biological activities. Its intricate biochemistry renders it a crucial regulator of cardiovascular and pulmonary functions, immunity, and neurotransmission. Perturbations in NO production, whether excessive or insufficient, contribute to the pathogenesis of various diseases, encompassing cardiovascular disease, pulmonary hypertension, asthma, diabetes, and cancer. Recent investigations have unveiled the potential of NO donors to impede SARS-CoV- 2 replication, while inhaled NO demonstrates promise as a therapeutic avenue for improving oxygenation in COVID-19-related hypoxic pulmonary conditions. Interestingly, NO's association with the inflammatory response in asthma suggests a potential protective role against SARS-CoV-2 infection. Furthermore, compelling evidence indicates the benefits of inhaled NO in optimizing ventilation-perfusion ratios and mitigating the need for mechanical ventilation in COVID-19 patients. In this review, we delve into the molecular targets of NO, its utility as a diagnostic marker, the mechanisms underlying its action in COVID-19, and the potential of inhaled NO as a therapeutic intervention against viral infections. The topmost significant pathway, gene ontology (GO)-biological process (BP), GO-molecular function (MF) and GO-cellular compartment (CC) terms associated with Nitric Oxide Synthase (NOS)1, NOS2, NOS3 were arginine biosynthesis (p-value = 1.15 x 10-9) regulation of guanylate cyclase activity (p-value = 7.5 x 10-12), arginine binding (p-value = 2.62 x 10-11), vesicle membrane (p-value = 3.93 x 10-8). Transcriptomics analysis further validates the significant presence of NOS1, NOS2, NOS3 in independent COVID-19 and pulmonary hypertension cohorts with respect to controls. This review investigates NO's molecular targets, diagnostic potentials, and therapeutic role in COVID-19, employing bioinformatics to identify key pathways and NOS isoforms' significance.
Assuntos
Asma , COVID-19 , Hipertensão Pulmonar , Humanos , Óxido Nítrico/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Asma/tratamento farmacológico , SARS-CoV-2/metabolismo , ArgininaRESUMO
BACKGROUND: Soluble guanylate cyclase (sGC) stimulators have been investigated for heart failure (HF) in several randomized controlled trials (RCTs). However, its place in the management guidelines of either HFrEF or HfpEF is still inconclusive. METHODS: We conducted a network meta-analysis synthesizing RCTs investigating sGC for HF management, which were retrieved by systematically searching five databases until January 24th, 2023. Dichotomous outcomes were pooled using risk ratio (RR) along with confidence interval (CI). RESULTS: Eight RCTs with a total of 7307 patients were included. Vericiguat 10 mg significantly reduced the composite cardiovascular (CVS) mortality and HF hospitalization in HF (RR: 0.88, 95% CI [0.79; 0.98]) and in HFrEF (RR: 0.87, 95% CI [0.78; 0.97]); however, it was not effective in HFpEF (RR: 0.69, 95% CI [0.15; 3.05]). Also, vericiguat 10 mg showed no difference compared to placebo regarding the incidence of all-cause mortality (RR: 0.96, 95% CI [0.84; 1.10]), any adverse events (AEs) (RR: 0.94, 95% CI [0.83; 1.07]), any serious AEs (RR: 0.91, 95% CI [0.81; 1.01]), and any AEs leading to drug discontinuation (RR: 1.14, 95% CI [0.92; 1.40]). CONCLUSION: Vericiguat 10 mg was effective in reducing the composite CVS mortality and HF hospitalization, with an acceptable safety profile. This was only observed in HFrEF patients, but not in HFpEF patients. However, our data regarding other agents (riociguat and praliciguat) and HFpEF can be underpowered, warranting further RCTs to clarify vericiguat 10 mg place in HFrEF management guidelines and to investigate sGC stimulators for HFpEF in large-scale trials.
RESUMO
Salivary glands have essential roles in maintaining oral health, mastication, taste and speech, by secreting saliva. Salivary glands are composed of several types of cells, and each cell type is predicted to be involved in the carcinogenesis of different types of cancers including adenoid cystic carcinoma (ACC), acinic cell carcinoma (AciCC), salivary duct carcinoma (SDC), myoepithelial carcinoma (MECA) and other histology. In our study, we performed single nucleus RNA-seq on three human salivary gland samples to clarify the gene expression profile of each complex cellular component of the salivary glands and related these expression patterns to expression found in salivary gland cancers (SGC) to infer cell of origin. By single nucleus RNA-seq, salivary gland cells were stratified into four clusters: acinar cells, ductal cells 1, ductal cells 2 and myoepithelial cells/stromal cells. The localization of each cell group was verified by IHC of each cluster marker gene, and one group of ductal cells was found to represent intercalated ductal cells labeled with HES1. Furthermore, in comparison with SGC RNA-seq data, acinar cell markers were upregulated in AciCC, but downregulated in ACC and ductal cell markers were upregulated in SDC but downregulated in MECA, suggesting that markers of origin are highly expressed in some SGC. Cell type expressions in specific SGC histology are similar to those found in normal salivary gland populations, indicating a potential etiologic relationship.
Assuntos
Carcinoma de Células Acinares , Carcinoma Adenoide Cístico , Carcinoma , Neoplasias das Glândulas Salivares , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Glândulas Salivares/patologia , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia , Carcinoma Adenoide Cístico/patologia , Carcinoma/patologia , Carcinoma de Células Acinares/metabolismo , RNA/metabolismoRESUMO
[This corrects the article DOI: 10.3389/fnmol.2022.824956.].
RESUMO
L-tryptophan (L-TRP) is an essential amino acid responsible for the establishment and maintenance of a positive nitrogen equilibrium in the nutrition of human beings. Therefore, it is vital to quantify the amount of L-tryptophan in our body. Herein, we report the MoS2/S@g-CN-modified glassy carbon electrode for the electrochemical detection of L-tryptophan (L-TRP). The MoS2/S@g-CN composite was successfully synthesized using an efficient and cost-effective hydrothermal method. The physical and chemical properties of the synthesized composite were analyzed using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray analysis (EDX). The crystallite size of the composite was calculated as 39.4 nm, with porous balls of MoS2 decorated over the S@g-CN surface. The XPS spectrum confirmed the presence of Mo, S, O, C, and N elements in the sample. The synthesized nanocomposite was further used to modify the glassy carbon (GC) electrode (MoS2/S@g-CN/GC). This MoS2/S@g-CN/GC was used for the electrochemical detection of L-TRP using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. For the purpose of comparison, the effects of the scanning rate and the concentration of L-TRP on the current response for the bare GC, S@g-CN/GC, MoS2/GC, and MoS2/S@g-CN/GC were studied in detail. The MoS2/S@g-CN-modified GC electrode exhibited a rational limit of detection (LoD) of 0.03 µM and a sensitivity of 1.74 µA/ µMcm2, with excellent stability, efficient repeatability, and high selectivity for L-TRP detection.
Assuntos
Grafite , Humanos , Grafite/química , Triptofano/análise , Molibdênio , Carbono/química , Eletrodos , Técnicas Eletroquímicas/métodosRESUMO
AIMS: Benign prostatic enlargement (BPE) can impact lower urinary tract function due to its potential progression to benign prostatic obstruction (BPO). Treatment options include removal of the obstruction by surgery or through use of therapeutics designed to slow growth or reduce tissue stress imposed by muscular stromal components. Inflammation and development of fibrosis can also raise intrinsic tissue stress within the gland, further impacting obstruction. Outflow tract obstruction can also impact emission and ejaculation if the obstruction persists. METHODS: This review summarizes an ICI-RS think tank considering novel drug treatments that might address BPO caused by progressive development of BPE, as well as manage decompensation changes to bladder function. RESULTS: Topics included recent advances in our understanding of pathological changes occurring to the prostate and other lower urinary tract tissues during progressive development of BPE, and how prevention or reversal might benefit from the identification of novel drug targets. These included contractile properties of prostatic tissues, the impact of BPE and its effects on bladder function, the deposition of intramural fibrotic tissue with protracted BPO, the role of inflammation in the development of BPE and its progression to BPO. In particular, we discussed current therapeutic options for treating BPE/BPO, and new therapeutic targets, what they treat and their advantage over current medications. CONCLUSION: Several new drug targets were identified, including soluble guanylate cyclase (sGC), the receptor for nitric oxide (NOâ¢), and sGC activators that promotes sGC-mediated cGMP production when sGC is inactivated and unresponsive to NOâ¢.
RESUMO
A stoma forms by a series of asymmetric divisions of stomatal lineage precursor cell and the terminal division of a guard mother cell (GMC). GMC division is restricted to once through genetic regulation mechanisms. Here, we show that nitric oxide (NO) is involved in the regulation of the GMC division. NO donor treatment results in the formation of single guard cells (SGCs). SGCs are also produced in plants that accumulate high NO, whereas clustered guard cells (GCs) appear in plants with low NO accumulation. NO treatment promotes the formation of SGCs in the stomatal signalling mutants sdd1, epf1 epf2, tmm1, erl1 erl2 and er erl1 erl2, reduces the cell number per stomatal cluster in the fama-1 and flp1 myb88, but has no effect on stomatal of cdkb1;1 cyca2;234. Aminocyclopropane-1-carboxylic acid (ACC), a positive regulator of GMC division, reduces the NO-induced SGC formation. Further investigation found NO inhibits ACC synthesis by repressing the expression of several ACC SYNTHASE (ACS) genes, and in turn ACC represses NO accumulation by promoting the expression of HEMOGLOBIN 1 (HB1) encoding a NO scavenger. This work shows NO plays a role in the regulation of GMC division by modulating ACC accumulation in the Arabidopsis cotyledon.
RESUMO
Standard Genetic Code (SGC) evolution is quantitatively modeled in up to 2000 independent coding 'environments'. Environments host multiple codes that may fuse or divide, with division yielding identical descendants. Code division may be selected-sophisticated gene products could be required for an orderly separation that preserves the coding. Several unforeseen results emerge: more rapid evolution requires unselective code division rather than its selective form. Combining selective and unselective code division, with/without code fusion, with/without independent environmental coding tables, and with/without wobble defines 25 = 32 possible pathways for SGC evolution. These 32 possible histories are compared, specifically, for evolutionary speed and code accuracy. Pathways differ greatly, for example, by ≈300-fold in time to evolve SGC-like codes. Eight of thirty-two pathways employing code division evolve quickly. Four of these eight that combine fusion and division also unite speed and accuracy. The two most precise, swiftest paths; thus the most likely routes to the SGC are similar, differing only in fusion with independent environmental codes. Code division instead of fusion with unrelated codes implies that exterior codes can be dispensable. Instead, a single ancestral code that divides and fuses can initiate fully encoded peptide biosynthesis. Division and fusion create a 'crescendo of competent coding', facilitating the search for the SGC and also assisting the advent of otherwise uniformly disfavored wobble coding. Code fusion can unite multiple codon assignment mechanisms. However, via code division and fusion, an SGC can emerge from a single primary origin via familiar cellular events.
RESUMO
Chronic kidney disease (CKD) progression is associated with persisting oxidative stress, which impairs the NO-sGC-cGMP signaling cascade through the formation of oxidized and heme-free apo-sGC that cannot be activated by NO. Runcaciguat (BAY 1101042) is a novel, potent, and selective sGC activator that binds and activates oxidized and heme-free sGC and thereby restores NO-sGC-cGMP signaling under oxidative stress. Therefore, runcaciguat might represent a very effective treatment option for CKD/DKD. The potential kidney-protective effects of runcaciguat were investigated in ZSF1 rats as a model of CKD/DKD, characterized by hypertension, hyperglycemia, obesity, and insulin resistance. ZSF1 rats were treated daily orally for up to 12 weeks with runcaciguat (1, 3, 10 mg/kg/bid) or placebo. The study endpoints were proteinuria, kidney histopathology, plasma, urinary biomarkers of kidney damage, and gene expression profiling to gain information about relevant pathways affected by runcaciguat. Furthermore, oxidative stress was compared in the ZSF1 rat kidney with kidney samples from DKD patients. Within the duration of the 12-week treatment study, kidney function was significantly decreased in obese ZSF1 rats, indicated by a 20-fold increase in proteinuria, compared to lean ZSF1 rats. Runcaciguat dose-dependently and significantly attenuated the development of proteinuria in ZSF1 rats with reduced uPCR at the end of the study by -19%, -54%, and -70% at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo treatment. Additionally, average blood glucose levels measured as HbA1C, triglycerides, and cholesterol were increased by five times, twenty times, and four times, respectively, in obese ZSF1 compared to lean rats. In obese ZSF1 rats, runcaciguat reduced HbA1c levels by -8%, -34%, and -76%, triglycerides by -42%, -55%, and -71%, and cholesterol by -16%, -17%, and -34%, at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo. Concomitantly, runcaciguat also reduced kidney weights, morphological kidney damage, and urinary and plasma biomarkers of kidney damage. Beneficial effects were accompanied by changes in gene expression that indicate reduced fibrosis and inflammation and suggest improved endothelial stabilization. In summary, the sGC activator runcaciguat significantly prevented a decline in kidney function in a DKD rat model that mimics common comorbidities and conditions of oxidative stress of CKD patients. Thus, runcaciguat represents a promising treatment option for CKD patients, which is in line with recent phase 2 clinical study data, where runcaciguat showed promising efficacy in CKD patients (NCT04507061).
Assuntos
Rim , Insuficiência Renal Crônica , Animais , Ratos , GMP Cíclico , Hemoglobinas Glicadas , Heme , Obesidade , Proteinúria , Insuficiência Renal Crônica/tratamento farmacológico , Ensaios Clínicos Fase II como AssuntoRESUMO
Introduction: Due to its chemical properties, functional responses to nitric oxide (NO) are often difficult to examine. In the present study, we established a method to produce NO in an aqueous solution and validated its capacity to evoke functional responses in isolated rat bladders. Furthermore, we compared the NO responses to the commonly used NO donor sodium nitroprusside (SNP). We also investigated the impact of ongoing inflammation on the involvement of soluble guanylate cyclase (sGC) dependent signaling in NO relaxation. Methods: A setup to produce an aqueous NO solution was established, allowing the production of an aqueous solution containing a calculated NO concentration of 2 mM. Sixty male Sprague-Dawley rats received either no treatment (controls) or cyclophosphamide (CYP; 100 mg*kg-1 i.p., 60 h prior to the experiment) to induce experimental cystitis. Bladder strip preparations were mounted in organ baths and studied at basal tension or pre-contracted with methacholine (3 µM). Aqueous NO solution (40-400 µL; 2 mM corresponding to 4-40 µM) or SNP (1-1,000 µM) was added cumulatively in increasing concentrations. Relaxation to aqueous NO was also studied in the presence of the sGC inhibitor ODQ (0.25-25 µM). The expression of sGC was investigated by immunohistochemical analysis. Results: The NO solution caused functional relaxations in both controls and inflamed bladder preparations. NO-induced relaxations were significantly greater in inflamed bladder strips at basal tension, whereas no differences were seen in methacholine pre-contracted strips. In the presence of the sGC inhibitor ODQ in a high concentration, the NO-evoked relaxations were abolished in both control and inflamed preparations. At a lower concentration of ODQ, only NO relaxations in inflamed preparations were attenuated. Immunohistochemical analysis showed that sGC was expressed in the detrusor and mucosa, with a significantly lower expression in the inflamed detrusor. Conclusion: In the present study, we found that aqueous NO solution induces relaxation of the rat detrusor by activating soluble guanylate cyclase in both control and inflamed bladder strips. Induction of inflammation conceivably leads to decreased sGC expression in the detrusor, which may explain the different susceptibility towards inhibition of sGC in inflamed versus control tissue. The use of an aqueous NO solution should be further considered as a valuable complement to the pharmacological tools currently used.
RESUMO
Dramatic advances in phosphoproteomics and the development of a selective chemical probe have presented new opportunities for revealing the cellular landscape of substrates for CSNK2 (formerly known as CK2 or casein kinase II). In addition to deciphering the role(s) of CSNK2 in physiology and pathophysiology, the CSNK2 phosphoproteome offers the promise of instructing the development of CSNK2-targeted therapy.