Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.767
Filtrar
1.
Environ Monit Assess ; 196(8): 774, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090377

RESUMO

Potentially toxic elements (PTEs) are widely released into the environment as a result of increased urban and industrial development in recent years. The bulk of PTEs are cancer-causing and harm human health by producing free radicals. As a result, it is crucial to monitor, evaluate, and limit the effects of the elements on human health. In this study, levels of PTEs (As, Cr, Cd, Ni, Co, and Pb) in pharmaceutical effluents discharged along the Asa River around the Ilorin metropolis and their seasonal variations were evaluated. Water samples were collected from eight different locations over a two-season period along the river and analyzed for PTEs using atomic absorption spectrophotometry and an inductively coupled plasma optical emission spectrometer. As, Cd, Pb, Cr, Ni, and Co had mean PTE values in the effluents (both seasons) of 0.0258, 0.0233, 0.00193, 0.0176, and 0.0164 mg/L, respectively, with As and Pb surpassing the WHO standard. Maximum temperature and pH were measured for the physicochemical parameters in the wet season, whereas electrical conductivity and total dissolved solids were seen in the dry season. The average values of the metals in the human risk assessment for carcinogenicity were As > Cd > Pb > Cr > Ni > Co, with As above the recommended threshold in several locations. However, all of the metal hazard indices were < 1, indicating that the waters were suitable for domestic purposes. Nonetheless, the relevant authorities should mandate that pharmaceutical effluents be treated before being released into bodies of water.


Assuntos
Monitoramento Ambiental , Estações do Ano , Poluentes Químicos da Água , Nigéria , Poluentes Químicos da Água/análise , Humanos , Medição de Risco , Águas Residuárias/química , Preparações Farmacêuticas/análise , Metais Pesados/análise , Arsênio/análise , Rios/química , Cidades
2.
Biol Trace Elem Res ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048802

RESUMO

This study investigated heavy metal accumulations in fish, water and sediment from three rivers around a major urban area in Bangladesh, namely the Rupsha, the Atai, and the Bhairab with a view to assessing the ecological and human health risks. Samples were collected from 10 stations over two seasons (summer and winter) and concentrations of 11 metals (As, Se, Pb, Be, Cd, Co, Cr, Cu, Mn, Ni, V) were measured using ICP-MS. Heavy metals in water of these rivers were above the WHO higher thresholds. The Rupsha River, which runs close to industrially dense areas and the downstream part of the three-river network, demonstrated the highest As, Cu, and V concentrations during both seasons. On the other hand, As, Mn and Cr were highest in the Bhairab which is the upstream to the Rupsha and connected to several industrial setups which differ from Bhairab. The less anthropogenically connected Atai River only showed elevated concentrations of Cu and Se. Ecological risk indices indicated low pollution in the rivers during both seasons. In all three rivers and in nearly all fish species, the contamination was higher in winter than summer. Benthic and carnivorous fish species such as, Cynoglossus lingua, Glossogobius giuris, Pseudapocryptes elongatus showed higher metal accumulation compared to other species. Health risk indices like the target hazard quotient (THQ) and carcinogenic risk (CR) suggested low risks but pointed potential risks to human health. The outcomes of this research reports insights into metal contamination pattern in interconnected river systems.

3.
Cureus ; 16(7): e64444, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007025

RESUMO

AIM: The main purpose of the current study was to investigate the effect of season change and the influence of the COVID-19 pandemic on the ratio of glycoalbumin to hemoglobin A1c (GA/HbA1c) in patients with type 2 diabetes. PATIENTS AND METHODS: A total of 267 patients in whom both HbA1c and GA were measured at baseline were included in this retrospective study. GA/HbA1c was investigated for three years, 2018, 2019, and 2020 (COVID-19 pandemic period). RESULTS: The mean values for GA/HbA1c per year in 2018, 2019, and 2020 were 2.64±0.35, 2.61±0.35, 2.64±0.39, respectively. There were no significant differences in GA/HbA1c during these years. There was a tendency toward seasonal variation in GA/HbA1c (i.e., higher in summer or autumn and lower in spring or winter). CONCLUSION: In patients with type 2 diabetes, GA/HbA1c tended to show seasonal variation, which was not influenced by the COVID-19 pandemic.

4.
BMC Plant Biol ; 24(1): 684, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020284

RESUMO

Malus sieversii, commonly known as wild apples, represents a Tertiary relict plant species and serves as the progenitor of globally cultivated apple varieties. Unfortunately, wild apple populations are facing significant degradation in localized areas due to a myriad of factors. To gain a comprehensive understanding of the nutrient status and spatiotemporal variations of M. sieversii, green leaves were collected in May and July, and the fallen leaves were collected in October. The concentrations of leaf nitrogen (N), phosphorus (P), and potassium (K) were measured, and the stoichiometric ratios as well as nutrient resorption efficiencies were calculated. The study also explored the relative contributions of soil, topographic, and biotic factors to the variation in nutrient traits. The results indicate that as the growing period progressed, the concentrations of N and P in the leaves significantly decreased (P < 0.05), and the concentration of K in October was significantly lower than in May and July. Throughout plant growth, leaf N-P and N-K exhibited hyperallometric relationships, while P-K showed an isometric relationship. Resorption efficiency followed the order of N < P < K (P < 0.05), with all three ratios being less than 1; this indicates that the order of nutrient limitation is K > P > N. The resorption efficiencies were mainly regulated by nutrient concentrations in fallen leaves. A robust spatial dependence was observed in leaf nutrient concentrations during all periods (70.1-97.9% for structural variation), highlighting that structural variation, rather than random factors, dominated the spatial variation. Nutrient resorption efficiencies (NRE, PRE, and KRE) displayed moderate structural variation (30.2-66.8%). The spatial patterns of nutrient traits varied across growth periods, indicating they are influenced by multifactorial elements (in which, soil property showed the highest influence). In conclusion, wild apples manifested differentiated spatiotemporal variability and influencing factors across various leaf nutrient traits. These results provide crucial insights into the spatiotemporal patterns and influencing factors of leaf nutrient traits of M. sieversii at the permanent plot scale for the first time. This work is of great significance for the ecosystem restoration and sustainable management of degrading wild fruit forests.


Assuntos
Malus , Nitrogênio , Fósforo , Folhas de Planta , Potássio , Folhas de Planta/metabolismo , Malus/metabolismo , Malus/crescimento & desenvolvimento , Malus/fisiologia , China , Fósforo/metabolismo , Fósforo/análise , Nitrogênio/metabolismo , Potássio/metabolismo , Potássio/análise , Florestas , Nutrientes/metabolismo , Nutrientes/análise , Solo/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Análise Espaço-Temporal
5.
BMC Vet Res ; 20(1): 332, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039589

RESUMO

This study investigated the prevalence, morphology, molecular identification, and histopathological effects of larval tapeworms (plerocercoids) infecting the skeletal muscles of the Indian halibut (Psettodes erumei) collected from the coastal waters of the Arabian Gulf. Numerous oval or round blastocysts, measuring 13-26 mm, were found embedded within the muscular tissues of the Indian halibut, rendering the fish unsuitable for human consumption. Morphological and molecular analyses identified the plerocercoids as Dasyrhynchus giganteus (family Dasyrhynchidae), with an overall prevalence of 15.4%. The seasonal prevalence was the highest in summer (14.6%), followed by spring (10.6%), winter (4.4%), and autumn (3.5%). Infection rates increased with fish size. Histopathological examination revealed fibrous connective tissue capsules surrounding the larvae, causing muscular atrophy and degenerative changes, with few inflammatory eosinophilic cells. Molecular and phylogenetic analysis of the 28S rDNA gene sequences confirmed the specimens as D. giganteus, clustered closely with other sequences of D. giganteus with 100% bootstrap values. This study provided valuable insights into the parasitic infection dynamics, seasonal variation, molecular identification, and histopathological effects, highlighting the importance of monitoring fish for food safety and public health implications.


Assuntos
Cestoides , Infecções por Cestoides , Doenças dos Peixes , Filogenia , Estações do Ano , Animais , Doenças dos Peixes/parasitologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/patologia , Prevalência , Cestoides/genética , Cestoides/classificação , Infecções por Cestoides/veterinária , Infecções por Cestoides/epidemiologia , Infecções por Cestoides/patologia , Infecções por Cestoides/parasitologia , Linguado/parasitologia , Músculo Esquelético/parasitologia , Músculo Esquelético/patologia , RNA Ribossômico 28S/genética
6.
Molecules ; 29(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065009

RESUMO

Volatile oils or essential oils (EOs) were extracted from three V. sebifera samples (labeled as A, B, and C) in September 2018 and February 2019; the extraction process involved hydrodistillation of the leaves. The chemical compositions of the EOs were analyzed using gas chromatography-mass spectrometry (GC/MS). The volatile components were identified by comparing their retention indices and mass spectra with standard substances documented in the literature (ADAMS). The antioxidant activity of the EOs was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), while their toxicity was assessed using Artemia salina Leach. Molecular docking was utilized to examine the interaction between the major constituents of V. sebifera EO and acetylcholinesterase (AChE), a molecular target linked to toxicity in A. salina models. The EO obtained from specimen A, collected in September 2018, was characterized by being primarily composed of (E,E)-α-farnesene (47.57%), (E)-caryophyllene (12.26%), and α-pinene (6.93%). Conversely, the EO from specimen A, collected in February 2019, was predominantly composed of (E,E)-α-farnesene (42.82%), (E)-caryophyllene (16.02%), and bicyclogermacrene (8.85%), the EO from specimen B, collected in September 2018, primarily contained (E,E)-α-farnesene (47.65%), (E)-caryophyllene (19.67%), and α-pinene (11.95%), and the EO from the leaves collected in February 2019 was characterized by (E,E)-α-farnesene (23.57%), (E)-caryophyllene (19.34%), and germacrene D (7.33%). The EO from the leaves collected in September 2018 contained (E,E)-α-farnesene (26.65%), (E)-caryophyllene (15.7%), and germacrene D (7.72%), while the EO from the leaves collected in February 2019 was primarily characterized by (E,E)-α-farnesene (37.43%), (E)-caryophyllene (21.4%), and α-pinene (16.91%). Among these EOs, sample B collected in February 2019 demonstrated the highest potential for inhibiting free radicals, with an inhibition rate of 34.74%. Conversely, the EOs from specimen A exhibited the highest toxic potentials, with an lethal concentration 50 (LC50) value of 57.62 ± 1.53 µg/mL, while specimen B had an LC50 value of 74.72 ± 2.86 µg/mL. Molecular docking results suggested that hydrophobic interactions significantly contributed to the binding of the major compounds in the EO from sample B to the binding pocket of AChE.


Assuntos
Antioxidantes , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Animais , Artemia/efeitos dos fármacos , Simulação de Acoplamento Molecular , Folhas de Planta/química , Acetilcolinesterase/metabolismo
7.
Microorganisms ; 12(7)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39065051

RESUMO

Bacteria and archaea are foundational life forms on Earth and play crucial roles in the development of our planet's biological hierarchy. Their interactions influence various aspects of life, including eukaryotic cell biology, molecular biology, and ecological dynamics. However, the coexistence network patterns of these microorganisms within natural river ecosystems, vital for nutrient cycling and environmental health, are not well understood. To address this knowledge gap, we systematically explored the non-random coexistence patterns of planktonic bacteria and archaea in the 6000-km stretch of the Yangtze River by using high-throughput sequencing technology. By analyzing the O/R ratio, representing the divergence between observed (O%) and random (R%) co-existence incidences, and the module composition, we found a preference of both bacteria and archaea for intradomain associations over interdomain associations. Seasons notably influenced the co-existence of bacteria and archaea, and archaea played a more crucial role in spring as evidenced by their predominant presence of interphyla co-existence and more species as keystone ones. The autumn network was characterized by a higher node or edge number, greater graph density, node degree, degree centralization, and nearest neighbor degree, indicating a more complex and interconnected structure. Landforms markedly affected microbial associations, with more complex networks and more core species found in plain and non-source areas. Distance-decay analysis suggested the importance of geographical distance in shaping bacteria and archaea co-existence patterns (more pronounced in spring). Natural, nutrient, and metal factors, including water temperature, NH4+-N, Fe, Al, and Ni were identified as crucial determinants shaping the co-occurrence patterns. Overall, these findings revealed the dynamics of prokaryotic taxa coexistence patterns in response to varying environmental conditions and further contributed to a broader understanding of microbial ecology in freshwater biogeochemical cycling.

8.
Microorganisms ; 12(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39065112

RESUMO

Peatlands deliver a variety of beneficial ecosystem services, particularly serving as habitats for a diverse array of species. Hynobius amjiensis is a critically endangered amphibian initially discovered in a Sphagnum-dominated peatland in Anji, China. The unique habitat requirements of H. amjiensis make it highly vulnerable to environmental changes. Here, we investigated the different breeding pools of H. amjiensis in the Sphagnum-dominated peatland (the type locality) for a one-year period to evaluate the interactions among the egg sacs present, water quality, and microbial communities (16S and 18S rRNA gene amplicon). The numbers of egg sacs were higher in the breeding pools located at the marginal area than those at the core area of the peatland. Similarly, the α-diversity of bacteria, fungi, and protists were lower in the core region compared to those at the edge of the peatland, perhaps due to water eutrophication. The microbial communities and water quality differed significantly among breeding pools and sampling months. The simpler microbial networks of the breeding pools in the core wetland may impact the numbers and health of the egg sacs. This study contributes to a better understanding of the effect of water quality on biodiversity in peatlands, and it can also guide regulations for wetland conservation and the protection of endangered species.

9.
Environ Res ; 261: 119646, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032622

RESUMO

Domoic acid (DA) is a neurotoxin produced by marine microalgae. It tends to accumulate in marine shellfish and fish, posing a threat to aquaculture and seafood consumers' health. In this study, DA in the surface and bottom seawater, sediment, and porewater of the Jiaozhou Bay, a typical mariculture bay in China, was systematically investigated for the first time over different seasons. Surprisingly, a high concentration of DA was discovered in the marine sediment porewater (maximum detected concentration: 289.49 ng/L) for the first time. DA was found to be extensively distributed in the water body and sedimentary environment of the Jiaozhou Bay. DA in the surface and bottom seawater of Jiaozhou Bay in spring was uniformly distributed, whereas DA showed obvious spatial variations in summer and winter. The high concentration areas of DA are located in the north of Jiaozhou Bay and decreased to the south areas. DA was also distributed in the sediment (spring mean: 316.57 ng/kg; summer mean: 10.22 ng/kg; winter mean: 237.08 ng/kg) and porewater (spring mean: 129.70 ng/L; summer mean: 53.54 ng/L; winter mean: 19.90 ng/L) of Jiaozhou Bay. The DA concentrations in the surface sediment and porewater were higher in the spring than in the winter and summer, contrary to the seasonal variation pattern observed in the surface and bottom seawater. The DA concentration in porewater was significantly higher than in the surface and bottom seawater, indicating that the risk of pollution contamination from DA to benthic fishery organisms may be underestimated. Overall, DA is widely distributed in the seawater and also in the benthic environment of Jiaozhou Bay and exhibited potential harm to fishery organisms varied greatly with seasons. It is an important discovery for marine algae toxins and has important guiding significance and important indicative role for the routine monitoring and management of DA pollution in water and benthic environment.

10.
Front Microbiol ; 15: 1415931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952450

RESUMO

Exploring the effects of seasonal variation on the gut microbiota of cold-water fish plays an important role in understanding the relationship between seasonal variation and cold-water fish. Gut samples of cold-water fish and environmental samples were collected during summer and winter from the lower reaches of the Yalong River. The results of the 16S rRNA sequencing showed that significant differences were identified in the composition and diversity of gut bacteria of cold-water fish. Co-occurrence network complexity of the gut bacteria of cold-water fish was higher in summer compared to winter (Sum: nodes: 256; edges: 20,450; Win: nodes: 580; edges: 16,725). Furthermore, from summer to winter, the contribution of sediment bacteria (Sum: 5.3%; Win: 23.7%) decreased in the gut bacteria of cold-water fish, while the contribution of water bacteria (Sum: 0%; Win: 27.7%) increased. The normalized stochastic ratio (NST) and infer community assembly mechanisms by phylogenetic bin-based null model analysis (iCAMP) showed that deterministic processes played a more important role than stochastic processes in the microbial assembly mechanism of gut bacteria of cold-water fish. From summer to winter, the contribution of deterministic processes to gut bacteria community assembly mechanisms decreased, while the contribution of stochastic processes increased. Overall, these results demonstrated that seasonal variation influenced the gut bacteria of cold-water fish and served as a potential reference for future research to understand the adaptation of fish to varying environments.

11.
Environ Monit Assess ; 196(8): 693, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963455

RESUMO

Clean air is imperative to the survival of all life forms on the planet. However, recent times have witnessed enormous escalation in urban pollution levels. It is therefore, incumbent upon us to decipher measures to deal with it. In perspective, the present study was carried out to assess PM10 and PM2.5 loading, metallic constituents, gaseous pollutants, source contributions, health impact and noise level of nine-locations, grouped as residential, commercial, and industrial in Lucknow city for 2019-21. Mean concentrations during pre-monsoon for PM10, PM2.5, SO2 and NO2 were: 138.2 ± 35.2, 69.1 ± 13.6, 8.5 ± 3.3 and 32.3 ± 7.4 µg/m3, respectively, whereas post-monsoon concentrations were 143.0 ± 33.3, 74.6 ± 14.5, 12.5 ± 2.1, and 35.5 ± 6.3 µg/m3, respectively. Exceedance percentage of pre-monsoon PM10 over National Ambient Air Quality Standards (NAAQS) was 38.2% while that for post-monsoon was 43.0%; whereas corresponding values for PM2.5 were 15.2% and 24.3%. Post-monsoon season showed higher particulate loading owing to wintertime inversion and high humidity conditions. Order of elements associated with PM2.5 is Co < Cd < Cr < Ni < V < Be < Mo < Mn < Ti < Cu < Pb < Se < Sr < Li < B < As < Ba < Mg < Al < Zn < Ca < Fe < K < Na and that with PM10 is Co < Cd < Ni < Cr < V < Ti < Be < Mo < Cu < Pb < Se < Sr < Li < B < As < Mn < Ba < Mg < Al < Fe < Zn < K < Na < Ca. WHO AIRQ + ascertained 1654, 144 and 1100 attributable cases per 0.1 million of population to PM10 exposure in 2019-21. Source apportionment was carried out using USEPA-PMF and resolved 6 sources with highest percent contributions including road dust re-entrainment, biomass burning and vehicular emission. It is observed that residents of Lucknow city regularly face exposure to particulate pollutants and associated constituents making it imperative to develop pollution abetment strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Monitoramento Ambiental , Material Particulado , Índia , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos , Estações do Ano , Análise Espaço-Temporal , Emissões de Veículos/análise
12.
Artigo em Inglês | MEDLINE | ID: mdl-38963626

RESUMO

This study delves into the environmental impact of inland aquaculture on estuarine ecosystems by examining the water quality of four estuarine streams within the key inland aquaculture zone of South India. In this region, extensive and intensive aquaculture practices are common, posing potential challenges to estuarine health. The research explores the predictive capabilities of the Gaussian elimination method (GEM) and machine learning techniques, specifically multi-linear regression (MLR) and support vector regressor (SVR), in forecasting the water quality index of these streams. Through comprehensive evaluation using performance metrics such as coefficient of determination (R2) and average mean absolute percentage error (MAPE), MLR and SVR demonstrate higher prediction efficiency. Notably, employing key water parameters as inputs in machine learning models is also more effective. Biochemical oxygen demand (BOD) emerges as a critical water parameter, identified by both MLR and SVR, exhibiting high specificity in predicting water quality. This suggests that MLR and SVR, incorporating key water parameters, should be prioritized for future water quality monitoring in intensive aquaculture zones, facilitating timely warnings and interventions to safeguard water quality.

13.
Mar Pollut Bull ; 206: 116760, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39079476

RESUMO

The river-connected Dongting Lake (DT) and Poyang Lake (PY), and the gate-controlled Taihu Lake (TH) and Chaohu Lake (CH) are the four important lakes in the Yangtze River Basin. The comprehensive Water Quality Index (WQI), the Eutrophication Integrated Index (TLI(Σ)), and the Positive Matrix Factorization (PMF) model were employed to evaluate water quality and the contribution of pollution sources for these lakes. The results show that WQI for all lakes indicated generally good water quality, with DT scoring 73.52-86.18, the highest among them. During the wet season, the eutrophication degree of river-connected lake was medium, and that of gate-controlled lakes was high. The surface runoff and agricultural non-point sources are the main pollution sources for both types of lakes, but their impact is more pronounced in gate-controlled lakes during the wet season. The study provides evidence support for scientific understanding of water quality problems and management strategies in these areas.

14.
Sci Total Environ ; 949: 174692, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002597

RESUMO

Global warming may reshape seasonal changes in microbial community diversity and co-occurrence network patterns, with significant implications for terrestrial ecosystem function. We conducted a 2-year in situ field simulation of the effects of warming on the seasonal dynamics of soil microbial communities in a northern subtropical Quercus acutissima forest. Our study revealed that warming had no significant effect on the richness or diversity of soil bacteria or fungi in the growing season, whereas different warming gradients had different effects on their diversity in the nongrowing season. Warming also changed the microbial community structure, increasing the abundance of some thermophilic microbial species and decreasing the abundance of some symbiotrophic microorganisms. The co-occurrence network analysis of the microbial community showed that warming decreased the complexity of the intradomain network in the soil bacterial community in the growing and nongrowing seasons but increased it in the fungal community. Moreover, increasing warming temperatures increased the complexity of the interdomain network between bacteria and fungi in the growing season but decreased it in the nongrowing season, and the keystone species in the interdomain network changed with warming. Warming also reduced the proportion of positive microbial community interactions, indicating that warming reduced the mutualism, commensalism, and neutralism of microorganisms as they adapted to soil environmental stress. The factors affecting the fungal community varied considerably across warming gradients, with the bacterial community being significantly affected by soil temperature, MBC, NO3--N and NH4+-N, moreover, SOC and TN significantly affected fungal communities in the 4 °C warming treatment. These results suggest that warming increases seasonal differences in the diversity and complexity of soil microbial communities in the northern subtropical region, significantly influencing soil dynamic processes regulating forest ecosystems under global warming.

15.
Metabol Open ; 23: 100298, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39045138

RESUMO

Background: 25-hydroxy vitamin-D (25(OH)D) deficiency is prevalent worldwide including India. Earlier some cross-sectional studies have discussed 25(OH)D deficiency and its prevalence. The correlation of 25(OH)D with seasonal variation has been reported rarely in India. To determine the 25(OH)D levels and seasonal changes of 25(OH)D status at a tertiary care hospital in North-western India. Materials and methods: 25(OH)D assessments performed in laboratories between 2018 and 2020 was acquired using hospital records. A total of 11,428 assays of serum 25(OH)D were analyzed in the study. Subjects were divided into three groups based on the International Endocrine Society's recommendation for serum 25(OH)D level. The 25(OH)D deficiency <20 ng/ml, insufficiency 20-29 ng/mL and sufficiency ≥30 ng/mL was defined. The months have been separated into the following seasons to analyze seasonal trends: Summer/monsoon (April-September), and winter/spring (October-March). Results: The median 25(OH)D was 17.2 ng/mL. We observed the prevalence of 60 %, 24.1 % & 15.9 % of 25(OH)D deficiency, 25(OH)D insufficiency, and sufficiency respectively in the total number of individuals tested. 56 % male and 63 % females were 25(OH)D deficient. Notably, the lowest median 25(OH)D value was found in the 21-30 age group (14.8 ng/mL). A significant difference in 25(OH)D levels between the summer (18.7 ng/mL) and winter (15.8 ng/mL) seasons has been noticed. Discussion: Current study revealing that 25(OH)D deficiency is common in all age groups and genders, according to our findings. Surprisingly, the lowest levels were reported in young adults. Seasonal variation has an impact on 25(OH)D status, however in all seasons 25(OH)D levels are lower than reference intervals. These findings suggest that the criteria for determining the state of 25(OH)D insufficiency and deficiency in the Indian population should be reconsidered.

16.
Front Microbiol ; 15: 1422637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027113

RESUMO

Airborne microorganisms, an emerging global health threat, have attracted extensive studies. However, few attentions have been paid to the seasonal distribution of airborne pathogens, in particular their associations with antibiotic resistance genes (ARGs). To this end, two-week daily PM2.5 samples were consecutively collected from Nanchang in four seasons, and the human-to-human pathogens were screened based on high-throughput sequencing. The results showed that there were 20 pathogenic taxa in PM2.5 in Nanchang, and the highest relative abundance of pathogens was observed in winter (5.84%), followed by summer (3.51%), autumn (2.66%), and spring (1.80%). Although more than half of pathogenic taxa were shared by the four seasons, the analysis of similarities showed that pathogenic community was shaped by season (r = 0.16, p < 0.01). Co-occurrence network analysis disclosed significant interactions among pathogens in each season. Moreover, some dominant pathogens such as Plesiomonas shigelloides, Bacteroides fragilis, and Escherichia-Shigella were hub pathogens. In addition, PICRUSt2 predicted that there were 35 high-risk ARG subtypes in PM2.5, and the pathogens had strongly positive correlations with these ARGs. Even some pathogens like Plesiomonas shigelloides, Bacteroides fragilis, Aeromonas, Citrobacter, may be multi-drug resistant pathogens, including beta-lactam, aminoglycosides, chloramphenicol and multi-drug resistances, etc. Both air pollutants and meteorological conditions contributed to the seasonal variation of airborne pathogenic bacteria (r = 0.15, p < 0.01), especially CO, O3, PM2.5, temperature and relative humidity. This study furthers our understanding of airborne pathogens and highlights their associations with ARGs.

17.
Environ Geochem Health ; 46(9): 350, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073511

RESUMO

Dissolved organic matter (DOM), a pivotal component in the global carbon cycle, plays a crucial role in maintaining the productivity and functionality of aquatic ecosystems. However, the driving factors of variations in the properties of riverine DOM in tropical islands still remain unclear. In this study, the spatiotemporal response of the optical characteristics of riverine DOM to seasonality and land use on Hainan Island in southern China was investigated. Our results revealed that DOM in the rivers of Hainan Island exhibited a relatively high proportion of fulvic acid and demonstrated strong terrestrial sources. The optical properties of DOM exhibited significant variations both seasonally and spatially. Land use exerted a dominant influence on riverine DOM. Specifically, during the wet season, riverine DOM exhibited larger molecular weight, increased chromophoric DOM (CDOM) abundance, and higher Fmax compared to the dry season. Furthermore, riverine DOM influenced by grassland and farmland showed higher CDOM abundance, Fmax, and humification degree in contrast to those impacted by forest and urban. Random forest and correlation analysis results indicated that grassland and farmland enhanced the Fmax of DOM by increasing levels of TP, NO3--N, Chl a, and NH4+-N in the dry season. However, during the wet season, the increased Fmax of DOM induced by grassland and farmland relied on the increments of Chl a and TP concentrations. This study improves our understanding of the spatiotemporal fluctuations of DOM in the rivers of Hainan Island, highlighting the effects of season and land use on DOM. It offers valuable support for improving water quality and contributes to enhancing human comprehension of the global carbon cycle.


Assuntos
Monitoramento Ambiental , Rios , Estações do Ano , Rios/química , China , Monitoramento Ambiental/métodos , Ilhas , Clima Tropical , Análise Espaço-Temporal , Substâncias Húmicas/análise , Agricultura , Compostos Orgânicos/análise , Benzopiranos/análise
18.
Mol Biotechnol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890219

RESUMO

The stress resistance of medicinal plants is essential to the accumulation of pharmacological active ingredients, but the regulation mechanism of biological factors and abiotic factors on medicinal plants is still unclear. To investigate the mechanism of soil nutrient and microecology on the stress resistance of C. pilosula, rhizosphere soil and roots were collected across the four seasons in Minxian, Gansu, and their physicochemical properties, as well as root-associated microorganisms, were examined. The results showed that the bacterial α-diversity indexes increased in the endosphere and rhizosphere from summer to autumn. At the same time, the community composition and function changed considerably. The stability of the endophytic bacterial community was higher than that rhizospheric bacteria, and the complexity of the endophytic bacterial community was lower than rhizospheric bacteria. Soil organic matter (OM), water content (WC), total potassium (TK), and total nitrogen (TN) have been identified as the key factors affecting bacterial community diversity and stress resistance of C. pilosula. WC, TN, and OM showed significant differences from summer to autumn (P < 0.5). Four key soil physiochemical factors changed significantly between seasons (P < 0.01). TN and OM change the stress resistance of C. pilosula mainly by changing the activity of antioxidant enzymes. Changes of OM and endophytic bacterial diversity affect the accumulation of soluble sugars to alter stress resistance. These four key soil physicochemical factors significantly influenced the diversity of endophytic bacteria. WC and OM were identified as the most important factors for endophytic and rhizospheric bacteria, respectively. This study provided the research basis for the scientific planting of C. pilosula.

19.
Clin Chem Lab Med ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38860992

RESUMO

OBJECTIVES: Internal and external quality assurance materials often use highly processed matrixes. This can render the materials non-commutable. Monitoring laboratory methods with patient medians helps in identifying and correcting systematic errors that may affect diagnostic accuracy. The aim of the present study was to use HbA1c patient results for monitoring of method performance over time. METHODS: Test HbA1c results from 2010 to 2022 was analyzed (n=722,553) regarding changes over time and seasonal variation. The HbA1c testing was initially performed on a Cobas 501 instrument using immunological detection but in May 2017 the method was replaced by capillary electrophoresis on Capillarys 3 Tera. RESULTS: There was a steady decrease in HbA1c values. From 2011 to 2021 the decrease was for 0.10 percentile 6.6 %, lower quartile 7.9 %, median 10.2 %, mean values 9 %, upper quartile 11.2 %, and 0.90 percentile 9.3 %. No clear shift in HbA1c levels was observed due to the shift in methods. The median HbA1c values per month was approximately 44 mmol/mol (6.2 %, DCCT/NGSP). The only month with a median HbA1c that differed by more than 1 mmol/mol was July with a median value of 42 mmol/mol (6.0 %). CONCLUSIONS: The patient data showed a similar decrease as in the National Diabetes Register which indicates that the method is stable over time without any sudden changes and that the seasonal variation is low. The continuous decrease in HbA1c values over time is most likely to a shift towards earlier detection of patient with diabetes and improved treatment.

20.
Sci Total Environ ; 944: 173989, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38879023

RESUMO

There is insufficient understanding of the spatio-temporal evolution of surface water-groundwater quality and hydraulic connection under both natural and human influences in urban river basins. To this end, this paper investigated the spatio-seasonal pattern of hydrochemical evolution and surface water-groundwater interaction in a typical urban river basin (Dahei River basin) based on isotopic and hydrochemical data of 132 water samples collected during three seasons (normal, wet and dry seasons). From the normal season to the wet season, surface water in the Dahei River basin was dominated by the impacts of evaporation and groundwater discharge processes. During this period, the precipitation and agricultural activities (canal irrigation) were frequent. Thus, groundwater was affected by irrigation infiltration of surface water and precipitation from high-altitude areas. From the wet season to the dry season, precipitation decreased and irrigation methods changed (canal irrigation → well irrigation). In this case, groundwater discharge had a stronger impact on surface water, and shallow groundwater was recharged by deep groundwater through the well irrigation. Under this hydrological pattern, the hydrochemical characteristics of surface water were mainly influenced by evaporation, human activities (agricultural irrigation and sewage treatment) and groundwater discharge. In contrast, the hydrochemical characteristics of groundwater were main influenced by water-rock interactions (dissolution of evaporites and silicates, and cation exchange) and human activities. This study contributed to a better understanding of the hydrochemical and hydrological processes in urban river basins and provided a theoretical basis for the sustainable management of water resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA