RESUMO
The methanol and ethyl acetate (EA) extracts of four species of sea lily (Himerometra magnipinna, Comaster multifidus, Comanthina sp., and Comatella maculata) were evaluated for their insecticidal activity against Yellow-fever mosquito larvae (Aedes aegypti) and their repellency against adult Asian Tiger mosquitoes (Aedes albopictus). The 24-hr minimum inhibition concentration (MIC) data revealed that the extracts from H. magnipinna and the C. maculata were the most active, killing mosquito larvae at 12.5 ppm. The toxicity of the extracts from these four sea lilies in descending order was H. magnipinna (12.5 ppm), C. maculata (12.5 ppm), C. multifidus (100 ppm), and Comanthina sp. (200 ppm). Furthermore, no significant difference in toxicity was found using either EA or methanol as the extraction solvent. The MIC at 12.5 ppm is promising as an insecticide lead. The repellency study results show that EA is a better solvent for one species (H. magnipinna), but the methanol is a better solvent overall. The repellency of these sea lily extracts in descending order was Comanthina sp. MeOH (ED50 at 0.32%), followed by H. magnipinna EA (ED50 at 0.38%), C. multifidus MeOH (ED50 at 0.57%), C. maculata MeOH (ED50 at 0.76%), C. multifidus EA (ED50 at 1.25%), and H. magnipinna MeOH (ED50 at 1.67%). A compound with ED50 <0.5% is considered to be a promising repellant. Among the studied sea lilies, both Comanthina sp. and H. magnipinna have potential to be further developed as mosquito control agents due to their favorable toxicity and repellency.
Assuntos
Aedes , Equinodermos/química , Repelentes de Insetos , Inseticidas , Extratos Vegetais , Animais , Testes de Sensibilidade Microbiana , Taiwan , Extratos de TecidosRESUMO
Embryos and larvae of an isocrinid sea lily, Metacrinus rotundus, are described by scanning electron microscopy. Around hatching (35 h after fertilization), the outer surface of the gastrula becomes ubiquitously covered with short cilia. At 40 h, the hatched swimming embryo develops a cilia-free zone of ectoderm on the ventral side. By 3 days, the very early dipleurula larva develops a cilia-free zone ventrally, densely ciliated regions laterally, and a sparsely ciliated region dorsally. At this stage, the posterior and anterior ciliary bands first appear: the former runs along a low ridge separating the densely from the sparsely ciliated epidermal regions, while the latter is visible, at first discontinuously, along the boundary between the densely ciliated lateral regions and the cilia-free ventral zone. In the late dipleurula larva (5 days after fertilization), the anterior and posterior loops of ciliary bands are well defined. The transition from the dipleurula to the semidoliolaria larva occurs at 6 days as the posterior loop becomes rearranged to form incompletely circumferential ciliary bands. The larva becomes competent to settle at this stage. The arrangement of the ciliary bands on the semidoliolaria is maintained during the second week of development, while the larva retains its competence to settle. The larval ciliary patterns described here are compared with those of stalkless crinoids and eleutherozoan echinoderms. The closest morphological similarities are between M. rotundus and the basal eleutherozoan class Asteroidea.