Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sci Total Environ ; 950: 175340, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117216

RESUMO

Ozone (O3) pollution with excessive near-surface O3 levels has been an important environmental issue in China, although the anthropogenic emission reductions (AER) have improved air quality since 2013. In this study, we investigated the sensitivities of atmospheric chemical environment with the urban and rural changes to the AER targeting a typical O3 pollution episode over North China in summer 2019, by conducting two WRF-Chem simulation experiments under two scenarios of anthropogenic emission inventories of years 2012 and 2019 with the meteorological conditions in the 2019 summertime O3 pollution episode for excluding the meteorological impacts on O3 pollution. The results show that the unbalanced AER aroused more serious O3 pollution in urban and rural areas. The intense NO reduction was responsible for the significant increments of urban O3, while the falling NO2 and NO synergistically devoted to the slight O3 variations in rural areas. Induced by the recent-year AER, the urban O3 production was governed by VOCs-limited and transition regime, whereas the NOx-limited regime dominated over rural areas in North China. Also, the AER reinforced the atmospheric oxidation capacity with the elevations of atmospheric oxidants O3 and ROx radicals, strengthening the chemical conversions to secondary inorganic particles. In both urban and rural areas, the sharp drop in SO2 caused a decrease in sulfate fraction, while the enhanced AOC accelerated the transformation to nitrate even when NOx was reduced. The AER induced nitrate to occupy the principal position in secondary PM2.5 in urban and rural areas. The AER promoted daytime and suppressed nighttime the nitrate production in urban areas, and more vigorous conversion of secondary aerosols were found in rural areas with much lower AOC increments. This study provides insights from a case study over North China in distinct responses of urban and rural O3 pollution with secondary particle changes to AER in urban and rural atmospheric environment changes, with implications for an effective abatement strategy on O3 pollution.

2.
Environ Sci Technol ; 58(25): 10956-10968, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38868859

RESUMO

Marine dimethyl sulfide (DMS) emissions are the dominant source of natural sulfur in the atmosphere. DMS oxidizes to produce low-volatility acids that potentially nucleate to form particles that may grow into climatically important cloud condensation nuclei (CCN). In this work, we utilize the chemistry transport model ADCHEM to demonstrate that DMS emissions are likely to contribute to the majority of CCN during the biological active period (May-August) at three different forest stations in the Nordic countries. DMS increases CCN concentrations by forming nucleation and Aitken mode particles over the ocean and land, which eventually grow into the accumulation mode by condensation of low-volatility organic compounds from continental vegetation. Our findings provide a new understanding of the exchange of marine precursors between the ocean and land, highlighting their influence as one of the dominant sources of CCN particles over the boreal forest.


Assuntos
Atmosfera , Atmosfera/química
3.
Environ Sci Technol ; 58(17): 7314-7324, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626432

RESUMO

New particle formation via the ion-mediated sulfuric acid and ammonia molecular clustering mechanism remains the most widely observed and experimentally verified pathway. Recent laboratory and molecular level observations indicate iodine-driven nucleation as a potentially important source of new particles, especially in coastal areas. In this study, we assess the role of iodine species in particle formation using the best available molecular thermochemistry data and coupled to a detailed 1-d column model which is run along air mass trajectories over the Southern Ocean and the coast of Antarctica. In the air masses traversing the open ocean, ion-mediated SA-NH3 clustering appears insufficient to explain the observed particle size distribution, wherein the simulated Aitken mode is lacking. Including the iodine-assisted particle formation improves the modeled Aitken mode representation with an increase in the number of freshly formed particles. This implies that more particles survive and grow to Aitken mode sizes via condensation of gaseous precursors and heterogeneous reactions. Under certain meteorological conditions, iodine-assisted particle formation can increase cloud condensation nuclei concentrations by 20%-100%.


Assuntos
Aerossóis , Iodo , Regiões Antárticas , Iodo/química , Tamanho da Partícula , Poluentes Atmosféricos , Material Particulado
4.
Chemosphere ; 354: 141630, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462185

RESUMO

Aminoamides are formed in the atmospheric environments by the auto-oxidation of the parent diamines. In this work, the oxidation chemistry of diamine (1,3-Diaminopropane, Dap) to the amino amide (3- aminopropanamide, 3-APA) and its new particle formation potential with small atmospheric molecules such as NH3 (A), H2O (W) and H2SO4 (SA) are theoretically investigated using the M062X/6-311++G** theory. The bimolecular rate coefficient of the ·OH initiated H-atom abstraction is computed to be 1.01 × 10-11 cm3 molecule-1 s-1. Further reaction of the peroxy radical intermediate indicates that the pathway involving γ H- shift of the initially formed radical intermediates to be more favourable on kinetic grounds with the effective bimolecular rate coefficient of 3.87 × 10-14 cm3 molecule-1s-1. The thermodynamic barrier associated with the H-shifts involved in this pathway is in the range of 13-20 kcal/mol. The cluster formation of APA with SA is more favourable than the clusters with W and A, wherein the free energy of formation of (APA)(SA) and (APA)(SA)2 are -11.3 and -22.6 kcal/mol, respectively. However, the feasibility of cluster formation with W and A increases with the altitude and becomes spontaneous in the case of water at an altitude of 12 km. The present work indicates that aminoamides like 3-APA can participate in the initial stages of new particle formation events by forming clusters with SA molecules. The scattering parameters and topological analysis of different (Amide)(SA) clusters indicate more scattering properties for the (APA)(SA) cluster, which has an adverse effect on the atmosphere. Furthermore, topological analysis indicates that H-bond formation is more prominent in the (APA)(SA) cluster.


Assuntos
Atmosfera , Termodinâmica , Atmosfera/química , Oxirredução
5.
Sci Total Environ ; 905: 167155, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730043

RESUMO

Indo-Gangetic Plain (IGP) experiences a heavy load of particulate pollution impacting the 9 % of the global population living in this region. The present study examines the dithiothreitol (DTT) assay-based oxidative potential (OP) of PM2.5 and the major sources responsible for the observed OP over the central IGP (Kanpur) during winter. The volume normalized OP (OPV) of PM2.5 varied from 2.7 to 10 nmol DTT min-1 m-3 (5.5 ± 1.5) and mass normalized OP (OPM) of PM2.5 varied from 19 to 58 pmol DTT min-1 µg-1 (34 ± 8.0), respectively. Major sources of PM2.5 were identified using the positive matrix factorization (PMF) and the contribution of these sources to observed OP was estimated through multivariate linear regression of OPv with PMF-resolved factors. Although the PM2.5 mass was dominated by secondary aerosols (SA, 28 %), followed by crustal dust (CD, 24 %), resuspended fine dust (RFD, 14 %), traffic emissions (TE, 8 %), industrial emissions (IE, 17 %), and trash burning (TB, 9 %), their proportionate contribution to OP (except SA) was different likely due to differences in redox properties of chemical species coming from these sources. The SA showed the highest contribution (23 %) to observed OP, followed by RFD (19 %), IE (8 %), TE & TB (5 %), CD (4 %), and others (36 %). Our results highlight the significance of determining the chemical composition of particulates along with their mass concentrations for a better understanding of the relationship between PM and health impacts. Such studies are still lacking in the literature, and these results have direct implications for making better mitigation strategies for healthier air quality.

6.
Environ Pollut ; 323: 121210, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773687

RESUMO

Trees grown in streets impact air quality by influencing ventilation (aerodynamic effects), pollutant deposition (dry deposition on vegetation surfaces), and atmospheric chemistry (emissions of biogenic volatile organic compounds, BVOCs). To qualitatively evaluate the impact of trees on pollutant concentrations and assist decision-making for the greening of cities, 2-D simulations on a street in greater Paris were performed using a computational fluid dynamics tool coupled to a gaseous chemistry module. Globally, the presence of trees has a negative effect on the traffic-emitted pollutant concentrations, such as NO2 and organic condensables, particularly on the leeward side of a street. When not under low wind conditions, the impact of BVOC emissions on the formation of most condensables within the street was low owing to the short characteristic time of dispersion compared with the atmospheric chemistry. However, autoxidation of BVOC quickly forms some extremely-low volatile organic compounds, potentially leading to the formation of ultra-fine particles. Planting trees in streets with traffic is only effective in mitigating the concentration of some oxidants such as ozone (O3), which has low levels in cities regardless of this, and hydroxyl radical (OH), which may slightly lower the rate of oxidation reactions and the formation of secondary species in the street.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Árvores , Compostos Orgânicos Voláteis/análise , Poluição do Ar/análise , Vento , Cidades , Emissões de Veículos/análise , Modelos Teóricos
7.
J Geophys Res Atmos ; 127(8): e2021JD036191, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35600237

RESUMO

Nationwide restrictions on human activities (lockdown) in China since 23 January 2020, to control the 2019 novel coronavirus disease pandemic (COVID-19), has provided an opportunity to evaluate the effect of emission mitigation on particulate matter (PM) pollution. The WRF-Chem simulations of persistent heavy PM pollution episodes from 20 January to 14 February 2020, in the Guanzhong Basin (GZB), northwest China, reveal that large-scale emission reduction of primary pollutants has not substantially improved the air quality during the COVID-19 lockdown period. Simultaneous reduction of primary precursors during the lockdown period only decreases the near-surface PM2.5 mass concentration by 11.6% (12.6 µg m-3), but increases ozone (O3) concentration by 9.2% (5.5 µg m-3) in the GZB. The primary organic aerosol and nitrate are the major contributor to the decreased PM2.5 in the GZB, with the reduction of 28.0% and 21.8%, respectively, followed by EC (10.1%) and ammonium (7.2%). The increased atmospheric oxidizing capacity by the O3 enhancement facilitates the secondary aerosol (SA) formation in the GZB, increasing secondary organic aerosol and sulphate by 6.5% and 3.3%, respectively. Furthermore, sensitivity experiments suggest that combined emission reduction of NOX and VOCs following the ratio of 1:1 is conducive to lowering the wintertime SA and O3 concentration and further alleviating the PM pollution in the GZB.

8.
Sci Total Environ ; 838(Pt 3): 156312, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35636546

RESUMO

China suffers from combined air pollution (CAP) comprising dual high O3 and PM2.5, particularly in the Beijing-Tianjin-Hebei (BTH) region, which is an urban agglomeration in the North China Plain. To characterize the seasonal changes in regional CAP, 82 CAP days were identified during the study period from 2015 to 2019 with the co-occurring pollution of O3 and PM2.5 in the BTH. It is found that CAP seasonality has undergone distinct changes with a declining trend in the interannual variations in CAP over recent years. It is also revealed that the monthly CAP peaks have recently shifted from summer to early spring (March and April), indicating seasonal changes in CAP in the BTH. Furthermore, the of chemical and meteorological roles in CAP changes was investigated using environmental and meteorological observation data. The recent reduction in PM2.5 and O3 concentrations had enhanced O3 production and atmospheric oxidizability, thereby causing increments in secondary PM2.5 proportion. The interaction between O3 and PM2.5 was responsible for changing the CAP of dual high O3 and PM2.5 to the transition/spring season in the context of mitigation of air pollutant emissions. Furthermore, principal component analysis in the T-mode (T-PCA) was applied to identify four synoptic circulation patterns that regulate CAP occurrence. The results show that the CAP occurrence was regulated by the dominant patterns of synoptic circulation in the BTH. Warm temperature and strong downward ultraviolet radiation anomalies were observed in the BTH, indicating the importance of meteorological drivers in O3 photochemical production on the CAP. The frequency of key synoptic circulation patterns during the spring season increased annually, thereby inducing seasonal changes in the atmospheric environment with CAP in the BTH in recent years.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Estações do Ano , Raios Ultravioleta
9.
Environ Pollut ; 303: 119157, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304175

RESUMO

Despite implementation of strict emission mitigation measures since 2013, heavy haze with high levels of secondary aerosols still frequently engulfs the Guanzhong Basin (GZB), China, during wintertime, remarkably impairing visibility and potentially causing severe health issues. Although the observed low ozone (O3) concentrations do not facilitate the photochemical formation of secondary aerosols, the measured high nitrous acid (HONO) level provides an alternate pathway in the GZB. The impact of heterogeneous HONO sources on the wintertime particulate pollution and atmospheric oxidizing capability (AOC) is evaluated in the GZB. Simulations by the Weather Research and Forecast model coupled with Chemistry (WRF-Chem) reveal that the observed high levels of nitrate and secondary organic aerosols (SOA) are reproduced when both homogeneous and heterogeneous HONO sources are considered. The heterogeneous sources (HET-sources) contribute about 98% of the near-surface HONO concentration in the GZB, increasing the hydroxyl radical (OH) and O3 concentration by 39.4% and 22.0%, respectively. The average contribution of the HET-sources to SOA, nitrate, ammonium, and sulfate in the GZB is 35.6%, 20.6%, 12.1%, and 6.0% during the particulate pollution episode, respectively, enhancing the mass concentration of fine particulate matters (PM2.5) by around 12.2%. Our results suggest that decreasing HONO level or the AOC becomes an effective pathway to alleviate the wintertime particulate pollution in the GZB.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Poeira , Monitoramento Ambiental/métodos , Nitratos/análise , Óxidos de Nitrogênio/análise , Material Particulado/análise , Processos Fotoquímicos
10.
Environ Pollut ; 301: 119027, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183665

RESUMO

During the COVID-19 lockdown, atmospheric PM2.5 in the Pearl River Delta (PRD) showed the highest reduction in China, but the reasons, being a critical question for future air quality policy design, are not yet clear. In this study, we analyzed the relationships among gaseous precursors, secondary aerosols and atmospheric oxidation capacity in Shenzhen, a megacity in the PRD, during the lockdown period in 2020 and the same period in 2021. The comprehensive observational datasets showed large lockdown declines in all primary and secondary pollutants (including O3). We found that, however, the daytime concentrations of secondary aerosols during the lockdown period and normal period were rather similar when the corresponding odd oxygen (Ox≡O3+NO2, an indicator of photochemical processing avoiding the titration effect of O3 by freshly emitted NO) were at similar levels. Therefore, reduced Ox, rather than the large reduction in precursors, was a direct driver to achieve the decline in secondary aerosols. Moreover, Ox was also found to determine the spatial distribution of intercity PM2.5 levels in winter PRD. Thus, an effective strategy for winter PM2.5 mitigation should emphasize on control of winter O3 formation in the PRD and other regions with similar conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Ozônio/análise , Material Particulado/análise
11.
Chemosphere ; 263: 128030, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297051

RESUMO

Size-segregated airborne fine (PM2.1) and coarse (PM>2.1) particulates were measured in an urban environment over central Indo-Gangetic plain in between 2015 and 2018 to get insights into its nature, chemistry and sources. Mean (±1σ) concentration of PM2.1 was 98 (±76) µgm-3 with a seasonal high during winter (DJF, 162 ± 71 µgm-3) compared to pre-monsoon specific high in PM>2.1 (MAMJ, 177 ± 84 µgm-3) with an annual mean of 170 (±69) µgm-3. PM2.1 was secondary in nature with abundant secondary inorganic aerosols (20% of particulate mass) and water-soluble organic carbon (19%) against metal enriched (25%) PM>2.1, having robust signature of resuspensions from Earth's crust and road dust. Ammonium-based neutralization of particulate acidity was essentially in PM2.1 with an indication of predominant H2SO4 neutralization in bisulfate form compared to Ca2+ and Mg2+-based neutralization in PM>2.1. Molecular distribution of n-alkanes homologues (C17-C35) showed Cmax at C23 (PM2.1) and C18 (PM>2.1) with weak dominance of odd-numbered n-alkanes. Carbon preference index of n-alkanes was close to unity (PM2.1: 1.4 ± 0.3; PM>2.1: 1.3 ± 0.4). Fatty acids (C12-C26) were characterized with predominance of even carbon with Cmax at n-hexadecanoic acid (C16:0). Low to high molecular weight fatty acid ratio ranged from 2.0 (PM>2.1) to 5.6 (PM2.1) with vital signature of anthropogenic emissions. Levoglucosan was abundant in PM2.1 (758 ± 481 ngm-3) with a high ratio (11.6) against galactosan, emphasizing robust contribution from burning of hardwood and agricultural residues. Receptor model resolves secondary aerosols and biomass burning emissions (45%) as the most influential sources of PM2.1 whereas, crustal (29%) and secondary aerosols (29%) were found responsible for PM>2.1; with significant variations among the seasons.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Poeira/análise , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
12.
Huan Jing Ke Xue ; 41(5): 2006-2016, 2020 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608817

RESUMO

To investigate the effect of high concentration of ozone (O3) on the aerosol formation and aging process, this study made observations using a single-particle aerosol mass spectrometer (SPAMS) at Heshan Atmospheric Environment Supervision Station in Guangdong Province in October 2018. During the observation period, a high ozone concentration period (PH) and a low ozone concentration period (PL) were defined according to the level of O3 concentration. The average O3 concentration during PH was 117 µg·m-3, and that of PL was 25 µg·m-3. According to the difference in chemical composition, single particles mainly included aging element carbon particles (EC-aged), secondary particles (Sec), and aging organic carbon particles (OC-aged) during the observation period. The total number of single particles in PH (348085) was higher than in PL (224797), and the proportion of Sec particles (37.1%) in PH was significantly higher than in PL (27.8%), whereas the proportion of EC-aged particles in PH (32.1%) was lower than in PL (44.1%). The proportion of OC-aged particles in PH (13.5%) was slightly higher than in PL (10.4%). The concentration of particles containing nitrate and sulfate showed significant diurnal changes during PH, but no diurnal changes during PL. The peak area of nitrate and sulfate in the Sec particles and EC-aged particles in PH was higher than in PL, which indicates that the amount of nitrate and sulfate produced by the secondary reaction process in PH was more than in PL. In addition, the peak areas of nitrate and sulfate in the Sec particles were significantly higher than those in the EC-aged particles, indicating that the age of the Sec particles was greater. In this study, acetate (59CH3CO2-) and glyoxal (73C2HO3-) were selected to represent the changing characteristics of aldehyde and ketone compounds in single-particle aerosols. The number concentration and peak area of 59CH3CO2- and 73C2HO3- in Sec and OC-aged particles in PH were significantly higher than those in PL, and showed significant diurnal variation characteristic during PH. The peak appeared 2 h after the peak of O3 concentration. In PL, the peak value was significantly reduced, and the change trend was the same as that of the number concentration of Sec and OC-aged particles, indicating that high concentration of O3 is beneficial to the oxidation of VOCs to 59CH3CO2- and 73C2HO3-. In summary, high concentration of O3 and enhancement of secondary species in single particles were due to the strong photochemical reactions during PH.

13.
Sci Total Environ ; 745: 140961, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32721619

RESUMO

The observed near-surface ozone (O3) concentration has been remarkably increasing during recent years in winter in the Guanzhong basin, central China, showing a continuous enhancement of the atmospheric oxidizing capacity (AOC). The impact of such a change in the AOC on secondary aerosol formation, however, has not yet been assessed. In this study, we simulate the formation of O3 and airborne particles in the atmosphere using the WRF-Chem model, in which the AOC is calculated quantitatively, to understand the responses of secondary aerosols to the AOC increase. Meteorological observations, air pollutants including O3, NO2, SO2, CO, and PM2.5 concentrations at ambient monitoring sites, and the main compositions of submicron particulates measured using ACSM are used to constrain the model simulation. The model result shows that the population hourly and postmeridian Ox (=O3 + NO2) concentrations are good indicators for the wintertime AOC in the basin, suggested by the significantly positive correlations between them. Sensitivity experiments present that the AOC changes may exert important influences on fine particle (PM2.5) concentration with an average rate of 1.94 (µg m-3)/(106 cm-3 s-1) for Δ(PM2.5)/Δ(AOC), which is mostly caused by the mass changes in secondary organic aerosol (43%) and nitrate aerosol (40%) and less attributed to the ammonium (11%) and sulfate (6%) components.

14.
J Environ Sci (China) ; 95: 91-98, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32653197

RESUMO

To investigate the secondary formation and pollution sources of atmospheric particles in urban Beijing, PM2.5 and its chemical components were collected and determined by URG-9000D ambient ion monitor (AIM) from March 2016 to January 2017. Among water-soluble ions (WSIs), NO3-, SO42- and NH4+ (SNA) had the largest proportion (77.8%) with the total concentration of 23.8 µg/m3. Moreover, as fine particle pollution worsened, the NO3-, SO42- and NH4+ concentrations increased basically, which revealed that secondary aerosols were the main cause of particle pollution in Beijing. Furthermore, the particle neutralization ratio (1.1), the ammonia to sulfate molar ratio (3.4) and the nitrate to sulfate molar ratio (2.2) showed that secondary aerosols are under ammonium-rich conditions with the main chemical forms of NH4NO3 and (NH4)2SO4, and vehicle emission could be the main anthropogenic source of secondary aerosols in Beijing. Source analysis further indicated that secondary aerosols, solid fuel combustion, dust and marine aerosol were the principal pollution sources of PM2.5, accounting for about 46.1%, 22.4% and 13.0%, respectively, and Inner Mongolia and Hebei Provinces could be considered as the main potential sources of PM2.5 in urban Beijing. In addition, secondary formation process was closely related with gaseous precursor emission amounts (SO2, NO2, NH3 and HONO), atmospheric ozone concentration (O3), meteorological conditions (temperature and relative humidity) and particle components. Sensitive analysis of the thermodynamic equilibrium model (ISORROPIA II) revealed that controlling total nitrate (TN) is the effective measure to mitigate fine particle pollution in Beijing.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Aerossóis/análise , Pequim , China , Monitoramento Ambiental , Tamanho da Partícula , Estações do Ano
15.
Chemosphere ; 256: 127163, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32470742

RESUMO

Seasonal changes in chemical compositions and source apportionment of PM2.5 during clear and hazy days help to develop effective control policy, but limited information is available in megacity Nanjing. In this study, 102 PM2.5 samples were collected during clear and hazy days from 4 seasons in 2014-2015. Their chemical compositions (organic and elemental carbon, 8 water-soluble ions, and 22 inorganic elements) were determined, which were used for PM2.5 source apportionment using the PMF model. The mean PM2.5 concentration was lower during clear days than hazy days (42 vs. 122 µg m-3), so were mean concentrations of metals (0.48 vs. 0.82 ng m-3 for Co and 2.0 vs. 2.4 µg m-3 for Na), water soluble ions (0.10 vs. 0.16 µg m-3 for Mg2+ and 12 vs. 23 µg m-3 for SO42-), and carbon species (3.2 vs. 5.4 µg m-3 for elemetal C and 20 vs. 35 µg m-3 for organic C). Based on the PMF model, five main sources of PM2.5 were identified including secondary aerosols (31%), coal combustion (27%), road & construction dust (26%), oil combustion (8.5%), and iron & steel industry (5.1%) for all samples. The PM2.5 concentrations from the 5 sources were 0.01-46.5, averaging 9.8 µg m-3 during clear days (PM2.5 < 75 µg m-3), which increased to 1.83-60.1, averaging 18 µg m-3 during hazy days. However, based on their contributions to PM2.5, only secondary aerosols increased during hazy days compared to clear days in all seasons (11 vs. 42%), indicating its dominant contribution to haze in Nanjing. For different seasons, road & construction dust was a major contributor to PM2.5 in the summer, while oil combustion (4.86 vs.16.8%) contributed more in spring. However, coal combustion became the main source of PM2.5 during the summer (44-85%) due to the pollution controls for the Youth Olympic Games. Our results suggest that secondary aerosols play an important role in haze formation and season-dependent pollution measures should be implemented for effective control of air pollution.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Carbono/análise , China , Carvão Mineral/análise , Poeira/análise , Indústrias , Íons/análise , Estações do Ano , Aço , Emissões de Veículos/análise , Água/química , Tempo (Meteorologia)
16.
Sci Total Environ ; 728: 138013, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361103

RESUMO

High-time-resolution (3-hour) PM2.5 samples were collected simultaneously from the rural and urban areas in the Yangtze River Delta region during winter. The aerosol samples were analyzed for carbonaceous components, organic tracers, water-soluble inorganic ions and stable carbon (δ13C) and nitrogen (δ15N) isotopic compositions of total carbon and total nitrogen. The values of PM2.5 and secondary organic carbon (SOC) for both sampling sites were observed 2 times higher in haze events compare to those in clear days, implying severe pollution occurred by photochemical oxidation during haze periods. The PM mass of rural samples showed similar temporal trend and significant correlation with the urban PM, reflecting pollution sources or their formation process are most likely identical. Diurnal variations of PM2.5 and carbonaceous components revealed that pollution levels increased at daytime due to the photochemical oxidation. In addition, SOC and OC were influenced by the relative humidity (RH%) and temperature (T °C), indicating that such meteorological factors play important roles in the occurrence of regional air pollution. The concentrations of levoglucosan, polycyclic aromatic hydrocarbons, hopanes, and n-alkanes were 625 ± 456 and 519 ± 301 ng m-3, 32.6 ± 24.7 and 28.7 ± 20.1 ng m-3, 1.83 ± 1.51 and 1.26 ± 1.34 ng m-3, and 302 ± 206 and 169 ± 131 ng m-3 for rural and urban samples, respectively. Levoglucosan is the most abundant organic compounds, exhibited 2-3 times higher in haze than clear days, suggesting biomass burning (BB) emission substantially affects the haze pollution in winter. Furthermore, NO3- was the dominant ionic species followed by SO42-, NH4+, Cl- and other minor species for both sites. The δ13C and δ15N values demonstrate that anthropogenic activities such as fossil fuel combustion and BB are the major sources for carbonaceous and nitrogenous aerosols. This study implies that both the regional anthropogenic emissions and meteorological conditions influenced the regional haze formation, leading enhancement of pollution levels in eastern China during winter.

17.
Environ Sci Pollut Res Int ; 27(7): 6918-6935, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31879868

RESUMO

To investigate the spatial distribution and diurnal variation of the chemical composition of PM2.5 pollution in an industrial city of southern Taiwan, 12-h PM2.5 was diurnally continuously collected simultaneously at the Kaoping Air Quality Zone (KAQZ) during one highly PM2.5-polluted episode. Water-soluble ions, metallic elements, carbonaceous contents, dicarboxylic acids, and anhydrosugars were analyzed to characterize the chemical fingerprint of PM2.5. Backward trajectory simulation and chemical mass balance (CMB) receptor modeling were applied to identify the potential sources of PM2.5 and their contributions. It showed that Chaozhou (rural area) accompanying the highest SORs and NORs suffered from the most severe PM2.5 pollution during the episode. Sulfate (SO42-) was probably formed by the atmospheric chemical reaction in the daytime, while NO3- processed at nighttime at the KAQZ. A homogeneous formation of NO3- occurred at Chaozhou. The concentrations of Zn, Pb, Fe, Cu, V, and Al, mainly emitted from anthropogenic sources, increased significantly at the KAQZ. The highest OC, SOC/OC, and DA/OCs at Daliao (industrial area) were attributed to the transformation of primary VOCs to secondary OC via photo-oxidation during the episode. Oxalic acid was mainly produced through photochemical reactions since a high correlation between oxalic acid and Ca2+ was observed at Nanzi (urban area) and Daliao during the episode. During the episode, PM2.5 mostly originated from local primary or secondary aerosol than long-range overseas transport. The dominant source was anthropogenic emissions, accounting for 67.1% and 70.4% of PM2.5 at Nanzi and Daliao, respectively. At Chaozhou, the contribution of anthropogenic emissions was the lowest (42.4%), but secondary aerosols had the highest contribution of 38.3% of PM2.5 among the three areas during the episode.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Aerossóis , Cidades , Taiwan , Emissões de Veículos
18.
Environ Pollut ; 257: 113425, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31676098

RESUMO

Light absorbing carbonaceous aerosols (LACA) consisting of black carbon (BC) and brown carbon (BrC) have received considerable attention because of their climate and health implications, but their sources, characteristics and fates remain unclear in Southeast Asia (SEA). In this study, we investigated spatio-temporal characteristics of LACA, their radiative properties and potential sources in Singapore under different weather conditions. Hourly BC concentrations, measured from May 2017 to March 2018, ranged from 0.31 µg/m3 to 14.37 µg/m3 with the mean value being 2.44 ±â€¯1.51 µg/m3. High mass concentrations of BC were observed during the south-west monsoon (SWM, 2.60 ±â€¯1.56 µg/m3) while relatively low mass concentrations were recorded during the north-east monsoon (NEM, 1.68 ±â€¯0.96 µg/m3). There was a shift in the Absorption Ångström exponent (AAE) from 1.1 to 1.4 when the origin of LACA changed from fossil fuel (FF) to biomass burning (BB) combustion. This shift is attributed to the presence of secondary BrC in LACA, derived from transboundary BB emissions during the SWM. Lower AAE values were observed when local traffic emissions were dominant during the NEM. This explanation is supported by measurements of water-soluble organic carbon (WSOC) in LACA and the corresponding AAE values determined at 365 nm using a UV-vis spectrophotometer. The AAE values, indicative of the presence of brown carbon (BrC), showed that photochemically aged LACA contribute to an enhancement in the light absorption of aerosols. In addition, spatio-temporal characteristics of BC in the intra-urban environment of Singapore were investigated across diverse outdoor and indoor microenvironments. High variability of BC was evident across these microenvironments. Several air pollution hotspots with elevated BC concentrations were identified. Overall, the results stress a need to control anthropogenic emissions of BC and BrC in order to mitigate near-term climate change impacts and provide health benefits.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Carbono/análise , Monitoramento Ambiental , Luz Solar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar , Sudeste Asiático , Biomassa , Combustíveis Fósseis , Material Particulado/análise , Singapura , Fuligem/análise , Água/química
19.
Environ Pollut ; 251: 1-12, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31071625

RESUMO

Extreme PM2.5 and nonmethane hydrocarbon (NMHC) pollution often occurs simultaneously during the winter. To study the formation mechanism of two pollution events in Chengdu from 23 December 2016 to 31 January 2017, we explored the weather conditions, chemical composition, secondary pollutant conversion, aerosol hygroscopic growth, and potential source contribution function (PSCF) during this period. During the study period, the humidity was high (67.9%), the wind speed was low (1.0 m s-1), the height of the planetary boundary layer was low (463.4 m), and the atmosphere remained stationary. The potential source regions of PM2.5 and NMHCs were locally polluted sites in the southwestern and southern regions of Chengdu, affected by the southwesterly air mass trajectories. PM2.5 and sulfur oxidation ratios (SOR), nitrogen oxidation ratios (NOR) and secondary organic aerosol formation potential (SOAP) showed a strong positive correlation. As pollution increased, the conversion from SO2, NOx and NMHCs to sulfate, nitrate and SOAs increased, resulting in an increase in the secondary aerosol concentration. As the relative humidity increases, aerosols begin to undergo rapid hygroscopic growth, which seriously affects the visibility of the atmosphere. In general, pollutant emissions, static weather, and secondary conversion, among other factors, lead to the occurrence of this persistent extreme haze pollution.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Aerossóis , China , Hidrocarbonetos/análise , Nitratos/análise , Sulfatos/análise , Tempo (Meteorologia)
20.
Environ Int ; 127: 78-84, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30909096

RESUMO

China experiences severe particulate pollution, especially in winter, and determining the characteristics of particulate matter (PM) during pollution events is imperative for understanding the sources and causes of the pollution. However, inconsistencies have been found in the aerosol composition, sources and secondary processing among reported studies. Modern meta-analysis was used to probe the PM chemical characteristics and processing in winter at four representative regions of China, and the first finding was that secondary aerosol formation was the major effect factor for PM pollution. The secondary inorganic species behaved differently in the four regions: sulfate, nitrate, and ammonium increased in the Beijing-Tianjin-Hebei (BTH) and Guanzhong (GZ) areas, but only nitrate increased in the Pearl River Delta (PRD) and Yangtze River Delta (YRD) regions. The increased production of secondary organic aerosol (SOA) was probably caused by aqueous-phase processing in the GZ and BTH regions and by photochemical reactions in the PRD. Finally, we suggest future AMS/ACSM observations should focus on the aerosol characteristics in rural areas in winter in China.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Monitoramento Ambiental , Material Particulado/química , Estações do Ano , China , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA