RESUMO
Efficient lithium extraction from salt lakes is essential for a sustainable resource supply. This study tackles the challenge of separating Li+ from Mg2+ in complex brines by innovatively integrating two-dimensional (2D) graphene oxide (GO) with bimetallic metal-organic frameworks (MOFs). Zn2+ and Co2+ ions are confined within GO interlayers through an in situ synthesis, forming a 2D Zn-Co MOFs/GO membrane (Zn-Co-GOM). This design exploits the unique advantages of bimetallic MOFs, including enhanced structural stability and superior ion separation capabilities due to the synergistic effects of Zn and Co. The Zn-Co-GOM demonstrates an impressive separation factor of 191 for Li+ over Mg2+, significantly surpassing traditional membranes. This exceptional selectivity is achieved through a combination of size exclusion effects and ion transport energy barriers. Our approach not only enhances the practical application of membrane technology for lithium extraction from salt lakes but also provides valuable insights into the underlying separation mechanisms.
RESUMO
Two halophilic archaeal strains TS33T and KZCA124 were isolated from two distant salt lakes on the Qinghai-Xizang Plateau, respectively. Culture-independent analysis indicated that these two strains were original inhabitants but low abundant taxa in respective salt lakes. Strains TS33T and KZCA124 were able to grow at 20-60 °C (optimum were 42 and 35 °C, respectively), with 0.9-4.8 M NaCl (optimum were 3.0 and 2.6 M, respectively), with 0-0.7 M MgCl2 (optimum, 0.3 M) and at pH 5.0-9.5 (optimum were pH 7.5 and pH 7, respectively). The 16S rRNA and rpoB' gene similarities between these two strains were 99.7% and 99.4%, and these two similarities among strains TS33T, KZCA124, and existing species of the family Natrialbaceae were 90.6-95.5% and 84.4-89.3%, respectively. Phylogenetic and phylogenomic analyses indicated that strains TS33T and KZCA124 formed an independent branch separated from neighboring genera, Saliphagus, Natronosalvus, and Natronobiforma. The averagenucleotideidentity (ANI), digital DNA-DNAhybridization (dDDH), and average amino acid identity (AAI) values between strains TS33T and KZCA124 were 96.4%, 73.1%, and 96.7%, respectively, higher than the thresholds for species demarcation. The overall genome-related indexes between these two strains and existing species of family Natrialbaceae were 73-77%, 21-25%, and 63-70%, respectively, significantly lower than the species boundary thresholds. Strains TS33T and KZCA124 may represent a novel species of a new genus within the family Natrialbaceae judged by the cutoff value of AAI (≤76%) proposed to differentiate genera within the family Natrialbaceae. The major polar lipids of strains TS33T and KZCA124 were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, sulfated mannosyl glucosyl diether, and sulfated galactosyl mannosyl glucosyl diether. These two strains could be distinguished from the related genera according to differential phenotypic characteristics. These phenotypic, phylogenetic, and genomic analyses revealed that strains TS33T (=KCTC 4310T = MCCC 4K00132T) and KZCA124 (=CGMCC 1.17432 = JCM 34316) represent a novel species of a new genus of the family Natrialbaceae and were named Halomontanus rarus gen. nov., sp. nov.
Assuntos
Composição de Bases , DNA Arqueal , Lagos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Lagos/microbiologia , RNA Ribossômico 16S/genética , DNA Arqueal/genética , DNA Arqueal/química , China , Cloreto de Sódio/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/química , Fosfolipídeos/análise , Fosfolipídeos/química , Genoma Arqueal , Hibridização de Ácido NucleicoRESUMO
Water samples from two naturally hypersaline lakes, renowned for their balneotherapeutic properties, were investigated through a pilot SERS monitoring program. Nanotechnology-based techniques were employed to periodically measure the ultra-sensitive SERS molecular characteristics of the raw water-bearing microbial community and the inorganic content. Employing the Pearson correlation coefficient revealed a robust linear relationship between electrical conductivity and pH and Raman and SERS spectral data of water samples, highlighting the interplay complexity of Raman/SERS signals and physicochemical parameters within each lake. The SERS data obtained from raw waters with AgNPs exhibited a dominant, reproducible SERS feature resembling adsorbed ß-carotene at submicromole concentration, which could be related to the cyanobacteria-AgNPs interface and supported by TEM analyses. Notably, spurious SERS sampling cases showed molecular traces attributed to additional metabolites, suggesting multiplexed SERS signatures. The conducted PCA demonstrated observable differences in the ß-carotene SERS band intensities between the two lakes, signifying potential variations in picoplankton abundance and composition or environmental influences. Moreover, the study examined variations in the SERS intensity ratio I245/I1512, related to the balance between inorganic (Cl--induced AgNPs aggregation) and organic (cyanobacteria population) balance, in correlation with the electrical conductivity. These findings signify the potential of SERS data for monitoring variations in microorganism concentration, clearly dependent on ion concentration and nutrient dynamics in raw, hypersaline water bodies.
Assuntos
Lagos , beta Caroteno , Água , Condutividade Elétrica , Projetos PilotoRESUMO
The study aimed to isolate rare halophilic actinomycetes from hypersaline soils of Algerian inland Wetland Ecosystems "Sebkhas-Chotts" located in arid and hot hyperarid lands with international importance under the Ramsar Convention and to explore their enzyme-producing and antibacterial abilities. The halophilic actinomycetes were selectively isolated using agar-rich media supplemented with 5, 10, and 15% (W/V) of total salts. Thirty-one isolates were obtained and 16S rRNA gene sequencing analysis revealed the presence of members affiliated to rare halophilic actinobacterial genera (Actinopolyspora and Nocardiopsis) accounting for 74.19% (23 isolates out of 31) and 25.8% (8 isolates), respectively. Both phylotypes are alkalitolerant and halophilic thermotolerant actinomycetes displaying significant hydrolytic activities relative to (amylase, asparaginase, cellulase, esterase, glutaminase, inulinase, protease, pectinase, xylanase), and over 96% of tested isolates exhibited all common enzymes, mainly active at 10% of growing salt. In addition, high antibacterial activity was observed against Bacillus cereus, Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus. The findings showed that saline wetlands ecosystems represent a rich reservoir for the isolation of significant rare halophilic actinomycetes with potential adaptive features and valuable sources for novel bioactive metabolites and biocatalysts of biotechnological interest.
Assuntos
Actinobacteria , Celulases , Actinomyces/genética , Ágar , Argélia , Amilases , Antibacterianos/farmacologia , Asparaginase/genética , Celulases/genética , Ecossistema , Esterases/genética , Glutaminase/genética , Peptídeo Hidrolases/genética , Filogenia , Poligalacturonase , RNA Ribossômico 16S/genética , Sais , Solo , Áreas AlagadasRESUMO
Salt lakes considerably affect the regional climate, environment, and ecology of semiarid regions characterized by low rainfall and high evaporation. However, under the stresses of global change and human disturbance, anthropogenic pollution is the primary factor threatening the lake's ecological environment. Surface sediment samples collected from four salt lakes in the Ordos Plateau were used to investigate the salinity, concentration, pollution status, potential sources of heavy metals, and influencing factors. The surface sediments of Beida Pond and Gouchi Pond were weakly alkaline (pH < 9) due to the presence of Na2SO4, whereas those of Chaigannaoer and Hongjiannao were strongly alkaline (pH > 9) due to the presence of Na2CO3. The concentration range of Cr, Ni, Cu, Zn, As, Cd, and Pb in the sediment samples collected from the salt lakes in the Ordos Plateau followed the order of Cr > Zn > Ni > Pb > Cu > As > Cd. The Cr concentration values were higher in Chagannaoer and Hongjiannao; however, the Ni, Cu, and Zn values were higher in Beida Pond and Gouchi Pond. The geoaccumulation index (Igeo) and enrichment factor (EF) consistently indicated that Cr posed the greatest potential ecological risk and that Ni, Cu, and Zn pollution was more severe in Beida Pond and Gouchi Pond than in Chagannaoer or Hongjiannao. However, the ecological risk index and potential ecological risk value indicated that these heavy metals posed low risks to the environment. The risk assessment code (RAC) revealed that Pb and Cr exhibited no mobility and had low potential bioavailability risk. Meanwhile, Zn, Ni, and As were categorized as medium risk. Cu had the highest mobility and was categorized as high risk. Principal component analysis for the four salt lakes revealed that the source of Ni, Cu, Zn, and Cd might be associated with water-soluble elements associated with aqueous migration, while the source of Cr, Pb, and As might be the lithospheric minerals carried by dust storms. Pearson's correlation analysis indicated that clay minerals were the primary adsorbers of Ni, Cu, Zn, and Cd. Moreover, pH was identified as the main environmental factor controlling the distribution of heavy metals in the salt lakes.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , China , Argila , Poeira/análise , Monitoramento Ambiental , Sedimentos Geológicos/química , Humanos , Lagos/química , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Água/análise , Poluentes Químicos da Água/análiseRESUMO
The article presents the results of studying the biodiversity and biotechnological potential of halophilic microorganisms from the thermal highly mineralized Berikey Lake, the salty Lake Tarumovskoye and saline soils of the Peri-Caspian Lowland (Republic of Daghestan). Denitrifying halophilic bacteria of the genus Halomonas and Virgibacillus were identified using microbiological methods and 16S rRNA gene analysis. A new species Halomonas sp. G2 (MW386470) with a similarity of the nucleotide sequences of the 16S rRNA genes is 95 %. Strain G2 is an extreme halophile capable of growing in the range of 5-25 % NaCl (optimum 25 %) and forming a carotenoid pigment. Mesophil, 30-37 °Ð¡ (optimum 30 °Ð¡); neutrophil, pH 6-8 (optimum 7.2-7.4). Strain G2 chemolithotroph; reduces nitrate or nitrite as electron donors; catalase-, amylase-, protease- and ß-galactosidase-positive; lipase-, oxidase- and urease-negative. Not able to hydrolyze inositol, indole; produces lysine, gelatin, ectoine; uses citrate and sodium malate as a source of carbon and energy; does not produce ornitin, H2S or acid from d-mannose, sucrose, glycerol, cellobiose, except for lactose and d-glucose. Susceptible to trimethoprim, ciprofloxacin, ofloxacin, kanamycin, vancomycin, rifampicin, cefuroxime, ampicillin, ceftazidime, fosfomycin, clarithromycin, cefepime, cefaclor. The G+C content in DNA is 67.3 %. A distinctive characteristic of the isolate was the production of industrially significant hydrolytic enzymes such as amylase, protease, ß-galactosidase, and oxidoreductase (catalase) at a NaCl concentration of 25 % in the medium. Habitat: saline soils on the territory of the Tersko-Kumskaya lowland (Republic of Daghestan, Russia). The rest of the halophilic isolates of H. ventosae G1 (MW386469), H. elongata G3 (MW386471), V. salinarius B2 (MW386472), and V. salinarius B3 (MW386473) had a high degree of similarity (100 %) with the type strains of H. elongata DSM 2581Т and V. salarius DSM 18441Т ; the content of G+C in DNA was 65.8, 66.5, 42.8 and 37.3 %, respectively. The strains had a high biotechnological potential at NaCl concentrations of 5 and 25 % in the medium. The data obtained expanded the understanding of the diversity and ecological significance of denitrifying bacteria in the functioning of arid ecosystems and make it possible to identify strains producing enzymes of industrial importance.
RESUMO
Halophilic archaea represent a promising natural source of carotenoids. However, little information is available about these archaeal metabolites and their biological effects. In the present work, carotenoids of strains Haloferax sp. ME16, Halogeometricum sp. ME3 and Haloarcula sp. BT9, isolated from Algerian salt lakes, were produced, extracted and identified by high-performance liquid chromatography-diode array detector and liquid chromatography-mass spectrometry. Analytical results revealed a variation in the composition depending on the strain with a predominance of bacterioruberin. The evaluation of antioxidant capacity using ABTS [(2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] and DPPH (2,2-diphenyl-1-picrylhydrazyl) assays showed that these extracts have a strong antioxidant potential, in particular those of Haloferax sp. ME16 which displayed antioxidant power significantly higher than that of ascorbic acid used as standard. Antibacterial activity of carotenoid extracts against four human-pathogenic strains and four fish-pathogenic strains was evaluated by agar disk diffusion method. The results showed a good antibacterial activity. These findings suggest that the C50 carotenoids from the studied strains offer promising prospects for biotechnological applications.
Assuntos
Carotenoides , Lagos , Animais , Antioxidantes/análise , Antioxidantes/farmacologia , Carotenoides/análise , Cromatografia Líquida de Alta Pressão , Humanos , Extratos VegetaisRESUMO
Many regions across the globe are shifting to more arid climates. For shallow lakes, decreasing rainfall volume and timing, changing regional wind patterns and increased evaporation rates alter water regimes so that dry periods occur more frequently and for longer. Drier conditions may affect fauna directly and indirectly through altered physicochemical conditions in lakes. Although many studies have predicted negative effects of such changes on aquatic biodiversity, empirical studies demonstrating these effects are rare. Global warming has caused severe climatic drying in southwestern Australia since the 1970s, so we aimed to determine whether lakes in this region showed impacts on lake hydroperiod, water quality, and α, ß and γ diversity of lake invertebrates from 1998 to 2011. Seventeen lakes across a range of salinities were sampled biennially in spring in the Wheatbelt and Great Southern regions of Western Australia. Multivariate analyses were used to identify changes in α, ß and γ diversity and examine patterns in physicochemical data. Salinity and average rainfall partially explained patterns in invertebrate richness and assemblage composition. Climatic drying was associated with significant declines in lake depth, increased frequency of dry periods, and reduced α and γ diversity (γ declined from ~300 to ~100 taxa from 1998 to 2011 in the 17 wetlands). In contrast, ß diversity remained consistently high, because each lake retained a distinct fauna. Mean α diversity per-lake declined both in lakes that dried and lakes that did not dry out, but lakes which retained a greater proportion of their maximum depth retained more α diversity. Accumulated losses in α diversity caused the decline in γ diversity likely through shrinking habitat area, fewer stepping stones for dispersal and loss of specific habitat types. Biodiversity loss is thus likely from lakes in drying regions globally. Management actions will need to sustain water depth in lakes to prevent biodiversity loss.
Assuntos
Invertebrados , Lagos , Animais , Biodiversidade , Ecossistema , Áreas AlagadasRESUMO
High morphological plasticity in populations of brine shrimp subjected to different environmental conditions, mainly salinity, hindered for centuries the identification of the taxonomic entities encompassed within Artemia. In addition, the mismatch between molecular and morphological evolution rates complicates the characterization of evolutionary lineages, generating taxonomic problems. Here, we propose a phylogenetic hypothesis for Artemia based on two new complete mitogenomes, and determine levels of congruence in the definition of evolutionary units using nuclear and mtDNA data. We used a fossil of Artemia to calibrate the molecular clock and discuss divergence times within the genus. The hypothesis proposed herein suggests a more recent time frame for lineage splitting than previously considered. Phylogeographic analyses were performed using GenBank available mitochondrial and nuclear markers. Evidence of gen e flow, identified through discordances between nuclear and mtDNA markers, was used to reconsider the specific status of some taxa. As a result, we consider Artemia to be represented by five evolutionary units: Southern Cone, Mediterranean-South African, New World, Western Asian, and Eastern Asian Lineages. After an exhaustive bibliographical revision, unavailable names for nomenclatural purposes were discarded. The remaining available names have been assigned to their respective evolutionary lineage. The proper names for the evolutionary units in which brine shrimps are structured remain as follows: Artemia persimilis Piccinelli & Prosdocimi, 1968 for the Southern Cone Lineage, Artemia salina (Linnaeus, 1758) for the Mediterranean-SouthAfrican Lineage, Artemia urmiana Günther, 1899 for the Western Asian Lineage, and Artemia sinica Cai, 1989 for the Eastern Asian Lineage. The name Artemia monica Verrill, 1869 has nomenclatural priority over A. franciscana Kellogg, 1906 for naming the New World Lineage. New synonymies are proposed for A. salina (= C. dybowskii Grochowski, 1896 n. syn., and A. tunisiana Bowen & Sterling, 1978 n. syn.), A. monica (= A. franciscana Kellogg, 1906 n. syn., and A. salina var. pacifica Sars, 1904 n. syn.); A. urmiana (= B. milhausenii Fischer de Waldheim, 1834 n. syn., A. koeppeniana Fischer, 1851 n. syn., A. proxima King, 1855 n. syn., A. s. var. biloba Entz, 1886 n. syn., A. s. var. furcata Entz, 1886 n. syn., A. asiatica Walter, 1887 n. syn., A. parthenogenetica Bowen & Sterling, 1978 n. syn., A. ebinurica Qian & Wang, 1992 n. syn., A. murae Naganawa, 2017 n. syn., and A. frameshifta Naganawa & Mura, 2017 n. syn.). Internal deep nuclear structuring within the A. monica and A. salina clades, might suggest the existence of additional evolutionary units within these taxa.
RESUMO
The brines of natural salt lakes with total salt concentrations exceeding 30% are often colored red by dense communities of halophilic microorganisms. Such red brines are found in the north arm of Great Salt Lake, Utah, in the alkaline hypersaline lakes of the African Rift Valley, and in the crystallizer ponds of coastal and inland salterns where salt is produced by evaporation of seawater or some other source of saline water. Red blooms were also reported in the Dead Sea in the past. Different types of pigmented microorganisms may contribute to the coloration of the brines. The most important are the halophilic archaea of the class Halobacteria that contain bacterioruberin carotenoids as well as bacteriorhodopsin and other retinal pigments, ß-carotene-rich species of the unicellular green algal genus Dunaliella and bacteria of the genus Salinibacter (class Rhodothermia) that contain the carotenoid salinixanthin and the retinal protein xanthorhodopsin. Densities of prokaryotes in red brines often exceed 2-3×107 cells/mL. I here review the information on the biota of the red brines, the interactions between the organisms present, as well as the possible roles of the red halophilic microorganisms in the salt production process and some applied aspects of carotenoids and retinal proteins produced by the different types of halophiles inhabiting the red brines.
Assuntos
Sais , Microbiologia da Água , Organismos Aquáticos , Biota , Cor , Comércio , Consórcios Microbianos , Pigmentos Biológicos , Águas SalinasRESUMO
This paper presents the results of radioecological monitoring study of natural radionuclide 210Po in 11 lakes located in different regions of the Crimean peninsula. These investigations of the Crimean salt lakes were conducted for the first time in the history. The main objectives of this work were: to determine the features of the 210Ро behavior in the salt lakes ecosystems, as well as calculation of the doses received by the lakes hydrobionts from α-radiation of absorbed 210Po. Concentrations of 210Po in the water, suspended matter, the bottom sediments and biota were determined by radiochemical processing and α-spectroscopy measurements. The concentrations of dissolved 210Po in the water of investigated lakes were in 0.9-327.1 times higher than in the Black Sea closest regions. The highest concentrations of 210Po in water were determined in the lakes of the Kerchenskaya group. These lakes are located on the territory of Crimea where oil is produced. The 210Ро activity concentrations in the bottom sediments from Crimean salt lakes were comparable with those of the Black Sea coastal zone. Concentration ratio (CR) of polonium in suspended matter ranged from 10 to 104 for different lakes. A significant trend in a decrease of CR values of 210Ро for suspended matter with increasing water salinity was revealed. High levels of 210Po accumulation were noted for adult crustacean Artemia spp. (typical inhabitant of the Crimean saline lakes). The CR of 210Po for adult Artemia spp. reached 105 while the CR of this radionuclide by their cysts was significantly lower. The absorbed doses from 210Po α-radiation calculated for adult Artemia spp. were more than 60 times lower than the permissible dose rate for biota (IAEA, 1992).The obtained results will be used to identify the biogeochemical peculiarities in behavior of the main dose-formative radionuclide 210Po, in the water ecosystems with different salinity, including water reservoirs poorly studied in the radioecological aspect and having extreme condition for the existence of lots of species of hydrobionts, such as hypersaline Crimean lakes.
Assuntos
Monitoramento de Radiação , Poluentes Radioativos da Água , Mar Negro , Ecossistema , Lagos , PolônioRESUMO
The relative importance of local environments and dispersal limitation in shaping denitrifier community structure remains elusive. Here, we collected soils from 36 riverine, lacustrine and palustrine wetland sites on the remote Tibetan Plateau and characterized the soil denitrifier communities using high-throughput amplicon sequencing of the nirS and nirK genes. Results showed that the richness of nirS-type denitrifiers in riverine wetlands was significantly higher than that in lacustrine wetlands but not significantly different from that in palustrine wetlands. There was no clear distinction in nir community composition among the three kinds of wetlands. Irrespective of wetland type, the soil denitrification rate was positively related to the abundance, but not the α-diversity, of denitrifying communities. Soil moisture, carbon availability and soil temperature were the main determinants of diversity [operational taxonomic unit (OTU) number] and abundance of thenirS-type denitrifier community, while water total organic carbon, soil NO3- and soil moisture were important in controlling nirK-type denitrifier diversity and abundance. The nirS community composition was influenced by water electrical conductivity, soil temperature and water depth, while the nirK community composition was affected by soil electrical conductivity. Spatial distance explained more variation in the nirS community composition than in the nirK community composition. Our findings highlight the importance of both environmental filtering and spatial distance in explaining diversity and biogeography of soil nir communities in remote and relatively undisturbed wetlands.
Assuntos
Solo , Áreas Alagadas , Carbono , Desnitrificação/genética , Solo/química , Microbiologia do Solo , Tibet , ÁguaRESUMO
Sedimentary strata on Mars often contain a mix of sulfates, iron oxides, chlorides, and phyllosilicates, a mineral assemblage that is unique on Earth to acid brine environments. To help characterize the astrobiological potential of depositional environments with similar minerals present, samples from four naturally occurring acidic salt lakes and adjacent mudflats/sandflats in the vicinity of Norseman, Western Australia, were collected and analyzed. Lipid biomarkers were extracted and quantified, revealing biomarkers from vascular plants alongside trace microbial lipids. The resilience of lipids from dead organic material in these acid saline sediments through the pervasive stages of early diagenesis lends support to the idea that sulfates, in tandem with phyllosilicates and iron oxides, could be a viable target for biomarkers on Mars. To fully understand the astrobiological potential of these depositional environments, additional investigations of organic preservation in ancient acidic saline sedimentary environments are needed.
Assuntos
Exobiologia/métodos , Sedimentos Geológicos/química , Marte , Minerais/análise , Biomarcadores/análise , Compostos Férricos/análise , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Lagos/análise , Lagos/química , Lipídeos/análise , Sulfatos/análise , Austrália OcidentalRESUMO
Two halophilic archaeal strains, SHR37T and NEN6, were isolated from salt lakes located in the Tibet and Xinjiang regions of China. The two strains were found to form a single cluster (99.9% and 99.3% similarity, respectively) separating them from the six current members of Natronorubrum (94.7-96.9% and 86.1-90.8% similarity, respectively) on the basis of the 16S rRNA and rpoB' gene sequence similarities and phylogenetic analysis. Diverse phenotypic characteristics differentiate strains SHR37T and NEN6 from current Natronorubrum members. Their polar lipids are C20C20 and C20C25glycerol diether derivatives of PG, PGP-Me, and a major gycolipid chromatographically identical to disulfated mannosyl glucosyl diether (S2-DGD). Four minor unidentified gycolipids are also present. The OrthoANI and in silico DDH values of the two strains were 97.3% and 76.1%, respectively, which were much higher than the threshold values proposed as a species boundary (ANI 95-96% and in silico DDH 70%), which revealed that the two strains represent one species; the two values (ANI 79.0-81.9% and in silico DDH 23.5-25.7%) of the strains examined in this study and the current members of Natronorubrum are much lower than the recommended threshold values, suggesting that strains SHR37T and NEN6 represent a genomically different species of Natronorubrum. These results showed that strains SHR37T (= CGMCC 1.15233T = JCM 30845T) and NEN6 (= CGMCC 1.17161) represent a novel species of Natronorubrum, for which the name Natronorubrum halophilum sp. nov. is proposed.
Assuntos
Halobacteriaceae/classificação , Halobacteriaceae/genética , Halobacteriaceae/isolamento & purificação , China , Classificação , DNA Arqueal , Genoma Arqueal , Glicolipídeos/química , Halobacteriaceae/metabolismo , Lagos , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , TibetRESUMO
This paper aims to characterize halophilic bacteria inhabiting Algerian Saline Ecosystems (Sebkha and Chott) located in arid and semi-arid ecoclimate zones (Northeastern Algeria). In addition, screening of enzymatic activities, heavy metal tolerance and antagonistic potential against phytopathogenic fungi were tested. A total of 74 bacterial isolates were screened and phylogenetically characterized using 16S rRNA gene sequencing. The results showed a heterogeneous group of microorganisms falling within two major phyla, 52 strains belonging to Firmicutes (70.2%) and 22 strains (30.8%) of γ-Proteobacteria. In terms of main genera present, the isolates were belonging to Bacillus, Halobacillus, Lentibacillus, Oceanobacillus, Paraliobacillus, Planomicrobium, Salicola, Terribacillus, Thalassobacillus, Salibacterium, Salinicoccus, Virgibacillus, Halomonas, Halovibrio, and Idiomarina. Most of the enzymes producers were related to Bacillus, Halobacillus, and Virgibacillus genera and mainly active at 10% of growing salt concentrations. Furthermore, amylase, esterase, gelatinase, and nuclease activities ranked in the first place within the common hydrolytic enzymes. Overall, the isolates showed high minimal inhibitory concentration values (MIC) for Ni2+ and Cu2+ (0.625 to 5 mM) compared to Cd2+ (0.1 to 2 mM) and Zn2+ (0.156 to 2 mM). Moreover, ten isolated strains belonging to Bacillus, Virgibacillus and Halomonas genera, displayed high activity against the pathogenic fungi (Botrytis cinerea, Fusarium oxyporum, F. verticillioides and Phytophthora capsici). This study on halophilic bacteria of unexplored saline niches provides potential sources of biocatalysts and novel bioactive metabolites as well as promising candidates of biocontrol agents and eco-friendly tools for heavy metal bioremediation.
Assuntos
Antibiose , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biota , Microbiologia Ambiental , Salinidade , Argélia , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fungos/crescimento & desenvolvimento , Hidrolases/análise , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
In June 2019, the 12th International Conference on Halophilic Microorganisms - Halophiles 2019, was held in Cluj-Napoca, Romania. This thematic issue of FEMS Microbiology Letters contains papers based on lectures and posters presented at the conference. We here provide a short overview of past research on hypersaline environments in Romania and the microorganisms inhabiting them, and briefly present the papers published in this thematic issue.
Assuntos
Halobacteriales/fisiologia , Microbiota/fisiologia , Congressos como Assunto , Ecologia , Fisiologia , RomêniaRESUMO
The diversity of haloarchaea associated with different dry salt lakes in northeastern Algeria was investigated together with their potential of hydrolytic enzyme production. A total of 68 aerobic halophilic archaea were isolated from saline sediments. Based on the 16S rRNA gene sequencing, the isolates were assigned to seven phylotypes within the class Halobacteria, namely Haloarcula, Halococcus, Haloferax, Halogeometricum, Haloterrigena, Natrialba, and Natrinema. The results showed that Haloferax group was found to be dominant in all samples (30 isolates) (44%) with high diversity, followed by Halococcus spp. (13%) (9 isolates). All phylotypes are extreme halophiles and thermotolerant with the ability to grow at temperatures up to 48⯰C. In addition, the screening for extracellular halophilic enzymes showed that 89.7% of the isolates were able to produce at least two types of the screened enzymes. The strains producing esterase, gelatinase, inulinase, cellulase and protease activities were the most diverse functional group. These data showed an abundant and diverse haloarchaeal community, detected in Algerian wetland ecosystems, presenting a promising source of molecules with important biotechnological applications.
Assuntos
Esterases/genética , Halobacteriaceae/classificação , Halobacteriaceae/enzimologia , Peptídeo Hidrolases/genética , Argélia , Biodiversidade , Halobacteriaceae/genética , Halobacteriaceae/isolamento & purificação , Lagos/química , RNA Ribossômico 16S/genética , Salinidade , Cloreto de Sódio/análise , Áreas AlagadasRESUMO
At the first time for the period after the Chernobyl NPP accident the nature of the redistribution of the 90Sr concentrations in components of the ecosystems of the salt lakes of the Crimea were identified and described. Concentration of 90Sr in water of the salt lakes depends on the sources of the inflow this radionuclide into aquatic ecosystems and salinity level of lakes water. Until April 2014 the flow of the Dnieper river water through the Northern-Crimean canal was more important factor of contamination of salt lakes of the Crimea by 90Sr, than atmospheric fallout of this radionuclide after the Chernobyl NPP accident. Concentrations of 90Sr in water of the salt lakes of the Crimea exceeded 2.4-156.5 times its concentrations in their bottom sediments. The 90Sr dose commitments to hydrophytes, which were sampled from the salt lakes of the Crimea have not reached values which could impact them during entire the after-accident period.
Assuntos
Lagos/química , Monitoramento de Radiação , Radioisótopos de Estrôncio/análise , Poluentes Radioativos da Água/análise , Acidente Nuclear de Chernobyl , Ecossistema , Salinidade , UcrâniaRESUMO
The concentrations and distribution of monoaromatic hydrocarbons (benzene, toluene, ethyl benzene and the sum of m-, p- and o-, xylenes) were determined in the sediments of coastal lagoons of the Gulf of Saros, using a static headspace GC-MS. The total concentrations of BTEX compounds ranged from 368.5 to below detection limit 0.6µgkg-1 dw, with a mean value of 61.5µgkg-1 dw. The light aromatic fraction of m-, p-xylene was the most abundant compound (57.1% in average), and followed by toluene (38.1%)>ethylbenzene (4.1%)>o-xylene (2.5%)>benzene (1.1%). The factor analysis indicated that the levels and distribution of BTEX compounds depend on the type of contaminant source (mobile/point), absorbance of compounds in sediment, and mobility of benzene compound and degradation processes. Point sources are mainly related to agricultural facilities and port activities while the dispersion of compounds are related with their solubility, volatility and effect of sea/saline waters on lagoons.