Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.114
Filtrar
1.
ACS Nano ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316511

RESUMO

The reconstructed moiré superlattices of the transition metal chalcogenide (TMD), formed by the combined effects of interlayer coupling and intralayer strain, provide a platform for exploring quantum physics. Here, using scanning tunneling microscopy/spectroscopy, we observe that the strained WSe2/WS2 moiré superlattices undergo various out-of-plane atomically buckled configurations, a phenomenon termed out-of-plane reconstruction. This evolution is attributed to the differentiated response of intralayer strain in high-symmetry stacking regions to external strain. Notably, in larger out-of-plane reconstructions, there is a significant alteration in the local density of states (LDOS) near the Γ point in the valence band, exceeding 300%, with the moiré potential in the valence band surpassing 200 meV. Further, we confirm that the variation in interlayer coupling within high-symmetry stacking regions is the main factor affecting the moiré electronic states rather than the intralayer strain. Our study unveils intrinsic regulating mechanisms of out-of-plane reconstructed moiré superlattices and contributes to the study of reconstructed moiré physics.

2.
ACS Nano ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304184

RESUMO

Open-shell polycyclic aromatic hydrocarbons (PAHs) represent promising building blocks for carbon-based functional magnetic materials. Their magnetic properties stem from the presence of unpaired electrons localized in radical states of π character. Consequently, these materials are inclined to exhibit spin delocalization, form extended collective states, and respond to the flexibility of the molecular backbones. However, they are also highly reactive, requiring structural strategies to protect the radical states from reacting with the environment. Here, we demonstrate that the open-shell ground state of the diradical 2-OS survives on a Au(111) substrate as a global singlet formed by two unpaired electrons with antiparallel spins coupled through a conformational-dependent interaction. The 2-OS molecule is a "protected" derivative of the Chichibabin's diradical, featuring a nonplanar geometry that destabilizes the closed-shell quinoidal structure. Using scanning tunneling microscopy (STM), we localized the two interacting spins at the molecular edges, and detected an excited triplet state a few millielectronvolts above the singlet ground state. Mean-field Hubbard simulations reveal that the exchange coupling between the two spins strongly depends on the torsional angles between the different molecular moieties, suggesting the possibility of influencing the molecule's magnetic state through structural changes. This was demonstrated here using the STM tip to manipulate the molecular conformation, while simultaneously detecting changes in the spin excitation spectrum. Our work suggests the potential of these PAHs as all-carbon spin-crossover materials.

3.
Nano Lett ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302642

RESUMO

The interaction of water with solid surfaces is crucial for a wide range of disciplines, including catalysis, environmental science, corrosion, geology, and biology. In this study, we present a combined experimental and theoretical investigation that elucidates the interaction of water with a model iron oxide surface under near ambient conditions (i.e., room temperature and water vapor in the mbar range). Our findings reveal that surface hydroxylation can be controlled at the nanoscale by the local properties of the oxide film, such as local rumpling and electrostatic potential. The iron oxide surface presents alternating hydrophilic and hydrophobic domains, creating after water exposure a hexagonal pattern with a pitch of approximately 3 nm, where the highly hydroxylated regions act as nucleation centers for nanoconfined water molecule clusters.

4.
Ultramicroscopy ; 267: 114053, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39306987

RESUMO

The main feature of vicinal surfaces of crystals characterized by the Miller indices (hhm) is rather small width (less than 10 nm) and substantially large length (more than 200 nm) of atomically-flat terraces. This makes difficult to apply standard methods of image processing and correct visualization of crystalline lattices at the terraces and multiatomic steps. Here we consider two procedures allowing us to minimize effects of both small-scale noise and global tilt of sample: (i) analysis of the difference of two Gaussian blurred images, and (ii) subtraction of the plane, whose parameters are determined by optimization of the histogram of the visible heights, from raw topography image. It is shown that both methods provide nondistorted images demonstrating atomic structures on vicinal Si(556) and Si(557) surfaces.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39312946

RESUMO

Positionally ordered but orientationally disordered molecular structures are commonly found in materials like liquid crystals and molecular glasses. Understanding these structures and their phase transitions helps in designing materials with a wide range of applications. Herein, we report the formation of positionally ordered but orientationally disordered structures via adsorption and organization of 2,4,6-tri([1,1'-biphenyl]-2-yl)-1,3,5-triazine (TBTA) molecules on different coin metal surfaces. It is found that deposition of TBTA molecules on Au(111), Ag(111), and Cu(111) surfaces leads to similar hexagonal lattices, differing in molecular orientation. The molecules have two orientations on Au(111) and Ag(111) surfaces, giving birth to positionally ordered but orientationally disordered molecular structures. The regularity of the structures on Ag(111) is slightly better than that on Au(111). On Cu(111) surface, however, all molecules exhibit the same orientation, resulting in a long-range ordered hexagonal assembly. The density functional theory calculations demonstrate that the matching between the substrate lattice and the hexagonal lattice of molecular structure is responsible for the different molecular organizations.

6.
ACS Nano ; 18(37): 25478-25488, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39236319

RESUMO

SnSe, an environmental-friendly group-IV monochalcogenide semiconductor, demonstrates outstanding performance in various applications ranging from thermoelectric devices to solar energy harvesting. Its ultrathin films show promise in the fabrication of ferroelectric nonvolatile devices. However, the microscopic identification and manipulation of point defects in ultrathin SnSe single crystalline films, which significantly impact their electronic structure, have been inadequately studied. This study presents a comprehensive investigation of point defects in monolayer SnSe films grown via molecular beam epitaxy. By combining scanning tunneling microscopy (STM) characterization with first-principles calculations, we identified four types of atomic/molecular vacancies, four types of atomic substitutions, and three types of extrinsic defects. Notably, we have demonstrated the ability to convert a substitutional defect into a vacancy and to reposition an adsorbate by manipulating a single atom or molecule using an STM tip. We have also analyzed the local atomic displacement induced by the vacancies. This work provides a solid foundation for engineering the electronic structure of future SnSe-based nanodevices.

7.
ACS Nano ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263972

RESUMO

The epitaxial growth of wafer-scale two-dimensional (2D) semiconducting transition metal dichalcogenides (STMDCs) single crystals is the key premise for their applications in next-generation electronics. Despite significant advancements, some fundamental factors affecting the epitaxy growth have not been fully uncovered, e.g., interface coupling strength, adlayer-substrate lattice matching, substrate step-edge-guiding effects, etc. Herein, we develop a model system to tackle these issues concurrently, and realize the epitaxial growth of wafer-scale monolayer tungsten disulfide (WS2) single crystals on the Au(111) substrate. This epitaxial system is featured with good adlayer-substrate lattice matching, obvious step-edge-guiding effect for the unidirectionally aligned nucleation/growth, and relatively weaker interfacial interaction than that of monolayer MoS2/Au(111), as evidenced by the evolution of a uniform Moiré pattern and an intrinsic band gap, according to on-site scanning tunneling microscopy/spectroscopy (STM/STS) characterizations and density functional theory calculations. Intriguingly, the unidirectionally aligned monolayer WS2 domains along the Au(111) steps can behave as ultrasensitive templates for surface-enhanced Raman scattering detection of organic molecules, due to the obvious charge transfer occurred at substrate step edges. This work should hereby deepen our understanding of the epitaxy mechanism of 2D STMDCs on single-crystal substrates, and propel their wafer-scale production and applications in various cutting-edge fields.

8.
Micron ; 187: 103719, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293141

RESUMO

Scanning Tunneling Microscopy (STM) is widely used for observing atomic structures due to its ultra-high spatial resolution. As the core units of STM, the coarse stepper motor and imaging unit, have conflicting size requirements for piezo tubes. Longer piezo tubes yield greater output force and easier movement for the motor, while shorter tubes enhance imaging precision and stability for the scanner. Traditional STMs typically employ a large piezo tube for coarse stepping and a smaller one for independent imaging to address this issue. Here, we present the new design of a piezo tube stacked STM, in which two independent piezo tubes act together during tip-sample approach process and only one shorter tube works during scanning imaging. Both tubes are fixed to the framework, ensuring high rigidity and compactness. The new design enables us to achieve both coarse stepping and imaging functions with a total length of only 25 mm for the two tubes, effectively reducing the length of whole STM, facilitating its integration into narrow low-temperature spaces for imaging applications. Using this device, we obtained high-quality atomic images of graphite sample surfaces at room temperature. Continuous scanning imaging of the same area on Au film at 300 K demonstrates the STM's high stability in both X-Y and Z directions. Atomic images, I-V spectra, and di/dv spectra obtained at 2 K on graphite surface illustrate the excellent application potential of this device in low-temperature environments. Finally, atomic images obtained of graphite in sweeping the magnetic fields from 0 T to 11 T in a huge vibrational dry magnet prove the new STM's excellent performance in extreme conditions.

9.
Angew Chem Int Ed Engl ; : e202413673, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278835

RESUMO

We present a molecular-scale investigation of the axial coordination effect of atomic iodine on Fe-N4 sites in the oxygen reduction reaction (ORR) by electrochemical scanning tunneling microscopy (ECSTM). A well-defined model catalytic system with explicit and uniform iodine-coordinated Fe-N4 sites was constructed facilely by the self-assembly of iron(II) phthalocyanine (FePc) on an I-modified Au(111) surface. The electrocatalytic activity of FePc for the ORR shows a tremendous enhancement with axial iodine ligands. The ingenious modulation of the electronic structure of Fe sites to evoke a higher spin configuration by axial iodine was evidenced. In addition, the interaction strength between reactive oxygen species and active centers becomes weaker due to the presence of iodine ligands, and the reaction is thermodynamically preferable. Moreover, the facilitated reaction dynamics of FePc on I/Au(111) were explicitly determined via in-situ ECSTM potential pulse experiments. Noteworthily, axial atomic iodine was found inefficacious for improving the activity of Co-N4 sites, and electron rearrangement was not detected, demonstrating that adequate interactions between axial ligands and metal sites for optimizing electronic structures and catalytic behaviors are prerequisites for the impactful role of axial ligands.

10.
ACS Nano ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39285838

RESUMO

Understanding how carbon dioxide (CO2) behaves and interacts with surfaces is paramount for the development of sensors and materials to attempt CO2 mitigation and catalysis. Here, we combine simultaneous atomic force microscopy (AFM) and scanning tunneling microscopy (STM) using CO-functionalized probes with density functional theory (DFT)-based simulations to gain fundamental insight into the behavior of physisorbed CO2 molecules on a gold(111) surface that also contains one-dimensional metal-organic chains formed by 1,4-phenylene diisocyanide (PDI) bridged by gold (Au) adatoms. We resolve the structure of self-assembled CO2 islands, both confined between the PDI-Au chains as well as free-standing on the surface and reveal a chiral arrangement of CO2 molecules in a windmill-like structure that encloses a standing-up CO2 molecule and other foreign species existing at the surface. We identify these species by the comparison of height-dependent AFM and STM imaging with DFT-calculated images and clarify the origin of the kagome tiling exhibited by this surface system. Our results show the complementarity of AFM and STM using functionalized probes and their potential, when combined with DFT, to explore greenhouse gas molecules at surface-supported model systems.

11.
Angew Chem Int Ed Engl ; : e202414801, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226113

RESUMO

Developing long-chain molecules with stable helical structures is of significant importance for understanding and modulating the properties and functions of helical biological macromolecules, but challenging. In this work, an effective and facile approach to stabilize folded helical structures by strengthening through-space conjugation is proposed, using new ortho-hexaphenylene (o-HP) derivatives as models. The structure-activity relationship between the through-space conjugation and charge transport behavior of the prepared folded helical o-HP derivatives is experimentally and theoretically investigated. It is demonstrated that the through-space conjugation within o-HP derivatives can be strengthened by introducing electron-withdrawing pyridine and pyrazine, which can effectively stabilize the helical structures of o-HP derivatives. Moreover, scanning tunneling microscopy-break junction measurements reveal that the stable regular helical structures of o-HP derivatives open up dominant through-space charge transport pathways, and the single-molecule conductance is enhanced by more than 70% by strengthening through-space conjugation with pyridine and pyrazine. But the through-bond charge transport pathways contribute much less to the conductance of o-HP derivatives. These results not only provide a new method for exploring stable helical molecules, but also pave a stepping stone for deciphering and modulating the charge transport behavior of helical systems at the single-molecule level.

12.
ACS Nano ; 18(35): 24262-24268, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39158860

RESUMO

Controlling the surface diffusion of particles on 2D devices creates opportunities for advancing microscopic processes such as nanoassembly, thin-film growth, and catalysis. Here, we demonstrate the ability to control the diffusion of F4TCNQ molecules at the surface of clean graphene field-effect transistors (FETs) via electrostatic gating. Tuning the back-gate voltage (VG) of a graphene FET switches molecular adsorbates between negative and neutral charge states, leading to dramatic changes in their diffusion properties. Scanning tunneling microscopy measurements reveal that the diffusivity of neutral molecules decreases rapidly with a decreasing VG and involves rotational diffusion processes. The molecular diffusivity of negatively charged molecules, on the other hand, remains nearly constant over a wide range of applied VG values and is dominated by purely translational processes. First-principles density functional theory calculations confirm that the energy landscapes experienced by neutral vs charged molecules lead to diffusion behavior consistent with experiment. Gate-tunability of the diffusion barrier for F4TCNQ molecules on graphene enables graphene FETs to act as diffusion switches.

13.
Sci Rep ; 14(1): 18062, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103369

RESUMO

The design and implementation of dopant-based silicon nanoscale devices rely heavily on knowing precisely the locations of phosphorous dopants in their host crystal. One potential solution combines scanning tunneling microscopy (STM) imaging with atomistic tight-binding simulations to reverse-engineer dopant coordinates. This work shows that such an approach may not be straightforwardly extended to double-dopant systems. We find that the ground (quasi-molecular) state of a pair of coupled phosphorous dopants often cannot be fully explained by the linear combination of single-dopant ground states. Although the contributions from excited single-dopant states are relatively small, they can lead to ambiguity in determining individual dopant positions from a multi-dopant STM image. To overcome that, we exploit knowledge about dopant-pair wave functions and propose a simple yet effective scheme for finding double-dopant positions based on STM images.

14.
Chem Asian J ; : e202400620, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105250

RESUMO

Progress toward single-molecule electronics relies on a thorough understanding of the understanding of local physio-chemical processes and development of synthetic routines for controlled heterocoupling. We demonstrate a structurally unexpected ring closure process for a homo-coupled 4,4'-bipicenyl, realized in on-surface synthesis. An initial covalent C-C coupling of 4-bromopicene locks at lower temperatures the position and geometrically shields part of 4,4'-bipicenyl. Employing this effect of shielding might offer a path toward controlled stepwise hetero-coupling. At higher temperatures, a thermally activated three-dimensional rotation upon hydrogen dissociation, a dehydrogenative roto-cyclization, lifts the surface dimensionality restriction, and leads to the formation of a perylene. Thereby, the shielded molecular part becomes accessible again.

15.
MethodsX ; 13: 102857, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39105094

RESUMO

We increase the dynamical range of a scanning tunneling microscope (STM) by actively subtracting dominant current-harmonics generated by nonlinearities in the current-voltage characteristics that could saturate the current preamplifier at low junction impedances or high gains. The strict phase relationship between a cosinusoidal excitation voltage and the current-harmonics allows excellent cancellation using the displacement-current of a driven compensating capacitor placed at the input of the preamplifier. Removal of DC currents has no effect on, and removal of the first harmonic only leads to a rigid shift in differential conductance that can be numerically reversed by adding the known removal current. Our method requires no permanent change of the hardware but only two phase synchronized voltage sources and a multi-frequency lock-in amplifier to enable high dynamic range spectroscopy and imaging. • Active power filter • Dynamic range compression • High gain preamplifier.

16.
Angew Chem Int Ed Engl ; : e202411092, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109443

RESUMO

A lateral expansion of molecular spoked wheels (MSWs) based on an all-phenylene backbone is described. The MSWs contain a central hub, six spokes and a rim that is formed by a sixfold Yamamoto coupling of the respective non-cyclized dodecabromo precursor yielding MSWs with up to 30 phenylene rings in the perimeter. Attempts to prepare compounds of such size without flexible side groups at the spokes were unsuccessful, most probably due to an aggregation and accompanying oligomerization of the precursors during the cyclization. To overcome these problems, fluorene units are inserted into the spokes. These contain additional alkyl chains and lead to a curvature of the wheels. Quantum chemical calculations on the mechanism of the Yamamoto coupling leads to geometry and strain-related criteria for the successful rim closure to the respective MSW. Subsequently, MSWs are prepared with four and even six phenylene units at each edge of the hexagonal wheels. The resulting MSWs are characterized by spectroscopic methods, and additionally some of them are visualized via scanning tunneling microscopy (STM).

17.
Chemphyschem ; : e202400221, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121096

RESUMO

We investigate the combination of nitrogen doping and vacancies in highly ordered pyrolytic graphite (HOPG), to engineer defect sites with adjustable electronic properties. We combine scanning tunneling microscopy and spectroscopy and density functional theory calculations to reveal the synergistic effects of nitrogen and vacancies in HOPG. Our findings reveal a remarkable shift of the vacancy-induced resonance peak from an unoccupied state in pristine HOPG to an occupied state in nitrogen-doped HOPG. This shift directly correlates with the shift of the charge neutrality point resulting from the n-doping induced by substitutional nitrogen. These results open new avenues for defect engineering in graphite or graphene and achieving novel functionalities for chemical activity or electronic properties.

18.
ACS Nano ; 18(33): 22316-22324, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39120590

RESUMO

Structural evolution of solid catalyst surfaces induced by direct exposure to reaction gas has been extensively studied and is well understood. However, whether and how subsurface atomic structures are affected by the reaction atmosphere require further exploration. In this work, our results confirm that Cu clusters supported on FeO/Pt(111) (Cun/FeO/Pt) transform into surface CuCO complexes (CuCO/FeO/Pt) with exposure to CO at 78 K. Surprisingly, Cu clusters on Pt(111) buried under monolayer FeO film (FeO/Cun/Pt) can also transform into surface CuCO complexes on FeO/Pt(111) upon CO adsorption at 150 K. The place exchange of surface and subsurface Cu atoms at the FeO/Pt(111) surface can be mediated by exposing to CO at 150 K and keeping in ultrahigh vacuum at 300 K, alternatively. Calculation results reveal that CO adsorption induces restructuring of the FeO film above the Cu clusters, generating a diffusion channel for Cu atoms to pass through the FeO film and form surface CuCO, while Cu atoms remaining at the FeO-Pt interface are more thermodynamically favored without CO. Our work suggests that buried subsurface atoms may be involved in strong restructuring processes driven by reaction gas, which could strongly influence the catalytic performance.

19.
Nano Lett ; 24(34): 10674-10680, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39141815

RESUMO

The successful synthesis of borophene beyond the monolayer limit has expanded the family of two-dimensional boron nanomaterials. While atomic-resolution topographic imaging has been previously reported, vibrational mapping has the potential to reveal deeper insight into the chemical bonding and electronic properties of bilayer borophene. Herein, inelastic electron tunneling spectroscopy (IETS) is used to resolve the low-energy vibrational and electronic properties of bilayer-α (BL-α) borophene on Ag(111) at the atomic scale. Using a carbon monoxide (CO)-functionalized scanning tunneling microscopy tip, the BL-α borophene IETS spectra reveal unique features compared to single-layer borophene and typical CO vibrations on metal surfaces. Distinct vibrational spectra are further observed for hollow and filled boron hexagons within the BL-α borophene unit cell, providing evidence for interlayer bonding between the constituent borophene layers. These experimental results are compared with density functional theory calculations to elucidate the interplay between the vibrational modes and electronic states in bilayer borophene.

20.
Angew Chem Int Ed Engl ; : e202414583, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193816

RESUMO

The design of novel low-dimensional carbon materials is at the forefront of modern chemistry. Recently, on-surface covalent synthesis has emerged as a powerful strategy to synthesize previously precluded compounds and polymers. Here, we report a scanning probe microscopy study, complemented by theoretical calculations, about the sequential skeletal rearrangement of sumanene-based precursors into a coronene-based organometallic network by stepwise intra- and inter-molecular reactions on Au(111). Interestingly, upon higher annealing, the formed organometallic networks evolve into two-dimensional coronene-based covalently-linked patches through intermolecular homocoupling reactions. A new reaction mechanism is proposed based on the role of C-Au-C motifs to promote two stepwise carbon-carbon couplings to form cyclobutadiene bridges. Our results pave avenues for the conversion of molecular precursors on surfaces, affording the design of unexplored two-dimensional organometallic and covalent materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA