Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Heliyon ; 9(11): e21569, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027757

RESUMO

Using polycarbonate (PC) due to its incredible properties as a suitable replacement for inorganic glasses has been increasing. Nevertheless, the low hardness limits its applications in more industries. Hence, it requires to be coated with hard anti-scratch optical coatings to overcome these limitations. In the current work, sol-gel-prepared thin films based on (3-Glycidyloxypropyl) trimethoxysilane (GPTMS)-Al2O3 were applied on PC substrates. First, silica and alumina sols were synthesized by a sol-gel process, individually. Then, the prepared sols were mixed at different ratios and dip-coated on the plasma etched pretreatment PC substrates. Curing of the samples was done in an oven at 100 °C. The produced thin films were characterized by field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Attenuated total reflectance -Fourier transform infrared spectroscopy (ATR-FTIR), and UV/Vis spectroscopy techniques. The obtained results indicated that the PC hardness increased from 6B to H by deposition of nano-hybrid coatings. After applying a nano-hybrid coating, transmittance was increased from 88 % to 91 % and the reflectance decreased from 10 % to 5 %. Sample with a 1:4 GPTMS-Al2O3 ratio showed the best results.

2.
Gels ; 9(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37754356

RESUMO

The versatility of sol-gel systems makes them ideal for functional coatings in industry. However, existing coatings are either too thin or take too long to cure. To address these issues, this paper proposes using an atmospheric pressure plasma source to fully cure and functionalize thicker sol-gel coatings in a single step. The study explores coating various substrates with sol-gel layers to make them scratch-resistant, antibacterial, and antiadhesive. Microparticles like copper, zinc, or copper flakes are added to achieve antibacterial effects. The sol-gel system can be sprayed on and quickly functionalized on the substrate. The study focuses on introducing and anchoring particles in the sol-gel layer to achieve an excellent antibacterial effect by changing the penetration depth. Overall, this method offers a more efficient and effective approach to sol-gel coatings for industrial applications. In order to achieve a layer thickness of more than 100 µm, the second part of the study proposes a multilayer system comprising 15 to 30 µm thick monolayers that can be modified by introducing fillers (such as TiO2) or scratch-resistant chemicals like titanium isopropoxide. This system also allows for individual plasma functionalization of each sol-gel layer. For instance, the top layer can be introduced with antibacterial particles, while another layer can be enhanced with fillers to increase wear resistance. The study reveals the varying antibacterial effects of spherical particles versus flat flakes and the different scratch hardnesses induced by changes in pH, number of layers, and particle introduction.

3.
Skin Res Technol ; 29(8): e13420, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37632176

RESUMO

OBJECTIVE: The objective of this study is to propose a method for assessing the antiwear-ability (AW) or surface scratch-resistance (SR) efficacy of makeup products through in vitro experiments. MATERIALS AND METHOD: The method primarily involves measuring the change in weight as a means of evaluating the overall effectiveness. AW/SR effects are evaluated by applying a fixed amount of makeup product on artificial fake skin and comparing the weight difference after simulated friction/scratch. RESULTS: The in vitro results indicate that this method is easy to operate and yields repeatable data. It consistently reflects differences between samples when compared to clinical studies. CONCLUSIONS: This method effectively compares the AW/SR effects of makeup products and demonstrates utility in evaluating product efficacy and difference. It holds great scientific and practical value.


Assuntos
Pele Artificial , Humanos , Técnicas In Vitro , Fricção
4.
Materials (Basel) ; 17(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203938

RESUMO

This paper presents a detailed analysis of aluminium-doped zinc oxide (AZO) thin films and considers them a promising alternative to indium tin oxide in transparent electrodes. The study focusses on critical properties of AZO, including optical, electrical, and mechanical properties, with potential applications in displays, photovoltaic cells, and protective coatings. The deposited AZO thin films are characterised by excellent optical and electrical parameters, with transparency in the visible light range exceeding 80% and resistivity of 10-3 Ω·cm, which gives a high value of figure of merit of 63. Structural analysis confirms the nanocrystalline nature of as-deposited AZO thin films, featuring hexagonal ZnO, orthorhombic Al2O3, and cubic Al2ZnO4 phases. The study includes nanoindentation measurements, which reveal exceptional hardness (11.4 GPa) and reduced elastic modulus (98 GPa), exceeding typical values reported in the literature, highlighting their protective potential. Abrasion tests have shown extraordinary scratch resistance due to the lack of impact on topography and surface roughness up to 10,000 cycles. This comprehensive study demonstrated that as-deposited AZO thin films are multifunctional materials with exceptional optical, electrical, and mechanical properties. The findings open up possibilities for a variety of applications, especially in protective coatings, where the combination of hardness, scratch resistance, and transparency is both rare and valuable.

5.
Materials (Basel) ; 15(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36233893

RESUMO

The paper presents the results of an investigation of the influence of technological parameters on the microstructure, optical, electrical and nanomechanical properties of zinc oxide coatings prepared using the pulsed reactive magnetron sputtering method. Three sets of ZnOx thin films were deposited in metallic, shallow dielectric and deep dielectric sputtering modes. Structural investigations showed that thin films deposited in the metallic mode were nanocrystalline with mixed hexagonal phases of metallic zinc and zinc oxide with crystallite size of 9.1 and 6.0 nm, respectively. On the contrary, the coatings deposited in both dielectric modes had a nanocrystalline ZnO structure with an average crystallite size smaller than 10 nm. Moreover, coatings deposited in the dielectric modes had an average transmission of 84% in the visible wavelength range, while thin films deposited in the metallic mode were opaque. Measurements of electrical properties revealed that the resistivity of as-deposited thin films was in the range of 10-4 Ωcm to 108 Ωcm. Coatings deposited in the metallic mode had the lowest hardness of 2.2 GPa and the worst scratch resistance among all sputtered coatings, whereas the best mechanical properties were obtained for the film sputtered in the deep dielectric mode. The obtained hardness of 11.5 GPa is one of the highest reported to date in the literature for undoped ZnO.

6.
Materials (Basel) ; 15(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407775

RESUMO

The term "metal marking" is widely used to define the common phenomenon of tableware glazes being damaged by metallic cutlery. Appearing as unaesthetic gray marks and scratches resulting from normal conditions of use, these defects deeply affect the performance of ceramic products, especially in intensive environments, such as in the hospitality industry. The scope of this article is to establish a comprehensive review of the phenomenon, focusing on the physical and chemical mechanisms involved in the process, and their interactions and consequences. It also intends to list the different methods normally followed to avoid or at least reduce this defect, in order to enhance the durability of porcelain dishware. This manuscript also provides a review of the different testing methods developed and used by the tableware industry and technical centers to quantify the ability of porcelain tableware to produce metal marks. To face the current lack of any international or at least national standard testing procedure that would permit a reliable comparison of products, a new metal marking test developed at the Technological Center for Ceramic and Glass (CTCV) is presented as an alternative to common tests normally based on knives as a marking tool.

7.
MethodsX ; 9: 101627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198417

RESUMO

The surface properties of electrically conductive membranes (ECMs) govern their advanced abilities. During operation, these properties may differ considerably from their initially measured properties. Depending on their operating conditions, ECMs may undergo various degrees of passivation. ECM passivation can detrimentally impact their real time performance, causing large deviations from expected behaviour based on their initially measured properties. Quantifying these changes will enable consistent performance comparisons across the active and electrically conductive membrane research field. As such, consistent methods must be established to quantify ECM membrane properties. In this work, we proposed three standardized methods to assess the electrochemical, chemical, and physical stability of such membrane coatings: 1) electrochemical oxidation, 2) surface scratch testing, and 3) pressurized leaching. ECMs were synthesized by the most common approach - coating support ultrafiltration (UF) and/or microfiltration (MF) polyethersulfone (PES) membranes with carbon nanotubes (CNT) cross-linked with polyvinyl alcohol (PVA) and two types of cross-linkers (either succinic acid (SA) or glutaraldehyde (GA)). We then evaluated these ECMs based on the three standardized methods: 1) We evaluated electrochemical stability as a function of electro-oxidation induced by applying anodic potentials. 2) We measured the scratch resistance to quantify the surface mechanical stability. 3) We measured physical stability by quantifying the leaching of PVA during separation of a model foulant (polyethylene oxide (PEO)). Our methods can be extended to all types of electrically conductive membranes including MF, UF, nanofiltration (NF), and reverse osmosis (RO) ECMs. We propose that these fundamental measurements are critical to assessing the viability of ECMs for industrial MF, UF, NF, and RO applications.•Anodic-oxidation was used to check the electrochemical stability of ECMs•Depth of penetration resulted from scratch test is an indicator of the electrically conductive membrane coating's mechanical stability•The leaching of the main components forming the nanolayer was quantified to assess the membranes' physical stability.

8.
Nanomaterials (Basel) ; 11(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34947753

RESUMO

A single-walled carbon nanotube (SWCNT)-silica composite thin film on a quartz glass was formed by ultraviolet irradiation (20-40 °C) onto a spin-coated precursor film. With 7.4 mass% SWCNTs, the electrical resistivity reached 7.7 × 10-3 Ω·cm after UV-irradiation. The transmittance was >80% at 178-2600 nm, and 79%-73% at 220-352 nm. Heat treatment increased the transparency and pencil hardness, without affecting the low electrical resistivity. Raman spectroscopy and microscopic analyses revealed the excellent film morphology with good SWCNT dispersal. The low refractive index (1.49) and haze value (<1.5%) are invaluable for transparent windows for novel optoelectronic devices.

9.
Prog Biomater ; 10(4): 259-269, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34741278

RESUMO

Modification of dental and orthopedic implants' surface by coating them with bioactive materials, such as hydroxyapatite (HA), diminishes the implants' fixation time. Appropriate adhesion to the substrate and stability in biological conditions are essential requirements for these coatings. In this study, sol-gel-derived HA coating was applied on the Ti-6Al-4 V substrate, which is a high-performance alloy for manufacturing bone implants. Also, titanium dioxide (TiO2) which was prepared by the sol-gel method was used as an intermediate layer between HA coating and the substrate. The nano-scratch and potentiodynamic polarization tests were employed to evaluate the effectiveness of TiO2 intermediate layer on improving the scratch resistance, as an indicator of coating adhesion strength, and the corrosion resistance of the coated samples. The quality of the coating bonded to the substrate was studied by cross-sectional SEM images. The XRD tests indicated that HA and TiO2 coatings were formed with predetermined phase compositions. The biocompatibility of sol-gel-derived HA coating was established by simulated body fluid (SBF) immersion tests. The SEM images, along with the results of electrochemical and nano-scratch tests, proved the significant effect of a TiO2 intermediate layer on improving the scratch resistance and stability of HA coating on titanium alloy substrate.

10.
Materials (Basel) ; 14(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071606

RESUMO

BACKGROUND: Clinical success depends on the contact strength and wear resistance of medical devices made of polymer materials. The scientific goal resulted from the problem of using different methods of surface evaluation of materials used in the production of orthodontic appliances. The purpose of the work was an experimental comparative assessment of indentation hardness and scratch hardness and the sliding wear of four selected polymeric materials used in the manufacture of orthodontic appliances. METHODS: Four commercial materials were compared. Shore hardness tests and a scratch test with a Rockwell indenter were performed. A sliding wear test was performed using the ball-on-disc method. Statistical PCA and correlation analyses were performed. RESULTS: The results of scratch hardness measurements using a contact profilometer correlated with the Shore hardness to a greater extent than measurements made using an optical microscope. PCA showed that Shore hardness explains 45% of the total variance in all the results across the materials. CONCLUSIONS: The scratch hardness method allows for a more explicit ranking of orthodontic polymeric materials when measurements are made with a profilometer. The ranking of sliding wear resistance should be made separately.

11.
Nanomaterials (Basel) ; 11(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065343

RESUMO

Deep-ultraviolet (DUV) light-transparent conductive composite thin films, consisting of dispersed multiwalled carbon nanotubes (MWCNTs) and SiO2 matrix composites, were fabricated on a quartz glass substrate. Transparent and well-adhered amorphous thin films, with a thickness of 220 nm, were obtained by weak ultraviolet (UV) irradiation (4 mW cm-2 at 254 nm) for more than 6 h at 20-40 °C onto the precursor films, which were obtained by spin coating with a mixed solution of MWCNT in water and Si(IV) complex in ethanol. The electrical resistivity of MWCNT/SiO2 composite thin film is 0.7 Ω·cm, and transmittance in the wavelength region from DUV to visible light is higher than 80%. The MWCNT/SiO2 composite thin film showed scratch resistance at pencil hardness of 8H. Importantly, the resistivity of the MWCNT/SiO2 composite thin film was maintained at the original level even after heat treatment at 500 °C for 1 h. It was observed that the heat treatment of the composite thin film improved durability against both aqueous solutions involving a strong acid (HCl) and a strong base (NaOH).

12.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800395

RESUMO

In this study we mimic the unique, transparent protective carapace (shell) of myodocopid ostracods, through which their compound eyes see, to demonstrate that the carapace ultrastructure also provides functions of strength and protection for a relatively thin structure. The bulk ultrastructure of the transparent window in the carapace of the relatively large, pelagic cypridinid (Myodocopida) Macrocypridina castanea was mimicked using the thin film deposition of dielectric materials to create a transparent, 15 bi-layer material. This biomimetic material was subjected to the natural forces withstood by the ostracod carapace in situ, including scratching by captured prey and strikes by water-borne particles. The biomimetic material was then tested in terms of its extrinsic (hardness value) and intrinsic (elastic modulus) response to indentation along with its scratch resistance. The performance of the biomimetic material was compared with that of a commonly used, anti-scratch resistant lens and polycarbonate that is typically used in the field of transparent armoury. The biomimetic material showed the best scratch resistant performance, and significantly greater hardness and elastic modulus values. The ability of biomimetic material to revert back to its original form (post loading), along with its scratch resistant qualities, offers potential for biomimetic eye protection coating that could enhance material currently in use.

13.
Polymers (Basel) ; 13(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806107

RESUMO

Surface texturing is a common modification method for altering the surface properties of a material. Predicting the response of a textured surface to scratching is significant in surface texturing and material design. In this study, scratches on a thermoplastic material with textured surface are simulated and experimentally tested. The effect of texture on scratch resistance, surface visual appearance, surface deformation and material damage are investigated. Bruise spot scratches on textured surfaces are found at low scratch forces (<3 N) and their size at different scratch forces is approximately the same. There is a critical point between the bruise spot damage and the texture pattern damage caused by continuous scratching. Scratch resistance coefficients and an indentation depth-force pattern are revealed for two textured surfaces. A texture named "Texture CB" exhibits high effectiveness in enhancing scratch visibility resistance and can increase the scratch resistance by more than 40% at low scratch forces. The simulation method and the analysis of the power spectral density of the textured surface enable an accurate prediction of scratches.

14.
Mater Sci Eng C Mater Biol Appl ; 116: 111238, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806332

RESUMO

Bioactive materials should maintain their properties during implantation and for long time in contact with physiological fluids and tissues. In the present research, five different bioactive materials (a bioactive glass and four different chemically treated bioactive titanium surfaces) have been studied and compared in terms of mechanical stability of the surface bioactive layer-substrate interface, their long term bioactivity, the type of hydroxyapatite matured and the stability of the hydroxyapatite-surface bioactive layer interface. Numerous physical and chemical analyses (such as Raman spectroscopy, macro and micro scratch tests, soaking in SBF, Field Emission Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS), zeta potential measurements and Fourier Transformed Infra-Red spectroscopy (FTIR) with chemical imaging) were used. Scratch measurements evidenced differences among the metallic surfaces concerning the mechanical stability of the surface bioactive layer-substrate interface. All the surfaces, despite of different kinetics of bioactivity, are covered by a bone like carbonate-hydroxyapatite with B-type substitution after 28 days of soaking in SBF. However, the stability of the apatite layer is not the same for all the materials: dissolution occurs at pH around 4 (close to inflammation condition) in a more pronounced way for the surfaces with faster bioactivity together with detachment of the surface bioactive layer. A protocol of characterization is here suggested to predict the implant-bone interface stability.


Assuntos
Líquidos Corporais , Durapatita , Apatitas , Materiais Biocompatíveis , Vidro , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Titânio
15.
Materials (Basel) ; 13(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164254

RESUMO

This study discusses a quantitative fatigue evaluation of polymer-ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sliding wear. In order to reflect factors of environmental degradation conditions, thermal fatigue was simulated with a special computer-controlled device performing algorithms of thermocycling. Specimens intended for the surface strength and wear tests underwent 104 hydrothermal fatigue cycles. Thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at 37 °C for 30 days. Microhardness tests were performed with the Vickers hardness test method. The scratch test was done with a Rockwell diamond cone indenter. Sliding ball-on-disc friction tests were performed against an alumina ball in the presence of artificial saliva. A direct positive correlation was found between thermocycling fatigue and microhardness. The dominant mechanism of the wear of the experimental composites after thermocycling is the removal of fragments of the materials in the form of flakes from the friction surface (spalling). Hydrothermal fatigue is synergistic with mechanical fatigue.

16.
J Colloid Interface Sci ; 559: 273-281, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634671

RESUMO

Scratch properties of polysiloxane coatings are critical to their application in the many fields which require long-term protection and aesthetics. In this work, modified silica nanoparticles (m-SiO2) containing epoxy group dispersed homogeneously in polysiloxane coatings by in situ polymerization process. The homogeneous dispersion of m-SiO2 is beneficial to the scratch resistance, which has only slight effect on the transparency of polysiloxane coatings. According to the results of macro and nano scratch tests, the first critical loads for polysiloxane coating with 0.75 wt% m-SiO2 were improved 66.7% and 73.3% respectively compared to pure polysiloxane coating. More impressively, the achieved coating also showed an outstanding transmittance of 91%, a high pencil hardness of 8H and a superior hardness of nanoindentation test (HIT), which was about 58.3% higher than pure coating. Additionally, the thermostability and abrasion resistance of the nanocomposite coatings were enhanced with various loadings of m-SiO2. This study provides a facile and environmentally friendly method to reinforce scratch resistance of highly transparent polysiloxane nanocomposite coating, which is potential in the application of automobiles and home appliances.

17.
ACS Appl Mater Interfaces ; 11(46): 43599-43607, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31644269

RESUMO

Inspired by the catechol and amine-rich adhesive proteins of mussels, polydopamine (pDA) has become one of the most widely employed methods for functionalizing material surfaces, powered in part by the versatility and simplicity of pDA film deposition that takes place spontaneously on objects immersed in an alkaline aqueous solution of dopamine monomer. Despite the widespread adoption of pDA as a multifunctional coating for surface modification, it exhibits poor mechanical performance. Attempts to modify the physical properties of pDA by incorporation of oxidizing agents, cross-linkers, or carbonization of the films at ultrahigh temperatures have been reported; however, improving mechanical properties with mild post-treatments without sacrificing the functionality and versatility of pDA remains a challenge. Here, we demonstrate thermal annealing at a moderate temperature (130 °C) as a facile route to enhance mechanical robustness of pDA coatings. Chemical spectroscopy, X-ray scattering, molecular force spectroscopy, and bulk mechanical analyses indicate that monomeric and oligomeric species undergo further polymerization during thermal annealing, leading to fundamental changes in molecular and bulk mechanical behavior of pDA. Considerable improvements in scratch resistance were noted in terms of both penetration depth (32% decrease) and residual depth (74% decrease) for the annealed pDA coating, indicating the enhanced ability of the annealed coating to resist mechanical deformations. Thermal annealing resulted in significant enhancement in the intermolecular and cohesive interactions between the chains in the pDA structure, attributed to cross-linking and increased entanglements, preventing desorption and detachment of the chains from the coating. Importantly, improvements in pDA mechanical performance through thermal annealing did not compromise the ability of pDA to support secondary coating reactions as evidenced by electroless deposition of a metal film adlayer on annealed pDA.


Assuntos
Materiais Revestidos Biocompatíveis/química , Indóis/química , Polímeros/química , Animais , Materiais Biomiméticos , Bivalves , Propriedades de Superfície
18.
J Mech Behav Biomed Mater ; 86: 143-157, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29986289

RESUMO

Biphasic calcium phosphate (BCP) consists of hydroxyapatite (HA) and beta-tricalcium phosphate (ß-TCP). BCP is mainly used in artificial tooth and bone implants due to higher protein adsorption and osteoinductivity compared to HA alone. Although, many studies have been investigated on radio frequency (RF) magnetron sputtering of HA on Ti and its alloy, however, limited studies are available on BCP coating by this process and its bioactivity and adhesion behavior. Thus, in order to obtain a better understanding and applications of BCP films, RF magnetron sputtering is used to deposit BCP films on Ti-6Al-4V in the present study. The effect of film thickness on wettability, mechanical properties and in vitro bioactivity at a particular set of sputtering parameters are investigated. BCP film thickness of 400 nm, 700 nm and 1000 nm are obtained when sputtered for 4 h, 6 h and 8 h, respectively. Although the phase compositions are almost same for all films, the surface roughness values varies around 112-153 nm with rise in film thickness. This in turn enhances hydrophilicity in accordance to Wenzel relation as the contact angle decreases from 89.6 ±â€¯2° to 61.2 ±â€¯2°. It is found that the 1000 nm film possess highest micro-hardness and surface scratch resistance. No cracking of film up to scratch load of 2.3 N and no significant delamination up to load of 7.8 N are observed, indicating very good adhesion between BCP films and Ti-6Al-4V substrate. There is a great improvement in wt% apatite layer formation on all films when dipped in simulated body fluid (SBF) for 14 days. Among these, 1000 nm sputtered film results the highest increase in wt% apatite layer from 44.87% to 86.7%. The apatite layer possess small globular as well as elliptical structure are nucleated and grew on all the BCP films. Thus, sputtering of BCP films improves wettability, mechanical properties as well as bioactivity of Ti-6Al-4V, which can be applied for orthopedic implants.


Assuntos
Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Fenômenos Mecânicos , Titânio/química , Ligas , Materiais Biomiméticos/metabolismo , Líquidos Corporais/metabolismo , Materiais Revestidos Biocompatíveis/metabolismo , Dureza , Propriedades de Superfície , Titânio/metabolismo
19.
Polymers (Basel) ; 10(4)2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30966404

RESUMO

Nanocomposite dental resins with 0, 2, 5, and 10 wt % methacryl polyhedral oligomeric silsesquioxane (POSS) as filler in the resin matrix were prepared by a light curing method.The atomic force microscopy (AFM), fourier transform infrared spectroscopy (FTIR), nanoindentation, and nanoscratch tests were carried out to study the effect of POSS contents on the compatibility, double bond conversion, volumetric shrinkage, hardness, modulus, and resistance of the dental resins. POSS was very uniformly dispersed and showed a good compatibility with the matrix. The double bond conversion increased and the volume reduced with the addition of POSS. As the POSS addition increased, the mechanical properties increased initially. Small addition of POSS remarkably enhanced the hardness and scratch resistance of the resin matrix.

20.
Prog Org Coat ; 1252018.
Artigo em Inglês | MEDLINE | ID: mdl-33033422

RESUMO

As original equipment manufacturers (OEMs) strive to deliver improved coating performance with a sustainable footprint, opportunities for innovation are emerging, particularly on improving mechanical properties, appearance, and solids content. Resistance to scratch and mar damage is one of the key performance attributes that has been emphasized by both OEMs and consumers to maintain a vehicle's appearance and corrosion resistance over its service lifetime. Fundamental methodologies including instrumented scratch measurements at multiple size scales are used in this work as part of a product development strategy to better understand the scratch and mar behavior of automotive topcoats. This study compares physical properties of several melamin-formaldehyde and isocyanate cured clearcoats over the appropriate basecoats. Micro- and nano-scratch techniques were employed in combination with industry standard method, Amtec-Kistler carwash to identify performance differences under different scratch conditions. Mechanical and viscoelastic properties of the coatings were studied using tensile tests and dynamic mechanical thermal analysis (DMTA) to better understand the failure mechanisms associated with plastic deformation and fracture at different scratch scales. The information gathered from the above testing protocols is used to analyze coating performance in terms of the contact strain, transitions between elastic - plastic behavior, coefficient of friction and stress localization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA